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Abstract:



We reconsider the properties and relationships of the interaction information and its modified versions in the context of detecting the interaction of two SNPs for the prediction of a binary outcome when interaction information is positive. This property is called predictive interaction, and we state some new sufficient conditions for it to hold true. We also study chi square approximations to these measures. It is argued that interaction information is a different and sometimes more natural measure of interaction than the logistic interaction parameter especially when SNPs are dependent. We introduce a novel measure of predictive interaction based on interaction information and its modified version. In numerical experiments, which use copulas to model dependence, we study examples when the logistic interaction parameter is zero or close to zero for which predictive interaction is detected by the new measure, while it remains undetected by the likelihood ratio test.
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1. Introduction


The aim of the paper is to review existing measures and to introduce a new measure of interaction strength of two nominal factors in predicting a binary outcome and to investigate how they perform for this task. We show that there exist interactive effects that are not detectable by parametric tests, such as the likelihood ratio test, and we propose a test statistic, which performs much better in such situations. A specific situation that we have in mind is the case of two Single Nucleotide Polymorphisms (SNPs) and their joint strength to predict the occurrence of a certain disease as compared to their individual strengths. We will speak of gene-gene interaction when the prediction effects of genotypes at two corresponding loci combine non-additively. Thus, rather than aiming at a simpler task of testing associations that allow for interactions, we focus here on testing the predictive interaction of two SNPs. We will refer to the phenomenon as the interaction effect rather than (statistical) epistasis in order to avoid confusion, as the term “epistasis” is frequently used to mean blocking of one allelic effect by another allele at a different locus (cf. [1]).



There are many methods that aim at detecting gene-gene interaction. We mention Multifactor Dimensionality Reduction (MDR [2]), Bayesian Epistasis Association Mapping (BEAM [3]), SNP Harvester (SH [4]), Pairwise Interaction-based Association Mapping (PIAM [5]), Genome Wide Interaction Search (GWIS [6]), logistic regression and methods based on information measures, such as information gain or interaction information (cf. [7,8]), among others. We refer to [9,10] for overviews of the methods used.



There are problems encountered when applying some of the aforementioned methods. The first one, which is not generally recognized, is that some methods are designed to detect the dependence between pairs of genes and a disease and do not distinguish whether the dependence is due to main effects (genes influencing disease individually) or their interaction (the combined effect of two genes). Thus, the case with strong main effects and with no or a weak interaction effect is still frequently referred to as gene-gene interaction. In the paper, we carefully distinguish between main and interaction effects and discuss situations when interaction can be detected based on the strength of overall dependence. The second problem is that some of the methods used, such as logistic regression, are model dependent and define interaction in a model-specific way. Thus, it may happen, as we show, that genes interacting predictively, as it is understood in this paper, do not interact when modeled, e.g., by logistic regression. Logistic regression is thus blind to predictive interaction in such cases. The third one is that the fact of whether loci are interlinked or not influences the analysis. We show that the dependence between genes may have profound effects on the strength of interaction and its detection. A focus is here on information measures and their approximations, as their decompositions allow one to neatly attribute parts of dependence either to the main effects or to the interaction effect. Let us note that the problem of the dependency of SNPs to be taken into account is recognized; see, e.g., [11]. We also refer to [12], where the maximal strength of interactions for two-locus models without main effects is studied. Sensitivity analysis of a biological system using interaction information is discussed in [13]. The analogous problem of measuring interaction in the Quantitative Trait Loci (QTL) setting with quantitative response is analyzed in, e.g., in [14].



We study the properties of the modified interaction information introduced by [8]. In particular, we state new sufficient conditions for the predictive interaction of the pair of genes. We also study its chi square approximations in the neighborhood of total independence (loci and the outcome are mutually independent) and in the case when the loci may be interdependent. Plug-in estimators of the interaction measures are introduced, and we investigate their behavior in parametric models. This analysis leads us to the introduction of a new test statistic for establishing predictive interaction, which is defined as a maximum of the information interaction estimator and its modified version. It is shown that it leads to a test that is superior or on par with the Likelihood Ratio Test (LRT) in all parametric models considered, and the superiority is most pronounced when logistic interaction is zero or close to zero. Thus, there are cases when genes interact predictively that are not detected by LRT. As the detection of weak interactions becomes increasingly important, the proposed method seems worth studying. The proposal is also interesting from the computational point of view, as LRT, which is a standard tool to detect interactions in the logistic regression model, does not have a closed form expression; its calculation is computationally intensive and requires iterative methods. Our experience shows that the execution of LRT described below is at least fifteen-times longer than for any test considered based on interaction information. This is particularly important when the interaction effect has to be tested for a huge number of pairs of SNPs. We do not treat this case, here leaving it for a separate paper.



