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Abstract: In complex systems, flexibility and adaptability to changes are crucial to the systems’
dynamic stability and evolution. Such resilience requires that the system is able to respond to
disturbances by self-organizing, which implies a certain level of entropy within the system. Dynamic
states (static, cyclical/periodic, complex, and chaotic) reflect this generative capacity, and correlate
with the level of entropy. For planning complex cities, we need to develop methods to guide such
autonomous progress in an optimal manner. A classical apparatus, cellular automaton (CA), provides
such a tool. Applications of CA help us to study temporal dynamics in self-organizing urban systems.
By exploring the dynamic states of the model’s dynamics resulting from different border conditions
it is possible to discover favorable set(s) of rules conductive to the self-organizing dynamics and
enable the system’s recovery at the time of crises. Level of entropy is a relevant measurement
for evaluation of these dynamic states. The 2-D urban cellular automaton model studied here
is based on the microeconomic principle that similar urban activities are attracted to each other,
especially in certain self-organizing areas, and that the local dynamics of these enclaves affect the
dynamics of the urban region by channeling flows of information, goods and people. The results of
the modeling experiment indicate that the border conditions have a major impact on the model’s
dynamics generating various dynamic states of the system. Most importantly, it seemed that the
model could simulate a favorable, complex dynamic state with medium entropy level which may
refer to the continuous self-organization of the system. The model provides a tool for exploring
and understanding the effects of boundary conditions in the planning process as various scenarios
are tested: resulting dynamics of the system can be explored with such “planning rules” prior to
decisions, helping to identify planning guidelines that will support the future evolution of these areas.

Keywords: urban models; complexity theory; evolution; cellular automaton; dynamic states;
entropy; planning

1. Introduction

Theories of complex adaptive systems provide a foundation for a better understanding of cities:
cities are complex as regards their trans-scalarity, non-equilibrium nature and inter-connected actors
and networks [1,2]. Self-organization is an essential mechanism in the way complex cities organize:
Cities are built as a result of bottom-up actions by individual actors within the frame of regulations and
laws. Urban self-organization which promotes economic viability and fosters innovation is a dynamic
process per se; the new layer of urbanity emerges on the premises of the existing one recursively,
implying that the relations and dynamics become even more important than the entities as such. Hence,
the study of the dynamics resulting from such interaction in urban system becomes essential. Theories
of complex systems suggest that the systems’ constant transitions between more and less predictable,
mathematically chaotic phases enable their evolution [3–5]. Similarly, within resilience theory, the
capacity of the system to absorb disturbances and settle into another qualitative state in time of crises
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is essential for the continuity of the system [6]. Both mechanisms are based on self-organization [6,7].
This capacity is at its greatest near the edge of instabilities, in which the entropy is typically between
the two extremes [3,8,9].

Dynamic models such as CA provide popular tools for studying emergent systems with many
interacting parts producing a dynamic, higher level order. In the urban context, modeling such
temporal dynamics could help us to pinpoint how changing the conditions for lower level actions
(for example rules concerning interaction between actors) impacts the global dynamics (the state of the
system and level of complexity). This could lead to a better understanding of which features of urbanity
the plan should restrict, leaving the rest of the system intact enabling the necessary self-organization [8].
In mathematics and computation dynamic states (static, dynamic) resulting from variance in the rule
sets has been studied widely with one-dimensional CA (e.g., [8,10–13]), and they also provide a robust
framework for evaluating urban modeling.

Since the 1940s, CA has developed from simple theoretical models into an extensive family of
relaxed spatial models exploring many economic or societal processes. In recent decades, urban CA
applications have expanded, exploring myriads of phenomena, such as urban growth or land use
dynamics (e.g., [14–22]). Many of these models operate on a regional scale. Local scale applications are
still fairly limited and mainly address social dynamics, see for example Schelling [23] and Portugali [5].

Many studies within the field of agglomeration economics reveal that synergetic or competitive
actors form clusters on various scales (e.g., [24–26]). These studies often suggest that the dynamic
nature of the location principles is worth supporting, especially within the context of the current
innovation economy [27,28]. These studies concentrate mainly on single industry agglomerations.
The research on clustering of several coexisting industries in a single area is limited. Such approaches,
however, are necessary given that according to many studies certain special local scale demarcated
and self-organizing areas constantly emerge in the city, impacting on urban dynamics on a regional
level and with great potential for cultural and economic life in the city [5,29–32]. On complex, resilient
trajectory, these areas support the cultural and economic viability of the whole city, hence making it
important to explore means of supporting their self-organization. Dynamic micro-simulations are a
useful tool for exploring which factors should be encouraged or restricted to support the successful
and continuous dynamics.

Therefore, I ask what kind of dynamic states can be simulated with a 2-D cellular automaton
based on real world case of a self-organizing area. As regards the level of entropy, which states are
preferable and how to encourage these in planning?

In this paper I first frame the theoretical foundation for the study and scrutinize previous research
on the cellular automaton, along with its urban applications. Secondly, I introduce a specific modified
CA model for studying dynamic states. The rules of the proposed model are based on empirical data
on the agglomeration of similar activities. The model is relaxed by means of the irregular cell space and
gradually changing, quantitatively and qualitatively defined transition rules based on probabilities
for a better correspondence with reality. With this model, I explore how the changing weights on the
transition rules representing various “planning decisions” affect the dynamics in a model representing
a self-organizing area with a documented clustering tendency. The aim is to discover sets of rules which
would support or impede the self-organization of the area in order to make better planning decisions.

