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Abstract:



Interesting non-linear generalization of both Schrödinger’s and Klein–Gordon’s equations have been recently advanced by Tsallis, Rego-Monteiro and Tsallis (NRT) in Nobre et al. (Phys. Rev. Lett. 2011, 106, 140601). There is much current activity going on in this area. The non-linearity is governed by a real parameter q. Empiric hints suggest that the ensuing non-linear q-Schrödinger and q-Klein–Gordon equations are a natural manifestations of very high energy phenomena, as verified by LHC-experiments. This happens for [image: there is no content]values close to unity (Plastino et al. (Nucl. Phys. A 2016, 955, 16–26, Nucl. Phys. A 2016, 948, 19–27)). It might thus be difficult for q-values close to unity to ascertain whether one is dealing with solutions to the ordinary Schrödinger equation (whose free particle solutions are exponentials and for which [image: there is no content]) or with its NRT non-linear q-generalizations, whose free particle solutions are q-exponentials. In this work, we provide a careful analysis of the [image: there is no content] instance via a perturbative analysis of the NRT equations.
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1. Introduction


Empirical data indicate that power-law behavior in the observed probability distribution of interesting quantities is quite frequent in the natural world [1]. It was shown in [2] that one reason for this phenomenon is detector-normalization. In most measurement devices, one finds a pre-processing step that impedes the device from being overwhelmed by data of too large an amplitude that might damage the hardware. One then appeals to statistical normalizations of input data. The data are first centered by subtraction of the estimated mean and then scaled with the estimated standard deviation. It is shown in [2] that the concomitant proceedings transform Gaussian input data into q-Gaussian output ones. We remind that a q-exponential is defined as:


eq(x)=[1+(1−q)x]11−q;(eq=1(x)=expx).



(1)







In view of the above empirical considerations, it becomes clear that in the immediate neighborhood of [image: there is no content], it is very difficult to ascertain whether one is dealing with exponentials or q-exponentials. The first instance corresponds to free-particle solutions of the celebrated Schrödinger equation, while the second instance corresponds to free particle solutions to its q-non-linear generalizations advanced in [3,4] (see also [5,6,7]), the so called NRT equation. If we confront a particle flow, which of the two equations is governing it, the linear or the non-linear one?



In order to help find an adequate answer, we carefully study here perturbative NRT solutions in a [image: there is no content] scenario. We hope that our considerations will shed some light on these matters.



Motivation


The motivation of this paper resides in the probability that both the q-Schrödinger equation and the q-Klein–Gordon equation might be natural manifestations of very high energy phenomena [8,9], as verified by LHC-experiments [10], for which q is close to unity. In such a case, the two equations mentioned above approach the customary Schrödinger and Klein–Gordon equations, becoming identical to them in the limit [image: there is no content]. The q-Schrödinger equation we will be concerned with is [3]:


[image: there is no content]



(2)




and for q close to unity, we are allowed to write:


[image: there is no content]



(3)







The second term on the right side of Equation (3) is negligible, so that one writes:


[image: there is no content]



(4)




or:


[image: there is no content]



(5)




the linear, conventional de Schrödinger equation.



An analogous situation arises for the q-Klein–Gordon equation. We have:


[image: there is no content]



(6)







For q close to unity, one has:


[image: there is no content]



(7)







Once more, the second term on the right is negligible. As a consequence, we can write:


[image: there is no content]



(8)




or:


[image: there is no content]



(9)




and then, since q is close to unity


[image: there is no content]



(10)







We see then that it is very important to obtain approximate q-solutions for the two above scenarios, since these are two instances that correspond to intermediate energies [3].