The paper is structured as follows. In Section 2, we discuss interaction information measures, their variants, as well as approximations and the corresponding properties. Parametric approaches to interaction are examined in Section 3. We also show some links between the lack of predictive interaction and additive logistic regression (cf. Proposition 7). Moreover, the behavior of the introduced measures in logistic models for independent and dependent SNPs is studied there. In Section 4, we investigate the performance of tests based on empirical counterparts of the discussed indices by means of numerical experiments. An illustrative example of the analysis for a real dataset is also included. Section 5 concludes the paper.




2. Measures of Interaction


2.1. Interaction Information Measure


We adopt the following qualitative definition of the predictive interaction of SNPs [image: there is no content] and [image: there is no content] in explaining dichotomous qualitative outcome Y. We say that [image: there is no content] and [image: there is no content] interact predictively in explaining Y when the strength of the joint prediction ability of [image: there is no content] and [image: there is no content] in explaining Y is (strictly) larger than the sum of the individual prediction abilities of [image: there is no content] and [image: there is no content] for this task. This corresponds to a synergetic effect between [image: there is no content] and [image: there is no content] as opposed to the case when the sum is larger then the strength of a joint prediction, which can be regarded as a redundancy between [image: there is no content] and [image: there is no content].



In order to make this definition operational, we need a measure of the strength of prediction ability of X in explaining Y where X is either a single SNP: [image: there is no content] or a pair of SNPs: [image: there is no content]. This can be done in various ways; we apply the information-theoretic approach and use mutual information to this aim. The Kullback–Leibler distance between P and Q will be denoted by [image: there is no content]. We will consider mass function p corresponding to probability distribution P and use [image: there is no content] and [image: there is no content] to denote mass functions of [image: there is no content] and [image: there is no content], respectively, when no confusion arises. Mutual information between X and Y is defined as:


[image: there is no content]



(1)




where sums range over all possible values [image: there is no content] of Y and [image: there is no content] of X, [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] is the so-called product measure of marginal distributions of X and Y, defined by [image: there is no content]. [image: there is no content] is thus the probability distribution corresponding to [image: there is no content], where [image: there is no content] and [image: there is no content] are independent and have distributions corresponding to [image: there is no content] and [image: there is no content], respectively. Therefore, mutual information is the Kullback–Leibler distance between joint distribution and the product of the marginal distributions. Note that if [image: there is no content], the value [image: there is no content] in (1) is two-dimensional and equals one of the possible values of [image: there is no content].



The motivation behind the definition of [image: there is no content] is of a geometric nature and is based on the idea that if Y and X are strongly associated, their joint distribution should significantly deviate from the joint distribution of [image: there is no content] and [image: there is no content]. In view of this interpretation and taking [image: there is no content], we define the strength of association of [image: there is no content] with Y as:


[image: there is no content]



(2)




and, analogously, the strengths of individual associations of [image: there is no content] with Y as:


[image: there is no content]



(3)







We now introduce the interaction information as (cf. [15,16]):


II(X1;X2;Y)=I((X1,X2);Y)−I(X1;Y)−I(X2;Y)=KL(PX1,X2,Y||PX1,X2×PY)−KL(PX1,Y||PX1×PY)−KL(PX2,Y||PX2×PY).



(4)







Thus, in concordance with our qualitative definition above, we say that SNPs [image: there is no content] and [image: there is no content] interact predictively in explaining Y when [image: there is no content] is positive. We stress that the above definition of interaction is not model dependent in contrast to, e.g., the definition of interaction in a logistic regression. This is a significant advantage as for model-dependent definitions of interaction, the absence of such an effect under one model does not necessarily extend to other models. This will be discussed in greater detail later.



Let us note that [image: there is no content] defined above is one of the equivalent forms of interaction information. Namely, observe that:


II(X1;X2;Y)=H(X1,X2)+H(X1,Y)+H(X2,Y)−H(X1,X2,Y)−H(X1)−H(X2)−H(Y)=−I(X1,X2)−I(X1,Y)−I(X2,Y)−H(X1,X2,Y)+H(X1)+H(X2)+H(Y),



(5)




where [image: there is no content] is the entropy of [image: there is no content] with other quantities defined analogously. This easily follows from noting that [image: there is no content] (cf. [17], Chapter 2). The second equality above is actually a restatement of the decomposition of entropy [image: there is no content] in terms of the values of its difference operator Δ (cf. [18]). Namely, Formula (4.10) in [18] asserts that [image: there is no content].