Thirdly, I elaborate the results—static, periodic and complex states—validating them against
entropy levels proving that complex state is indeed located between the two extremes as regards
the degree of entropy. Finally, I discuss how such a model might assist communication between
stakeholders, planners, and designers in the planning processes. Different scenarios can be simulated
and evaluated to eliminate only the conditions resulting in undesirable outcomes, leaving enough
freedom for the urban evolution.

The performance of the model was explored in the Nekala industrial area and in the Vaasa old
garrison area in Finland. The Vaasa project was implemented as a part of the actual planning process.
The empirical data of the mechanism are mainly from the mature Nekala area, since the garrison area
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was only recently released from military use and none but embryonic signs of self-organizing behavior
of the activities were discernible.

2. Theoretical Background

2.1. Urban Models

Urban micro simulation has been used since the 1990s to study bottom-up emerging phenomena
in cities and regions. These applications are often based on interacting cellular structures in space
(CA), free moving agents (agent based models), networks, or combinations of these. Considering the
intrinsic characteristics of complex systems (constantly shifting between dynamically stable and chaotic
transition phases) these micro-simulations are not able to predict the future very far (not beyond the
qualitative change after tipping points), but their value lies in educational use: with models we can
learn about the dynamics of the system we study, and especially how the changing weights for rules
impact the outcome. For this the model is run exhaustively, using all potential weights and pinpointing
resulting “attractors”—the probabilities of the system’s state shifting to another dynamic state as the
weights are changed [33]. (In mathematics, attractors refer to the system’s probabilities to behave in a
certain manner persistently, e.g., periodically or in a complex manner. The system is stable while on the
attractor, but could be pushed to another one with a substantial effort.) Dynamic urban models operate
often on the regional level, simulating large scale phenomena such as land use, population dynamics
or economics [15,17], exploring patterns resulting from various conditions between urban actors [34],
or, as in this study, exploring the dynamic states of an urban system [21]. However, relatively rare
smaller scale models (see for example [5]) are also used implying that the local dynamics is interlinked
with higher level dynamics, considering cities as complex nested system of networks consisting of
other sub-network throughout the scales [35].

2.2. The Scale

The fractality and trans-scalarity of cities [21,36] and movement [37] imply intrinsic dependencies
across the scales, also revealing the role of smaller scale phenomena. As regards the neighborhood
interaction, a smaller target scale may support the exploration of features based on informal information
sharing [38]; in a qualitative sense, lower scale nodes, such as economic or cultural concentrations, can
be of great importance on a regional, national or even global scale [30].

Several urban studies contemplate self-organizing local scale enclaves of such trans-scalar
importance [5,29,30]. Developing Foucault’s concept, Shane [30] considers a certain type of “islands”,
the heterotopias of illusion as a dominant element in today’s multi-nodal city. These areas are
self-organizing and flexible formations within porous boundaries, with the ability to organize society
through flexible and norms generated from bottom-up. Oswald and Baccini [31] introduce the term
urban fallow for areas emerging from sudden changes in society, such as a transition in modes of
production, suggesting that areas form important resources in a city, by forming self-organizing
breeding grounds for cultural or economic actors. A certain degree of freedom is required for
maintaining and supporting the adaptability dynamic, and diversity of these actors [5,29–31].

In this study, the scale was adjusted to optimize the observance of the pattern formation—an
increase in scale would not have yielded more information due to the surrounding, stable
housing areas.

2.3. Clustering

Regional-scale clustering is considered an important location principle in agglomeration
economies and has been extensively studied (see e.g., [24,26,39,40]). These studies often explore
the location principles of a single activity.

Similar agglomeration mechanisms have also been observed locally, but systematic studies
of simultaneous clustering of different activity types within one area are limited. A documented
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simultaneous agglomeration tendency of several activities revealed less than four percent of activities
outside the clusters in all the time series for 1971, 1986 and 2007, while large concentrations of activities
were also rare [32]. This study was carried out in Nekala old industrial area in Tampere, Finland.
The premises of the model in this paper are based on these results.

2.4. Dynamic Cellular States and Entropy

The dynamics of a city or a simulation plays a crucial role in evaluating the complexity and
self-organization. The type of such trajectory can be evaluated against the concept of dynamic states.
The concept of a dynamic state is based on the work of Wolfram, Langton and others mostly studying
artificial computational systems such as CA [8]. According to this approach, a dynamic system can
remain relatively resiliently on a highly organized, predictable (cyclical/periodic) level, or fall into a
state of disorder and chaos. The transition between the two implies a certain radical phase transition.
The ability to reorganize after this jump is intertwined with the resilience of the system: the system
reorganizes itself to form a qualitatively different order on a new steady state [6].

Such autonomous computation requires of the system sufficient capacity for the storage and
transmission of information. Information storage involves lowering entropy, while transmission
involves raising it. For maximal computing capacity, the system must be both, and this optimal state
is near the transition point [8,41]. Actually, many complex systems appear to stay in the vicinity of
this threshold analogical to systems on a successful adaptive cycle of resilient systems. Therefore, the
systems’ level of entropy in a complex dynamic state is by default between the two extremes.

The theory of dynamic states has been applied in the real world [8], but mainly studied with
artificial systems: Starting from the 1980s the dynamic states of one-dimensional cellular automata have
been studied in detail in the mathematical and computational sciences [10–12,42]. Since Wolfram’s
classic categorization of the dynamic states of CA in the 1980s, several classifications have been
proposed, aiming at increasingly precise methods of measurement [43,44]. Wolfram’s classification
(Table 1) has been widely applied (see e.g., [12,45]), although more formalized representations have
also been proposed [11].

Table 1. Wolfram’s [10] classification of evolution of dynamic cellular states.