2. First Order Expansion of the q Exponential as a Solution of the Non-Linear NRT q-Schrödinger Equation


As a first task, we will prove that the first order Taylor expansion, around [image: there is no content], of q-exponential function [image: there is no content], is a solution of to the non-linear q-Schrödinger equation advanced in [4]:


[image: there is no content]



(11)




[image: there is no content] a fixed wave function, where:


[image: there is no content]



(12)







In our case: [image: there is no content], defined as:


[image: there is no content]



(13)







Calling [image: there is no content], we deal with:


[image: there is no content]



(14)







The function [image: there is no content] tends to the usual exponential when: [image: there is no content]


[image: there is no content]



(15)







We observe that [image: there is no content]. Thus, Equation (11) reduces to:


[image: there is no content]



(16)







2.1. First Order Expansion of [image: there is no content]


We obtain, after a somewhat lengthy manipulation (see Appendix A):


[image: there is no content]








or:


[image: there is no content]



(17)







Note that the last relation differs from the pure exponential, for q close to unity, just by the term [image: there is no content] above.



Moreover, we have:


[image: there is no content]



(18)







We need now the expansion for the second derivative of [image: there is no content] with respect to x. This involves again some extensive manipulation (see Appendix A), and one finds:


[image: there is no content]



(19)







Obviously, one also needs the first order expansion of [image: there is no content]. This expansion is in the variable q, around [image: there is no content], and has no obvious quantum mechanics counterpart. One writes:


[image: there is no content]











Thus,


[image: there is no content]



(20)







For q=1, we obtain:


[image: there is no content]











Since we know that:

	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]





then,


[image: there is no content]



(21)






[image: there is no content]



(22)







The first order expansion of [image: there is no content] is then, up to a normalization constant:


[image: there is no content]











Replacing here Equations (15) and (22), we have:


[image: there is no content]



(23)







Finally, we require the time derivative. The first order time derivative of [image: there is no content] is:


[image: there is no content]










[image: there is no content]








or:


[image: there is no content]



(24)








2.2. Solution to the Non-Linear q-Schrödinger Equation


Replacing Equations (19) and (24) in the non-linear q-Schrödinger Equation (16), we find that the first order Taylor’s expansion of a q-exponential is indeed a solution of this equation with the usual eigenvalue corresponding to the free particle, [image: there is no content]. We have thus achieved what one might call ‘self-consistency’, indicating that our calculations have been performed correctly.




2.3. Comparison between the Exact and Approximate Solutions


In this subsection, we intend to make comparisons between the approximate and exact solutions of q-Schrödinger equation. To this end, we first try to evaluate the modulus of the ratio R of the functions (13) and (18). As an example, we display R in four figures corresponding to an electron and a proton with 1 MeV of energy at [image: there is no content] (Figure 1, Figure 2, Figure 3 and Figure 4). Note that, for a range of x very large in terms of atomic or nuclear relevant distances, the ratio R is essentially unity. Our approximation can then be deemed very good for the x-ranges shown in the figures, where R is close to one.


Figure 1. Ratio R vs. x (in meters) for 1-MeV electrons and [image: there is no content].



[image: Entropy 19 00021 g001]





Figure 2. Ratio R vs. x (in meters) for 1-MeV electrons and [image: there is no content].



[image: Entropy 19 00021 g002]





Figure 3. Ratio R vs. x (in meters) for 1-MeV protons and [image: there is no content].



[image: Entropy 19 00021 g003]





Figure 4. Ratio R vs. x (in meters) for 1-MeV protons and [image: there is no content].



[image: Entropy 19 00021 g004]








3. First Order Treatment of a q-Gaussian


From [11], selecting [image: there is no content] in order to simplify the calculations, we have for the q-Gaussian:


[image: there is no content]



(25)




where:


[image: there is no content]



(26)






[image: there is no content]



(27)






[image: there is no content]










[image: there is no content]



(28)







Writing up to first order:


[image: there is no content]










[image: there is no content]










[image: there is no content]



(29)




we obtain from Equations (26)–(28):


[image: there is no content]



(30)






[image: there is no content]



(31)






[image: there is no content]



(32)






[image: there is no content]



(33)






[image: there is no content]



(34)






[image: there is no content]










[image: there is no content]



(35)







The first order approximation for the q-Gaussian is now:


[image: there is no content]










[image: there is no content]



(36)







By construction, [image: there is no content], as given by Equation (35), is a first order solution to Equation (11). Figure 5 displays the ratio between Equation (11) and (35) versus distance x (in absolute units) for [image: there is no content]. Note that the ratio is essentially unity for distances very much larger than atomic or nuclear ones. Thus, the approximation can be considered quite good.