Interaction information is not necessarily positive. It is positive when the strength of association of [image: there is no content] with Y is larger than an additive effect of both [image: there is no content] and [image: there is no content], i.e., when [image: there is no content] and [image: there is no content] interact predictively in explaining Y. Below, we list some properties of [image: there is no content].



Proposition 1.

(i)


[image: there is no content]



(6)




(ii) [image: there is no content] are independent of Y if and only if [image: there is no content], [image: there is no content] and [image: there is no content]; (iii) We have:


[image: there is no content]



(7)




(iv) It holds that:


[image: there is no content]



(8)




where [image: there is no content]is conditional mutual information defined by:


[image: there is no content]



(9)









Some comments are in order. Note that (i) is an obvious restatement of (4) and is analogous to the decomposition of variability in ANOVA models. The proof of (ii) easily follows from (i) after noting that the independence [image: there is no content] of Y is equivalent to [image: there is no content] in view of the information inequality (see [17], Theorem 2.6.3). Whence, if [image: there is no content] is independent of Y, then [image: there is no content], and thus, also, [image: there is no content] for [image: there is no content]. In view of (6), we then have that [image: there is no content]. The trivial consequence of (i) is that [image: there is no content]; thus, when main effects [image: there is no content] are zero, i.e., [image: there is no content] are independent of Y, we have [image: there is no content], and in this case, [image: there is no content] is a measure of association between [image: there is no content] and Y.



Part (ii) asserts that in order to check the joint independence of [image: there is no content] and Y, one needs to check that [image: there is no content] for [image: there is no content] are individually independent with Y, and moreover, interaction information [image: there is no content] has to be zero. Part (iii) follows easily from (5).



Part (iv) yields another interpretation of [image: there is no content] as a change of mutual information (information gain) when the outcome Y becomes known. This can be restated by saying that in the case when [image: there is no content] and [image: there is no content] are independent, the interaction between genes can be checked by testing the conditional dependence between genes given Y. This is the source of the methods discussed, e.g., in [19,20] based on testing the difference of inter-locus associations between cases and controls. Note however that this works only for independent SNPs, and in the case when [image: there is no content] and [image: there is no content] are dependent, conditional mutual information [image: there is no content] overestimates interaction information.



Let [image: there is no content] be the function appearing in the denominator of (7):


[image: there is no content]



(10)




and [image: there is no content] the associated distribution. [image: there is no content] is called the (unnormalized) Kirkwood superposition approximation of P. Note that (7) implies that if the KL distance between P and [image: there is no content] is small, then interaction [image: there is no content] is negligible. Let:


[image: there is no content]



(11)




be the Kirkwood parameter. If Kirkwood parameter equals one, then Kirkwood approximation [image: there is no content] is a probability distribution. In general,


[image: there is no content]



(12)




is a probability distribution, which will be called the Kirkwood superposition distribution. We say that a discrete distribution p has perfect bivariate marginals if the following conditions are satisfied ([21]):


∑ip(xi,xj)p(xi,yk)p(xi)=p(xj)p(yk)(allj,k)∑jp(xi,xj)p(xj,yk)p(xj)=p(xi)p(yk)(alli,k)∑kp(xi,yk)p(xj,yk)p(yk)=p(xi)p(xj)(alli,j)



(13)







Note that Condition (13) implies that bivariate marginals of [image: there is no content] coincide with those of [image: there is no content] Now, we state some new facts on the interplay between predictive interaction, the value of the Kirkwood parameter and Condition (13). In particular it follows that if [image: there is no content], then genes interact predictively, and the sufficient condition for that is given in Part (iv) below.



Proposition 2.

(i) [image: there is no content], and thus, if [image: there is no content], then [image: there is no content]; (ii) If any of the conditions in (13) are satisfied then [image: there is no content] and [image: there is no content]; (iii) If any two components of random vector [image: there is no content] are independent, then [image: there is no content]; (iv) If for any [image: there is no content][image: there is no content] then [image: there is no content].