1 Homogeneous state

2 Simple stable or cyclical/periodic structures

3 Chaotic pattern

4 Complex localized structures

Based on a state predicting algorithm, Braga and colleagues [11] propose a more precise
classification of CA based on pattern growth (Table 2).

Table 2. Classification of the evolution of dynamic cellular states by Braga et al. [11].

1 Patterns disappear after a finite transient

2 All patterns stay limited under iteration of the global transition function

3 At least one pattern grows indefinitely

Since the CA model introduced in this paper is rather relaxed and complex compared to one- or
even two-dimensional formal CA, no such algorithm is used here. The approaches by Braga et al. [11]
and Wolfram [10] provide a frame for interpreting the results: first, with a more (formally) robust
perspective, and secondly, with an analogy to Langton’s classes of system states, referring to states
near a phase transition (Table 3).
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Table 3. Analogies between cellular states and dynamic systems. The periodic and cyclical are used in
this paper interchangeably.

CA Dynamics Dynamic Systems Analogue

A spatially homogeneous state Limit points
A sequence of simple stable/periodic structures Limit cycles

Chaotic behavior Chaotic (strange) attractors
Complicated localized structures Unspecified

Langton used Shannon’s approach to calculate the entropy of the resulting CA patterns,
discovering that complex states appear only with a limited set of intermediate entropy values.
Following Langton, Wuenche [13] proposes a method for classifying the resulting dynamics according
to the degree of entropy in the system, and another simple classification with reference to this (Table 4).

Table 4. Wuenche’s classification of evolution of dynamic cellular states. Entropy level increases from
ordered to complex and chaotic states—complex having intermediate state of entropy.

1 Ordered Low degree of entropy in system

2 Complex Intermediate degree of entropy in system

3 Chaotic High degree of entropy in system

Here, I applied these partly overlapping classifications and re-formulated a two-fold classification
of preferable, continuous, dynamic states (complex or periodic/cyclical), and of stagnating states
(infinitely oscillating or completely stagnating states). Langton’s and Wuenche’s concept of entropy
provides a measure of the unpredictability implying the dynamics applicable in an analogical manner.

2.5. Modifying CA

Cellular automata are much used in urban studies for their spatial, intrinsically dynamic structure
and detailed resolution, and they often outperform other models in representing realistic land use
change. Formal CA is based on simple principles: the dynamics depends on the state of the cell
(on/off) and the state of neighboring cells (for example, a cell is on only if 2–3 of its neighbors
are on). Traditional CA is able to produce surprisingly diverse dynamics, including self-replicable
structures [46]. However, in an urban context CA needs to be somewhat modified to better correspond
to the urban reality. Moreover, the modifications may help to overcome the typical challenges to
classical CA, i.e., the limited interaction with the outside world, the lack of feedback from the higher
level [47] and the inability of an arbitrary regular grid to represent the heterogeneity of land uses
due to the stochastic location of grid borders [34]. According to Santé et al. [48], typical relaxations
of CA to enable the accommodation of external factors, trans-scalar feedback, accuracy of land uses,
and realistic performance of the model, are irregular cell space, e.g., real world grids [34], voronoi
polygons [49], and graphs [50]; various neighborhood configurations, e.g., more complex or adaptive
transition rules; and growth constraints or irregular time steps.

The level of modification is a trade-off between realistic representation and preserving the essential
features of CA, depending on the purpose of the model. The accuracy requirements vary for pure
educational or theoretical models, the models roughly exploring policies in decision-making, and for
(short-term) predictive models. The rule of thumb states that dependencies between transition rules
and model dynamics need to be easily perceived despite the modification (e.g., [51–53]).

3. The Proposed Model

Here, I study the dynamic states of the model in the pattern formation processes on the
neighborhood scale using a modified cellular automaton that operates in GIS environment. I assume
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that the self-organization of activities occurring in specific areas with high generative capacity enhances
the innovations and creativity required in all industries today [27,28]. Self-organization refers here to
individual location choices for activities resulting from their decision-making in a certain regulatory
framework adequately supporting their autonomous choices. I assume that a complex dynamic state
would be preferable, and reflect the system’s adaptability in time: the system is able to renew itself.

Since I explore the actual complexity of the system implying phase transitions, such a process
cannot be predicted even with a micro-simulation. Instead the model presented here aims at exploring
the shifting points in dynamic states of the model during the simulation. Variety depends on different
weight values in the transformation rules representing planning decisions. The aim is to learn from the
possible interdependencies between rules/border conditions and the resulting dynamic states what
type of attractors emerge within the phase space.

3.1. The Conceptual Framework

Figure 1 presents the conceptual framework of the model. The system of interacting urban actors
(“agents”, integrated into cells) is represented as variables and their relations. The structure of the
model follows this schema. The main dynamics in the case area result from four types of temporal
interactions between six types of variables. The variables are a cell (agent) (independent variable
(iv)), pattern (dependent variable (dv)), land use (dv), volume (dv), border (intermediate variable)
and plan (iv) (Table 5). The directions of interactions in this approach are top-down (plan, border),
bottom-up (from agent by land use/volume to pattern), feedback (from pattern to agent), uniform
level (between agents). Following the principles of agglomeration economics and empiria, the actors
seek favorable locations in the proximity of similar actors in the area. A static border resulting from
the plan surrounds the area.
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Figure 1. Conceptual model. Interactions between variables; temporal (broken lines), stable (solid
lines). Feedback from pattern to actors is implied in decay of overcrowded clusters—typically of CA,
the model does not observe explicitly the global level patterns.