Figure 5. q-Gaussian ratio of Equation (36) over Equation (37) vs. x (in absolute units) for [image: there is no content].



[image: Entropy 19 00021 g005]






Comparison between the Exact and Approximate Solutions


To have an idea about the quality of the comparison between the first order treatment of the q-Gaussian and the exact solution, we evaluate the modulus of the ratio of Equations (25) and (36) in a semi-logarithmic scale. This is given in Figure 5.





4. Non-Linear q-Klein–Gordon Equation


We now wish to verify that the development of [image: there is no content] is a solution of the following equation:


[image: there is no content]



(37)




This equation was advanced in [4] and re-obtained in [9].



In our case, [image: there is no content], which, let us remind the reader, is defined as:


[image: there is no content]



(38)







By analogy with Equations (18) and (19), we write the expansions of [image: there is no content] and its derivative with respect to x, respectively, as follows:


[image: there is no content]



(39)






[image: there is no content]



(40)







We should now calculate the second derivative with respect to t and the first order expansion of [image: there is no content], and so on. This is done in Appendix B.



Solution to the Klein–Gordon Equation


Replacing Equations (B2), (B8) and (40) in Equation (37), we find that the first order Taylor’s expansion of the q-exponential is a solution of this last equation.





5. Conclusions


We have exhaustively analyzed a first order perturbation-treatment (in q) of both the non-linear q-Schrödinger and q-Klein Gordon partial differential equations. We have shown that, for small values of [image: there is no content], the approximation is quite good. This is of physical significance because, as discussed in [8,9], these q values seem to be the relevant ones in the range of energies of interest for intermediate and high energy physics.
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Appendix A


Appendix A.1. First Order Expansion of ψ = eq


We write:


[image: there is no content]








so that:


[image: there is no content]



(A1)






[image: there is no content]











As [image: there is no content], we obtain:


[image: there is no content]








or:


∂ψ∂q=z(1−q)−z(1−q)1+(1−q)z−z22ψ.



(A2)







Let us evaluate [image: there is no content] at q=1:


[image: there is no content]










[image: there is no content]








When [image: there is no content]:


[image: there is no content]











Using now L’Hopital’s rule, one has:


[image: there is no content]










[image: there is no content]










[image: there is no content]



(A3)







Thus, the first order Taylor’s expansion of [image: there is no content] is:


[image: there is no content]












Appendix A.2. Second Derivative with Respect to x


The first order derivative with respect to the variable x of [image: there is no content] is:


[image: there is no content]










[image: there is no content]



(A4)







For the second derivative, we have:


[image: there is no content]
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or:


[image: there is no content]










[image: there is no content]













Appendix B


Appendix B.1. Second Derivative with Respect to t


The first order derivative of F is:


[image: there is no content]








or


[image: there is no content]



(B1)







For the second order derivative, we have:


[image: there is no content]










[image: there is no content]








or


[image: there is no content]










[image: there is no content]








so that, finally,


[image: there is no content]



(B2)








Appendix B.2. First Order Expansion of qF2q-1


The derivative of [image: there is no content] with respect to q is:


[image: there is no content]



(B3)




We can write:


[image: there is no content]








so that:


[image: there is no content]










[image: there is no content]



(B4)







For the derivative of [image: there is no content], we have:


[image: there is no content]



(B5)




At [image: there is no content], we obtain:


[image: there is no content]











We know that:

	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]





Thus,


[image: there is no content]








or:


[image: there is no content]



(B6)







The first order expansion of [image: there is no content] is


[image: there is no content]



(B7)




Replacing Equation (B6) in this expansion, we obtain:


[image: there is no content]








or:


[image: there is no content]



(B8)
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