Part (i) is equivalent to [image: there is no content]. The proof of (ii) follows by direct calculation. Assume that, e.g., the first condition in (13) is satisfied. Then:


[image: there is no content]



(14)







(iii) is a special case of (ii) as the independence of two components of [image: there is no content] implies that a respective condition in (13) holds. Note that the condition in (iv) is weaker than the third equation in (13), and Part (iv) states that if [image: there is no content] are weakly individually associated with Y, they either do not interact or interact predictively.



The usefulness of using the normalized Kirkwood approximation to test for interactions was recognized by [8]. It is applied in the BOOST package to screen off pairs of genes that are unlikely to interact. In [7], interaction information is used for a similar purpose; see also [22]. We call:


[image: there is no content]



(15)




modified interaction information, which is always nonnegative. Numerical considerations indicate that it is also useful to consider:


[image: there is no content]



(16)







Note that [image: there is no content] is equivalent to [image: there is no content]. In connection with Proposition 2, we note that we also have another representation of [image: there is no content] in terms of the Kullback–Leibler distance, namely:


[image: there is no content]



(17)




where [image: there is no content] is a distribution on values of Y pertaining to [image: there is no content]/[image: there is no content] and:


[image: there is no content]



(18)







The last representation of [image: there is no content] follows from (5) by an easy calculation.




2.2. Other Nonparametric Measures of Interaction


We define:


[image: there is no content]



(19)






[image: there is no content]



(20)




where:


[image: there is no content]



(21)







Note that bivariate marginals of [image: there is no content] coincide with those of [image: there is no content], e.g., [image: there is no content]; however, [image: there is no content] is necessarily positive. We have the following decomposition:


[image: there is no content]



(22)







Thus, the terms [image: there is no content] and [image: there is no content] correspond to the first order dependence effects for [image: there is no content], whereas [image: there is no content] reflects the second order effect. Furthermore, note that the second order effect is equivalent to the dependence effect when all of the first order effects, including [image: there is no content], are zero.



Moreover, let:


[image: there is no content]



(23)






[image: there is no content]



(24)




and:


[image: there is no content]



(25)







We have:



Proposition 3.

(i) [image: there is no content] are independent of Y if and only if [image: there is no content], [image: there is no content] and [image: there is no content] for any [image: there is no content]; (ii) The independence of [image: there is no content] and Y is equivalent to [image: there is no content], [image: there is no content] and [image: there is no content]; (iii) Condition [image: there is no content] for any [image: there is no content] is equivalent to:


[image: there is no content]



(26)




for some [image: there is no content] and [image: there is no content].





Part (i) is checked directly. Note, e.g., that [image: there is no content]; [image: there is no content]; [image: there is no content] is equivalent to [image: there is no content]; [image: there is no content] are independent of Y; and further, [image: there is no content]. Thus, [image: there is no content] is equivalent to [image: there is no content] being independent of Y. Part (ii) is obvious in view of (i). Note that it is an analogue of Proposition 1 (ii). Part (iii) is easily checked. This is due to [23].



In the proposition below, we prove a new decomposition of [image: there is no content], which can be viewed as an analogue of (6) for the chi square measure. In particular, in view of this decomposition, [image: there is no content] is a measure of interaction information. Namely, the following analogue of Proposition 1 (i) holds:



Proposition 4.

We have:


[image: there is no content]



(27)









In order to prove (27), noting the rewriting of (22), we have:


[image: there is no content]



(28)







We claim that squaring both sides, multiplying them by [image: there is no content] and summing over [image: there is no content] yields (27). Namely, we note that all resulting mixed terms disappear. Indeed, the mixed term pertaining to the first two terms on the right-hand side equals:


[image: there is no content]



(29)




due to [image: there is no content]. The mixed term pertaining to the last two terms on the right-hand side equals:


[image: there is no content]



(30)




as [image: there is no content].



We note that (27) is an analogue of the decomposition of [image: there is no content] into four terms (see Equation (9) in [23]). Han in [18] proved that for the distribution of [image: there is no content] close to independence, i.e., when all three variables [image: there is no content], [image: there is no content] and Y are approximately independent, interaction information [image: there is no content] and [image: there is no content] are approximately equal. A natural question in this context is how those measures compare in general.



In particular, we would like to to allow for the dependence of [image: there is no content] and [image: there is no content]. In this, case Han’s result is not applicable, as [image: there is no content] is not close to independence (cf. (22)). It turns out that despite analogous decompositions in (6) and (27) in the vicinity of mass function [image: there is no content] (independence of [image: there is no content] and Y), [image: there is no content] is approximated by different functions of chi squares.