Table 5. Relations and directions of interaction between variables (see also Figure 1). In this study, the
plan is considered static and unresponsive (the “PLAN” column is empty), unlike in some cases in
the reality.

Entity Site (Cell) Pattern Use Volume Border Plan

Site bottom up top down top down
Pattern feedback feedback

Use bottom up interaction interaction
Volume bottom up interaction interaction
Border top down top down

Plan top down top down top down top down

The typology of urban actors includes firms, public and other services, grouped into six
categories—housing (U1), retail (U2), services (U3), offices (U4), light industry (U5) and warehouses
(U6)—following an estimated degree of interaction with the environment (Figure 2). (This classification
was used in data processing to group the individual activities instead of using ready-made
classifications. For the sake of simplicity, precise numerical values are not coded; these relations
serve as a conceptual mental frame in the modeling experiments, which are based on the tolerance
between adjacent activities.) The actor’s future type and volume depend on those in the neighborhood.
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Following the principles of cyclical urban change, the sites transform gradually within the limits of the
building efficiency indicated by the plan.
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Figure 2. Degree of interaction between activities and their environment for classification of activities:
U1, housing; U2, retail; U3, services; U4, offices; U5, light industry; and U6, warehouses. Local Access
refers to the local interaction between the site and its environment—how easy it is to access the site,
for example, from the street. Interference refers to the level of “disturbance” it tolerates—for example,
regarding noise or air quality; and Flow to moving of goods and people to/from the site, implying
global accessibility by car, truck etc. The classifications were made on the basis of these assumed
relationships. (For example, the requirements for housing regarding disturbance (environmental
“interference”) due to noise, smells or heavy traffic differ from those for retail or warehouses. Similarly,
some activities need easy access from the street with less privacy, while others benefit from being part
of the higher-scale networks, providing constant flows of customers, goods, or material).

The initial state and the input for the model are the actual configuration of activities at the time of
data collection for all simulation runs.

3.2. The Model Configurations

3.2.1. Relaxation

The proposed CA was relaxed in terms of the irregular grid, qualitatively (the type of activity) and
quantitatively (the floor area of each activity) defined cell spaces, and more complex transition rules
based on probabilities. The rules are modified to overcome the typical limitations of CA and to better
reflect real-world micro-scale economic geography while still remaining simple and legible. Several
limitations still persist: The model interacts with the outer world by an externally defined growth
factor and user interface matrix providing an opportunity to control desired proximities between actors.
However, the model’s interaction with the outside world during the simulation is lacking. Furthermore,
clustering of similar activities until overcrowded imply the feedback from pattern formation to the
individual cell’s level.

3.2.2. The Neighborhood and Cell States

The cell space of the model follows the legal site division. The neighborhood of each cell contains
all parcels within a certain distance of the central cell (Figure 3). The distance of the interaction was set
at 24 m, following the traditional block size in the area. One block was considered the optimal distance
for pedestrians, implying benefits for similar activities due to competition or synergy. A 24-m buffer
around the site was used to define the radius.
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Figure 3. Legal site division and existing buildings. Source: City of Tampere, Finland.

In the model the floor area of each activity (U1–U6) was integrated into the property of a cell.
The qualitative state of the cell resulted from combining six activities—the number of actors on each
site could range from zero to six, depending on the states of the neighbors and the former state of the
site itself. The quantitative cell states were defined following the utilization rate, defined as the ratio of
the used floor area to the current building right at the site (Equation (1)).

Rj =
∑ FAj,u(
ej × Aj

) (1)

where Rj is the utilization rate of the site j, simply presenting how many percentages of permitted
floor area are built on a specific site at the time of observation. ∑FAi,u is the total floor area for all uses
(U1–U6) on the site j, and ej is the floor area ratio (ratio of the total floor area of the building to the size
of the site) on the site j. Aj is the total area of the site j.

Each cell was unique as regards form, number and type of neighbors, and quantity and quality
of activities. The floor area ratio followed the current plan, varying between 0.5 and 1.25. Cells were
classified into four categories according to the utilization rate reflecting the share of utilized building
right (see Equation (1)), namely empty, nearly-empty, nearly-full and full (Figure 4). The quantitative
cell state affected the site’s future mode of transformation following the probabilities presented in the
Figure 4 for each case. The utilization rate varied at each iteration.
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P-2: “nearly-empty”, FAR = 0.1–0.3; P-3: “nearly-full”, FAR = 0.3–0.7; P-4: “full”, FAR = 0.7–1.
For example, an almost empty cell is likely to be filled more, but also to be reconstructed—at presumably
fairly low demolition costs of smaller buildings, whereas nearly full sites might be considered the most
resistant to physical changes, but the new additions or uses may occupy these sites easily (see also
Table 6).
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The plan and the surrounding cells were static, reflecting the resistance to change in the
surrounding residential area resulting from the plan, site and building morphology, and fragmented
land ownership.

3.2.3. Transformation Rules

The basic mechanism behind the transformation rules was the neighborhood’s documented
shifting between agglomeration and deglomeration. Similar activities gravitate close to each other, until
the clustering causes “overpopulation”, leading to the relocation of some of the activities. For example,
a site with a lot of retail and services in its proximity would most probably change or be filled with
these activities. Other activities with less volume in the surroundings (e.g., warehouses) are possible
on the site with lower probabilities. The emergence of a random activity on the site is small, yet exists.
Basically, the progress produces clusters of certain activities, which disappear as the cluster becomes
overpopulated, and the cycle starts again. The process is observed for each activity separately.

First, to define the site’s mode of transformation, sites were grouped into four categories according
to the current cell state according to their utilization rates (P-1 to P-4, (see Figure 4)) indicating the
probability of changes. Next, the categories defined the type of change: The site may remain as it
is (RM), it may fill up (F) according to the user defined growth rate (GR), activities may change (C)
while volume remains the same, or the volume and activities may be reconstructed (RC) (Figure 5).
The premises were that, first, new actors filling the vacant sites are likely similar to the neighbors.
Second, the sites were built to use the building right efficiently, and, finally, that eventually the
buildings would be replaced as the demolition/construction costs became theoretically profitable
(Table 6.). Due to lacking data, exact measurements for real world correspondence were limited (no
data were available on the actual demolition costs or life cycles of the buildings).
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Table 6. Transformation rule 2: The type of transformation depends on the state of the site.

State of the Site Most Probable Procedure The Motive

vacant build a new building to use the building right
nearly-empty <10% demolish (fill up) to use the building right more effectively: low demolition costs

nearly-full fill up (change)

to use the building right more effectively: demolition costs
above the threshold (It is assumed that there is a threshold
value defining the shifts from one mode of transformation to
another. E.g., a limit when it becomes more profitable to
reconstruct the site, taking into account the demolition
costs/m3 and new/old FAR. The demolition costs could be
calculated, see e.g., DiPasquale and Wheaton [54], p. 85.
In this theoretical approach, the classification of the sites is
based on estimates.)

full

remain/change/fill/reconstruct,
e.g., 0.6/0.3/0.01/0.99
(These values can be changed to fit
the circumstances depending on
the case at issue.)

certain inertia on the full site; however, once the site is full,
it will eventually be developed and reconstructed (no more
space for additions). tendency to change if one use starts to
dominate the neighborhood = high FA
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4. Cases and Data

4.1. The Case of Nekala

The model was built and tested in a case area of the Nekala industrial area in the city of Tampere,
Finland. This area of approximately 80 sites was planned for heavy industry and the processing of
agricultural products in the late 1930s. Today, the formerly peripheral location has become relatively
central due to urban growth, and the area forms a unique enclave within the urban fabric surrounded
by mostly residential areas. Nekala has a proven capacity for self-organization, and the ability to adjust
itself to the current mode of production, from mainly industrial to a gradually more complex mixture
of service, information technology, and cultural industry.

4.2. The Case of Vaasa

The second case study for developing the model further was an old garrison area in the Finnish
town of Vaasa, Finland. In this area located within the central area of old Vaasa, the transition from
military use had occurred quite recently. The area consisted of different types of gradually filled
or historically valuable buildings, large empty sites and buildings beyond repair. A wide range of
temporary and permanent actors, such as flea markets, artisans, daycare facilities, leisure activities
and storage facilities, had started to settle in to the affordable old buildings: an original and vital
bottom-up culture had started to emerge in the area.

In Nekala, several indicators for self-organization potential were discovered in addition to the
enclave form: high accessibility, increasing diversity and self-organization of certain actors [32].
In Vaasa, characteristics indicating similar behavior were perceived, but these were less marked than
in the more mature Nekala.

In Vaasa, the model was used as a communication tool in a planning process. The resulting
implications are discussed below.

4.3. Data

The sample size was the overall number of actors in the area. Statistical data on actors and digital
maps were obtained from the City of Tampere and the Town of Vaasa. Numerical spreadsheet data
were combined with location information using GIS.

Due to the fragmentation of the plans, data on specific years were unavailable. Some of the
actors were multi-functional in the database and classified into several categories: the cell might
simultaneously accommodate multiple uses. This reflects the area’s diversity, and provides a realistic
representation of self-organization.

In Nekala, the actual site division was used, but in the Vaasa case the main target area—a large
empty military field—was divided into hypothetical “sites” following the site division of the existing
built area to enable the CA performance.

In Nekala, all non-residential sites were active, whereas in Vaasa sites with historically valuable
buildings were “protected” and static in the model, with the existing, probably most suitable uses.
The surrounding housing area with minor services was also static.

5. Simulation Runs

The first test simulations were run in Nekala with a first, preliminary version of the model
controlled by stable parameters in the code defining the relative shares of activities on the sites.
These values varied according to the number of uses on the site and the site’s current mode of
transformation. The resulting pattern formation process was relatively dynamic, but it was difficult to
observe how changes in the code affected these patterns.

For the Vaasa case a user interface, preference matrix (Table 7) was introduced. Here it was
hypothesized that it could be possible to regulate (and “plan”) on the level of the actors’ interactions,
and leaving the global level largely intact. Such an approach would presumably encourage the
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existing self-organizing mechanism—small scale clustering. Consequently, weight values on each
matrix row—for example U1 (housing)—were applied to each activity pair—for example U1 × U1
(housing next to housing). The larger weights and thus more tolerant allocation logics created more
heterogeneous spatial configurations. Heavy weights between similar uses increased the degree of
agglomeration of this activity. In this experiment the weight values ranged from one to 20, and they
were iterated exhaustively by trial and error, simulating various planning decisions. For example,
with the matrix the “virtual planner” could experiment with how the high tolerance between housing
and all other activities, or low tolerance between housing and industrial uses impacted the model’s
dynamics, building overall scenarios or “possible worlds” in a bottom-up manner.

Table 7. Preference matrix which serves as a planner’s user interface: the values increase the likelihood
of the two activities being located near to each other. Changing the values makes it possible to learn
from their impact on the model dynamics.

U1 U2 U3 U4 U5 U6

U1 u1 u2 u3 u4 u5 u6
U2 u7 u8 u9 u10
U3 u11 u12 u13
U4 u14 u15
U5 u20
U6

µ1 to n = 1 . . . 20.