Proposition 5.

We have the following approximation in the vicinity of [image: there is no content]:


[image: there is no content]



(31)




where term [image: there is no content] tends to zero when the vicinity of [image: there is no content] shrinks to this point.





Expanding [image: there is no content] for [image: there is no content] around [image: there is no content], we obtain:


p(xi,xj,yk)logp(xi,xj,yk)=p(xi,xj)p(xk)logp(xi,xj)p(xk)+(1+logp(xi,xj)p(xk))(p(xi,xj,yk)−p(xi,xj)p(yk))+12(p(xi,xj,yk)−p(xi,xj)p(yk))2p(xi,xj)p(yk)+o(1).











Rearranging the terms, we have:


[image: there is no content]











Summing the above equality over [image: there is no content] and k and using the definition of [image: there is no content], we have:


[image: there is no content]



(32)







Reasoning analogously, we obtain [image: there is no content] for [image: there is no content]. Using now the definition of interaction information, we obtain the conclusion.



Note that it follows from the last two propositions that we have the following generalization of Lemma 3.3 in [18].



Proposition 6.

In the vicinity of [image: there is no content], it holds that:


[image: there is no content]



(33)









This easily follows by replacing [image: there is no content] in (31) by [image: there is no content] and using the definition of [image: there is no content].




2.3. Estimation of the Interaction Measures


We discuss now the estimators of the introduced measures. Suppose that we have n observations on genotypes of the two SNPs under consideration. The data can be cross-tabulated in a [image: there is no content] contingency table with [image: there is no content] denoting the number of data points falling in the cell [image: there is no content] and [image: there is no content]. The considered estimators are plug-in versions of theoretical quantities. Namely, we define (cf. (7)):


[image: there is no content]



(34)




where [image: there is no content] and other empirical quantities are defined analogously. Let:


[image: there is no content]



(35)




where [image: there is no content] is a plug-in estimator of η, an estimator of [image: there is no content]. Analogously, we define:


[image: there is no content]



(36)







Moreover, let:


[image: there is no content]



(37)




denote the plug-in estimator of [image: there is no content] defined in (25) and [image: there is no content] the plug-in estimator of the main term on the right-hand side of (31).



Han in [18] proved that for the distribution of [image: there is no content] close to independence, i.e., when all three variables [image: there is no content], [image: there is no content] and Y are approximately independent, we have that the distribution of [image: there is no content] is close to the distribution of [image: there is no content] for large sample sizes. Moreover:


[image: there is no content]



(38)




in the distribution when the sample size tends to infinity, where [image: there is no content] denotes the chi square distribution with four degrees of freedom. However, the large sample distribution of [image: there is no content] for [image: there is no content] is unknown. Note that although one can establish the asymptotic behavior of empirical counterparts of each term on the right-hand side of (31), these parts are dependent, which contributes to the difficulty of the problem.



In Section 3 below, we discuss the problem of detecting predictive interaction using the empirical indices defined above as the test statistics.





3. Modeling Gene-Gene Interactions


Interaction information and its modifications are model-free indices of measuring the interaction of SNPs in predicting the occurrence of a disease. Below, we list several approaches to measure interaction based on modeling. Although, as it turns out, the logistic model encompasses all of them, various parametrizations used for such models imply that the meaning of interaction differs in particular cases.



3.1. Logistic Modeling of Gene-Gene Interactions


As a main example of parametric modeling involving the quantification of interaction strength, we consider logistic regression. It turns out that any type of conditional dependence can be described by it. Namely, a general logistic model with interactions that models conditional dependence [image: there is no content], where [image: there is no content] and [image: there is no content] are qualitative variables with I and J values, respectively, has [image: there is no content] parameters. Indeed, it allows for an intercept term, [image: there is no content] main effects of [image: there is no content] and [image: there is no content] and [image: there is no content] interactions, i.e., [image: there is no content] parameters in total. This is equal to the number of possible pairs [image: there is no content]. Thus, any form of conditional dependence of Y on [image: there is no content] and [image: there is no content] can be described by this model for some specific choice of intercept, main effects and interactions.



We discuss a specific setting frequently used for GWAS analysis when [image: there is no content] and [image: there is no content] stand for two biallelic genetic markers with the respective genotypes AA, Aa, aa (reference value) and BB, Bb, bb (reference value). For convenience, the values of SNPs will be denoted, although not treated as, consecutive integers 1, 2 and 3. Y is a class label, i.e., a binary outcome, which we want to predict, with one standing for cases and zero for controls.



We consider the additive logistic regression model ω, which asserts that:


[image: there is no content]



(39)




and compare it with a general saturated model Ω:


[image: there is no content]



(40)







In the logistic regression model, [image: there is no content] and [image: there is no content] interact when [image: there is no content] is non-zero for some [image: there is no content], and Model (40) is frequently called a general logistic model with interactions. Thus, interactions here correspond to all coefficients [image: there is no content], and a lack of interactions means that all of them are zero. Note that the number of independent parameters in (40) when both [image: there is no content] and [image: there is no content] have three values is nine and equals the number of possible pairs [image: there is no content]. For specific values of the main effects and interaction, which have been used in GWAS, see, e.g., [19,22], and for complete enumeration of models with 0/1 penetrance, see [24].



We discuss now different modeling approaches. The main difference in comparison with (40) is that another function of the odds is parametrized. The choice of the function influences the parametrization of the model, however; for discrete predictors, all such parametrizations are equivalent.



In particular, in [19], so-called multiplicative and threshold models for a disease were considered (Table 1, p. 365). In the multiplicative model, the odds of the disease have a baseline value γ and increase multiplicatively once there is at least one disease allele at each locus:


[image: there is no content]



(41)




where [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], otherwise. In the threshold model, the odds of the disease increase by a constant multiplicative factor once there is at least one disease allele at each locus, i.e., [image: there is no content] and [image: there is no content], otherwise. It is easily seen that both models are special cases of (40). Moreover, if [image: there is no content] is such that [image: there is no content], then Equation (41) is a special case of the additive model (39). Note that interactions in (41) are measured by coefficients [image: there is no content], as well as by θ.



An analogous approach is to model the prevalence of the disease [image: there is no content] instead of the odds as in (41) or the logarithmic odds as in (40). This is adopted in [20], where Table 1, p. 832, lists six representative models. In particular, a threshold model corresponds to the situation when the prevalence of the disease increases from zero to f, where f is positive, provided a disease allele is present at each locus. Interaction in the threshold model is measured by f. As the model considers zero as a baseline value, it is not a special case of the threshold model in [19].



Interesting insight for particular dependence models is obtained when they are parametrized using Minor Allele Frequency ([image: there is no content]), overall prevalence [image: there is no content] and heritability [image: there is no content]. This is adopted in [22,25] where several models with varying values of these parameters are considered.



Below, we state the proposition that describes the connection between the additive logistic regression model and the lack of predictive interaction. Namely, Part (ii) states that if the Kirkwood parameter is not larger than one and [image: there is no content], then the additive logistic model holds true.



Proposition 7.

(i) Equation (39) is equivalent to:


pijk=θ·jkϕi·kψij·i,j=1,2,3,k=1,2



(42)




for some values [image: there is no content]; (ii) If [image: there is no content] and [image: there is no content], then [image: there is no content] satisfies (39).





It is easily checked that Condition (42) implies (39). On the other hand, if we assume (39), then we have [image: there is no content], and we can take [image: there is no content], [image: there is no content] and [image: there is no content] and [image: there is no content]. This proves (i). Now, for (ii), if [image: there is no content] and [image: there is no content], then [image: there is no content], which satisfies (42). The last equality follows from the generalization of the information inequality stating that KL distance [image: there is no content] if and only if [image: there is no content] when p is a probability mass function and q is nonnegative and such that [image: there is no content]. Thus, if [image: there is no content], then any model with interaction information of zero has to be an additive logistic regression model. However, we will show that conditions [image: there is no content] and [image: there is no content] are not equivalent even in the case when [image: there is no content] and [image: there is no content] are independent and [image: there is no content].



The principal tool to detect interactions in logistic regression is the log-likelihood ratio statistic (LRT), defined as:


[image: there is no content]



(43)




where [image: there is no content], [image: there is no content] are respectively the values of the likelihood for models Ω and ω, and [image: there is no content] are respectively estimated probability distributions. Large positive values of LRTare interpreted as an indication that the additive model is not adequate and that interactions between genes occur. In order to check what is the usual range of values of LRT under ω, we use the property stating that when ω is adequate, LRT is approximately distributed as a χ square distribution with four degrees of freedom provided that all cells contain at least five observations. Whereas the calculation of [image: there is no content] is straightforward, as it involves only fractions [image: there is no content] as parametric estimates of probabilities of interest, the calculation of [image: there is no content] is computationally intensive and involves the Iterated Weighted Least Squares (IWLS) procedure. Thus, it is also if interest to find an easily computable approximation of LRT. This was exactly the starting point of [8] where it was noticed that probability mass function [image: there is no content] follows the additive logistic regression model. Indeed, we have, in view of (10):