The aim was to explore potential state transitions in the system. Therefore, formal calibration
considering the “ruptures” was not possible. The model was calibrated to fit the conditions using
visual parameter test echoing Clarke et al. [18]. The weight values were static during the iterations.
The time steps were in this case considered hypothetical, since in Vaasa the area’s transformation was
not traceable and even manual calibration was not feasible to adjust the computing time steps to reality.

As a result of a negotiation among stakeholders in the planning process, two sets of rules were
chosen for simulation. The amount of new housing in the area became a crucial question in the meetings,
along with the diversity of other activities, and the first scenario was to support new housing (highest
matrix values between housing, U1 × U1). The second one was based on lower weight for housing,
implying more mixed uses. However, the static, preserved sites produced a certain diversity in all cases.

The objective was to observe shifts in dynamics resulting from various weight values for each
activity pair. The lengths of the runs ranged from 100 to 500 iterations, but extremely long runs (1000 to
2000) were also computed for the potential temporal resilience of the dynamics.

5.1. Performance of the Model

The temporal dynamics and the changes in volumes of activity groups were observed separately
for each activity and simulation. The resulting dynamics varied from run to run, depending heavily
on the initial matrix values. Different classes of dynamics emerged, and they might occur within a run
for different activities simultaneously. For example, the dynamic state of housing might differ from
the state of industry with the same initial values. The emerging dynamics were classified into two
main categories according the end state, and two sub-categories describing the behavior in more detail
(Table 8).

Table 8. Dynamic states of the model. In an oscillating system less complex than periodic state usually
two or three values take turns.

Type 1 Type 2

static stagnation oscillation
dynamic cyclical/periodic complexity
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5.1.1. Static States

For the simulations that ended up in a certain end state, two types of static behavior were
perceived. In the first case, the system might progress gradually until one use/volume configuration
became dominant: The system ended up in a permanent end state. This stagnation might happen
simultaneously to one or more activities, and the spatial configuration of sites might vary. In the
second case, a dynamic phase in the beginning led to infinite oscillation between only a couple of
values on specific sites. The general progress ceased despite these “blinking” (a ”blinker” refers to a
well-known case in CA dynamics, oscillation, in the famous Game of Life—see more in [46]) cells; the
dynamics can likewise be considered static.

These states were the most common findings. They seemed to correlate with unrestricted, high
impact from surrounding housing. In that sense the model appeared to have reflected the urban
reality well, as politically the location and surrounding land use caused pressure towards housing
development. The static state seemed a plausible, yet not desirable, future for the area.

5.1.2. Dynamic States

As the emphasis was shifted in the matrix from interaction between housing and other
uses (U1 × Un(1–6)) towards interaction between office/industrial uses (U4–U5) (see Figure A1 in
Appendix A), the behavior of the model changed. First, the volumes started to gradually increase
and decrease over time for all activities, resulting in a certain type of coherent yet unpredictable pulse
emerging from phases of higher and lower utilization rate on the sites. A certain order seemed to
emerge within the system, with measurable cycle length. The changes in the rule set (matrix values)
have a marked influence over the dynamics of these periods: With certain rule sets (see the optimum
configurations in Table 9) the system gravitated towards a periodic, non-uniform state. The period
length was in flux, mostly oscillating between 10 and 12 time steps, revealing dynamics far more
diverse than before. Some of these cyclical states started with a stochastic phase, soon settling onto
predictable periods (see, e.g., Simulations 207, 212; Supplementary material, Figures S3–S8).

Table 9. Optimum rule sets resulting in different dynamic states. The values (1 to 20) represent the
relative attraction between those activities. For example, in rule set 1, attraction is fairly equal. For rule
set 2, office/industry is stressed. In rule set 3, in addition to that, the housing is restricted. (Note that
the states with rule set 1 and 2 were remarkably resistant to changing matrix values, for the rule set
3 yielding complex dynamics the configuration was unique—only one configuration of matrix values
yielded complex dynamics).

Emphasis Matrix
Configuration Resulting Dynamics

rule set 1.
optimum example

all uses: values range from low to
moderate (1–8)

6 4 4 4 1 1
stagnating/oscillating dynamics;
oscillation increased as the U1 × Un(1–6)
(attraction between housing and other
activities) values decreased

4 8 4 2 1 1
8 2 6 4 1 2
8 4 6 4 4 2
6 1 2 4 2 1
1 1 2 1 1 1

rule set 2.
optimum example

U5 × U5 (small industry) and U4 × U4
(services) are high (µ > 10), other values
are moderate (µ 2–8)

2 4 2 4 1 1

continuous, periodic (cyclical) dynamics
(for all activities)

4 4 2 2 1 1
2 2 6 4 1 2
2 4 6 10 16 2
1 1 2 8 12 1
1 1 2 1 1 1

rule set 3. unique
configuration

U1 × U1 (housing) is low (µ = 1), and
U4 × U4 (services) and U5 × U5
(small industry) are high (µ > 10),
other values: moderate (µ 2–8)

1 1 2 4 1 1

continuous dynamics: - For housing (U1)
complex, - For other uses (U2–U6)
periodic (cyclical)

1 4 4 2 1 1
2 2 6 4 1 2
2 4 6 10 16 2
1 1 2 8 12 1
1 1 2 1 1 1
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With a very particular set of matrix values (Table 9) the model’s behavior changed radically again.
The uses except housing remained periodic, but the lengths of the cycles and degree of predictability
seemed to change slightly for different activities. For example, in some cases retail gravitated to a
somewhat mixed state with both periodic and more unpredictable phases. The most remarkable shift
towards a higher degree of complexity was perceived for housing. Similarly, to the periodic states, the
simulation started with a seemingly stochastic phase, soon starting to gravitate towards a certain cycle
often with a length of 10, 11 or 12, or occasionally also any random value (Supplemetary material,
Figures S3–S8). The period might reoccur from two to as many as 18 times (see e.g., Simulation 190,
Figure S9 in Supplementary material). Various cycles might occur during one simulation. Despite
these short, constantly emerging and disappearing cycles, the overall dynamics of the system was
decidedly unpredictable. This oscillation seemed to continue infinitely even with remarkably long
runs (up to 2000 iterations) (see Supplementary material: Complex behavior, Figures S9–S14).

Within many of these simulation runs another new feature emerged, also only with the same
complex rule set. While the system balanced between more and less ordered states, a very accurate
period of 145 time steps occurred within nearly all runs (see e.g., Simulations 158, 170, 177, 202 in
Supplementary material, Figures S11–S14.). Apparently, this period was independent of the state of
the system, and was continuous during both the periodic and less predictable states. Perhaps the most
interesting feature of this regeneration cycle of 145 time steps was its dynamic stability: in 87% of cases
it appeared as the seventeenth cycle, that is, 16 regeneration cycles emerged between two cycles of
145 (for example, the overall volume of the area might have peaked after 27, 12, 10, 34, etc. iterations
16 times before the maxim occurred again after 145 iterations (see Supplementary material, for example
Figures S11–S14); then the process resumed, repeatedly). The lengths of the other recurring cycles—for
example those of 10 or 12—were all less predictable. The input for the model stayed the same. There is
no reference in the literature to this type of CA dynamics where several different nested dynamics
co-exist on many levels. This finding may indicate an extremely high level of complexity of the system,
but remains to be scrutinized in future studies.

5.2. Validation

These results were visually clearly observable. For validation, I followed the ideas of Langton [8]
and Wuenche [13] for entropy measurement of the patterns. The entropy values for the results were
calculated for the whole system after simulation. The aim was to discover the differences in overall
diversity and predictability.

Six examples of periodic and six of complex behavior were chosen at random from the 60 data
sets which passed the visual evaluation test. The entropy for the system was calculated according to
Equation (2).

N

∑
j=1

sj log2 sj (2)

where sj is the relative share t/tall of the entities; t is the number of a certain regeneration cycle;
and tall is the number of different cycles in that run. The resulting entropy values are presented in
Table 10. This equation describes the overall entropy of the simulation after the runs are completed,
providing an estimated level of complexity in regards of time steps between changes in utilization of
building right. (For example, for a periodic run 160, the cycle of 10 occurred 72 times out of a total
of 178 different cycles. Hence, for run 160, sj = 72:178 = 0.040449 and consequently, log2 sj = −1.3058.
Thus sj log2 sj = 0.5282. This calculation was carried out for each cycle (10, 11, 12, 16, 22, etc.) for the
total sum, yielding the entropy value of run 160).
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Table 10. Degrees of entropy, random samples from complex and periodic/cyclical series, compared to
a stochastic set.

periodic/cyclical R = 159 R = 160 R = 162 R = 163 R = 212 R = 207
2.85134 2.11139 2.20135 2.22823 2.32039 2.02637

complex R = 202 R = 177 R = 158 R = 170 R = 208 R = 190
4.3864 4.17142 4.82893 4.1556 4.39262 3.81511

(stochastic/hypothetical) R = 202 R = 177 R = 158 R = 170 R = 208 R = 190
5.8579 5.7279 5.90689 5.88264 5.72792 6.285

The results indicate a clear dispersion between highly ordered, periodic, and more unpredictable,
complex states. All the entropy values for periodic states were below 2.86, while for complex states
they ranged from 3.80 and 4.90 (Table 8, Figures 6 and 7) (for the graphical representation of the
dynamics of these systems, see Supplementary material, Figures S3–S14).

Since no chaotic state was perceived in this study, a stochastic set was created for purposes of
comparison, indicating the maximum value of entropy in the system. For this set the entropy was
calculated in a hypothetical case using the data set resulting in complexity and calculating its entropy
assuming all values to be unique, occurring only once. As expected, the degree of entropy for these
stochastic comparison groups was high, all of them above 5.70 (Figure 8).
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These results indicate that the periodic state is far more ordered than the complex state, but that
the observed complexity was not totally stochastic.

The limitation of this static method of measuring entropy is that it only measures the number
of cycles in total and not their temporal frequencies or the potential altering of the periodic and
unpredictable phases. For example, in Simulation 190 (Supplementary material, Figure S9), a cycle of
11 forms a period, occurring three times successively between time steps 30 and 32, four times between
63 and 66, and four times again between time steps 51 and 57 implying the relatively high order in
these phases. Therefore, this feature needed to be evaluated visually, or by exploring complementary
indicators beyond the scope of this study. However, although Equation (2) is static, since it measures
the occurrence of the time steps (tn+1 − tn) between changes, it results in a fairly good representation
of the overall entropy of the dynamics. The static states were not included since no measurable
period occurred.

5.3. Discussion

This paper contemplated a local scale relaxed urban CA model. The research proved that such a
two-dimensional, irregular CA with integrated volume and activity types is capable of simulating the
main classical dynamic states typically studied using 1-D CA: Various static, periodic and complex
states. Furthermore, the validation indicates that, following the core literature, entropy levels of
complex states were indeed between the two extremes (for stochastic and static), thus pointing out the
most preferable dynamics for urban evolution.