[image: there is no content]



(44)




and thus, it satisfies (39). In particular, it follows that:


[image: there is no content]



(45)




where [image: there is no content] is a value of the likelihood for a logistic regression model using plug-in estimators to estimate Kirkwood probabilities. Since [image: there is no content] is easily computable, the lower bound on [image: there is no content] can be imposed to screen pairs that are unlikely to interact, as in view of (45), the cases with small values of [image: there is no content] yield even smaller values of LRT. However, as we discuss in Section 3, there are cases of interactions that will be detected by [image: there is no content], but they will remain undetected by LRT.



Note also that from the considerations above, we have revealed the interpretation of the interaction information:


[image: there is no content]



(46)




where [image: there is no content] is a probability distribution corresponding to estimated non-normalized Kirkwood approximations.



Another interaction modeling tool for contingency tables is a log-linear model for which the logarithm of the expected value of the number of observations falling into each cell is modeled. Since the expected value for the cell [image: there is no content] equals [image: there is no content], it is seen that the approach is equivalent to logistic modeling. In particular, Model (39) is equivalent to the so-called homogeneous association model:


[image: there is no content]



(47)







Because of the equivalence, we will discuss only the logistic setting later on.




3.2. ANOVA Model for Binary Outcome


Additive ANOVA models briefly described below are used to model the dependence of the quantitative outcome on qualitative predictors, in QTL studies in particular. However, they work reasonably well for a binary outcome. We provide a brief justification for this.



In an additive ANOVA model ω, we assume that the conditional distribution of Y given [image: there is no content] and [image: there is no content]:


[image: there is no content]



(48)




and for model Ω with interactions, we postulate that:


[image: there is no content]



(49)







Estimation of the parameters of ANOVA models is based on least squares analysis, i.e., minimization of the following sum of squares:


[image: there is no content]



(50)




where [image: there is no content] is a prediction for the l-th observation under assumed model M. It is well known (see, e.g., [26]) that the F statistic defined by (51) below has an asymptotically F distribution with parameters [image: there is no content] and [image: there is no content] (p and q denote the number of coefficients in models Ω and ω, respectively).


[image: there is no content]



(51)







In our problem, the outcome is binary, so formally, it is not legitimate to use the ANOVA model in this case. Nevertheless, the prediction has an interesting property. Let us denote [image: there is no content] and [image: there is no content]. Then, for the additive ANOVA model and the model with interaction, we have:


[image: there is no content]



(52)







Moreover, if the values of the respective SNPs are denoted by [image: there is no content] and [image: there is no content], then for the model with interaction, we have [image: there is no content] and [image: there is no content]. Using this notation for both models, we can treat predictors [image: there is no content] and [image: there is no content] as estimators of [image: there is no content] and [image: there is no content], respectively. Now, manipulating conditional probabilities, we can rewrite (50) as:


R(M)=∑l=1nyl−y^l2=∑l:yl=0y^l(1)2+∑l:yl=1y^l(0)2=∑i,j,knijkP^Y≠k|X1=i,X2=j2=n∑i,jP^X1=i,X2=j,Y=kP^Y≠k|X1=i,X2=j2=n∑i,jP^X1=i,X2=jP^Y=1|X1=i,X2=j(1−P^Y=1|X1=i,X2=j).



(53)







Note that it follows that [image: there is no content] can be treated as the weighted variability of prediction, which is the largest when [image: there is no content] Thus, minimizing (53) leads to finding the parameters of model M that yield the most certain prediction. This provides some intuition, in addition to (52), for why the ANOVA model yields reasonable estimates in the case of a binary outcome.