In this study the transition of these systems from one dynamic state to another did not occur
abruptly. On the contrary, the process seemed rather continuous and gradual: as the stress in the
matrix was shifted from relations between housing, retail, and services (U1–U3 × U1–U3) towards
office/industrial uses (U4–U5 × U4–U5) (Appendix A Figure A1), the dynamic states also seemed
to shift gradually first from static/oscillating states to periodic states with a stochastic phase at the
beginning towards more complex dynamics. Only one set of matrix values produced extremely
complex behavior (Table 9) referring to high sensitivity to initial conditions.

The results suggest that in order to support the continuous states in this modeling case, housing
needed to be restricted, while office and light industrial uses needed to be encouraged. The impact of
housing on dynamics is not surprising given the volume of the surrounding housing area. However,
the complex dynamics for housing is undoubtedly caused by non-linear processes and hence could
hardly be discovered in a planning process without a microsimulation. Interestingly, rather high
values were also required for offices U4 × U4 and industry U5 × U5 for dynamic continuity. No such
effect was observed for activities retail and services. It is plausible that the few static sites in the area
formed certain kernels (consisting of retail, services, offices and light industry), and supported the
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emergence of these actors, but it does not explain the high values required for offices and industry.
It is possible that such a surprising impact could be explored further using, for example, complex
networks, and emphasizing the number of linkages between actors and the general topology of the
nets. Since the objective was to use the existing configurations as the initial state for the CA, such
complex interconnectedness of these mechanisms was beyond the scope of this study. The results also
highlight the fact that complex interactions between scale levels are not linear and may be extremely
unpredictable. In this sense the surprising role of offices and light industry was somewhat noticeable,
even though in this case their impact on dynamics in reality is not that self-evident.

In addition, the model corresponds with the reality also in that the static states can be considered
analogical with a traditional, hierarchical planning process, in which the plan consolidates a certain
static position. Implemented in complex cities in a state of flux, this implies a relevant yet burdensome
task of constant, incremental updating of plans. Apparently certain level of flexibility is needed.

However, this modeling experiment indicates that total freedom would not be preferable.
Even though the total control of the system will most probably lead to stagnation, a certain degree of
guidance is necessary for the process to achieve the most desirable outcome, such as high diversity
promoting the evolution of the city. In this sense, the results support the intuition: the maneuvers
promoting the diversity of activities in the model produced the most dynamic outcomes.

A couple of limitations concerning the relationship between models and reality overall are worthy
of note. This model is based on real data and used in a real planning case, and the results appeared
intuitively fairly logical. For example, the housing development could indeed become dominant over
other uses. However, the model can at its best predict the future only for a short time span since
in complex systems, the future is predictable only in a stable state. Hence, applying the complexity
framework underlines the intrinsic nature of the world as, first, an evolutionary system with qualitative
transitions impossible to predict, and secondly, its chaotic characteristics, especially in the proximity of
these transitions. The system might change drastically due to small initial changes, or not react to larger
ones and adapt. One relevant option to respond to this dilemma is, as in this paper, to exhaustively
study the dynamics emerging from the simulations instead of for example spatial outcomes. Even then,
the simulation results might differ from reality, and hence in planning it is necessary to evaluate the
implementations constantly in trial-and-error manner.

Furthermore, another limitation follows from the configuration of the model. While modeling we
stand on the fine line between simplicity and complicatedness. The more detailed the configuration
selected for the sake of accuracy, the more difficult it may become to interpret which rules are
responsible for a certain model behavior. Hence, several configurational limitations also emerge
for the model presented in this paper. For simplicity, the model is based on certain assumptions of
agglomeration and regression tendency of activities. In reality, other mechanisms also impact urban
dynamics, such as land/property rent, accessibility, synergy between non-similar activities or other
externalities. In addition, despite the relaxations, the feedback from the higher level and the outside
world was rather limited. In addition, interaction between activities and their environment was
contemplated only conceptually to maintain the model simple (Figure 2). For a solution providing
greater accuracy and more relevant feedback, possible future studies could therefore include research
on other mechanisms of self-organization, studies on the complex linkages and interdependencies
between various interacting actors and networks operating on various scales, and comparative studies
in other areas.

However, despite the limitations, the model introduced in this paper could be utilized as a
good policy-relevant model, which, in Helen Couclelis’ [47] words does not provide instructions for
decision-makers on what to do, but instead, on what not to do. In city planning, this would mean,
first, acknowledging the uncertainty intrinsic in complexity thinking, but secondly, understanding that
urban processes, such as the dynamics that drives location decisions of activities, occur bottom up and
their guidance requires setting guidelines rather than of imposing controls.
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In such an environment, more flexible planning could provide a frame for urban processes,
but the potential impact of the frame must be scrutinized—in this endeavor micro simulations are
useful, along with other “complexity planning tools” such as measurement based on fractality, scaling
or computation [32,55,56]. In practice, with micro simulation models it is possible to model the
environmental factors affecting actors, and then by altering the virtual “planning rules”, for example
permitted proximities or other factors, to learn how the guidelines affect the dynamics. Actual decisions
could then be based on these findings in a flexible manner, thus supporting self-organization, resilience,
city evolution, and continuity of autonomous socio-cultural processes in the city.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/19/1/12/s1,
Video S1: Complex behavior of the model (housing); Video S2: Periodic behavior of the model (Industrial
uses); Video S3: A “blinker” or static/oscillating behavior. Figure S1: Legend for Videos S1 and S3 (housing,
volumes); Figure S2: Legend for Video S2 (industrial uses, volumes); Figures S3–S15, Graphical presentation of
the model dynamics.
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