3.3. Behavior of Interaction Indices for Logistic Models


Our main goal here is to check whether estimators of the information interaction lead to satisfactory, universal and easy to compute tests for predictive interaction. We recall that [image: there is no content] and [image: there is no content] interact predictively in explaining Y when [image: there is no content] Thus, we consider as the null hypothesis [image: there is no content] and as an alternative [image: there is no content], the hypothesis we are interested in, namely [image: there is no content]. As test statistics, we employ sample versions of interaction information indices and their approximations introduced above. We discuss the behavior of the pertaining tests for logistic models (see Section 3), as for discrete predictors, they cover all possible types of conditional dependence of Y given their values. Two types of distributions of [image: there is no content] will be considered, the first, when [image: there is no content] and [image: there is no content] are independent and the second one, when their dependence is given by Frank’s copula with parameter [image: there is no content] (see Appendix A for the definition). Frank’s copula with parameter [image: there is no content] was chosen as for the logistic models considered below, it leads to predictive interaction. In both cases, we set Minor Allele Frequency [image: there is no content], where [image: there is no content]. In Table A1, the conditional distributions are specified (see also Appendix A for the method of generation). As discussed below, larger values of λ and γ lead to larger values of interaction measures.



Table A1. Mass function [image: there is no content] of [image: there is no content] for [image: there is no content] The upper panel corresponds to independent [image: there is no content] and [image: there is no content] and the lower to the Frank copula with [image: there is no content].







	
[image: there is no content]

	
1

	
2

	
3

	
∑






	
Independent [image: there is no content] and [image: there is no content]




	
1

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
2

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
3

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
∑

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
1




	
Frank Copula with [image: there is no content]




	
1

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
2

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
3

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
∑

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
1











3.4. Behavior of Interaction Indices When [image: there is no content] and [image: there is no content] Are Independent


We consider first a special case when [image: there is no content] and [image: there is no content] are independent. We recall that it follows from Proposition 2 (iii) that parameter η then equals one regardless of the form of prevalence mapping. Thus, Kirkwood superposition approximation is a probability distribution, and the fact that [image: there is no content] is equivalent to the property that distribution P equals its Kirkwood approximation. Moreover, we then have [image: there is no content] and [image: there is no content] We omit the proof of the second equality. Below, we discuss specific logistic regression models that are used in the simulations. For each model, the intercept was set so that prevalence [image: there is no content] is approximately [image: there is no content]. In Table 1, the coefficients for additive logistic models considered here are specified.



Table 1. Coefficients for additive logistic models with parameter λ (cf. (39)). In each model, intercept μ was chosen, such that prevalence [image: there is no content] is equal to approximately [image: there is no content].
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Note that for model [image: there is no content], both predictors are independent of Y, whereas in [image: there is no content] and [image: there is no content], only [image: there is no content] is independent of Y. It is seen from (39) that for [image: there is no content], logarithmic odds depend on the occurrence of either value [image: there is no content], [image: there is no content] or both, whereas for [image: there is no content], they also depend on the values [image: there is no content] and [image: there is no content]. The additive influence of both loci is the same and measured by parameter λ.



We also consider a general logistic model with interactions given in (40). We employ three types of models, the additive parts of which are the same as in models [image: there is no content] and [image: there is no content], respectively. Note that [image: there is no content] denotes model [image: there is no content] with [image: there is no content]. The form of interaction is stated in Table 2. [image: there is no content] for [image: there is no content] will denote the logistic model, the additive part of which is as in model [image: there is no content] and interaction part as in Table 2 for a fixed value of [image: there is no content] Thus, [image: there is no content] is a model with no main effects, but with a logistic interaction effect, whereas additive effects, as well logistic interaction are nonzero in [image: there is no content] and [image: there is no content]. Note that in the models considered, parameter γ measures the strength of the logistic interaction.



Table 2. Values of the [image: there is no content] coefficients from Model (40) for the same constant value of [image: there is no content]
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We discuss now how interaction indices behave for the introduced models. We start with additive logistic regression models [image: there is no content]. Note that for models [image: there is no content] and [image: there is no content], all considered interactions measures are zero, since for [image: there is no content], response Y is independent of [image: there is no content], whereas for [image: there is no content] and [image: there is no content], predictor [image: there is no content] is independent of [image: there is no content]. The values of [image: there is no content] and [image: there is no content] as a function of λ for models [image: there is no content] and [image: there is no content] are shown in Figure 1.


Figure 1. Theoretic values of interaction measures for the additive logistic model and independent SNPs.
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In models [image: there is no content] and [image: there is no content], the values of [image: there is no content] are small, but strictly positive for [image: there is no content]. Note that the monotone dependence of [image: there is no content] on λ is much stronger than for [image: there is no content]. In Figure 2, the behavior of interaction measures as a function of γ for the logistic model with the nonzero interaction term is depicted. Thus, we check how nonparametric interaction information and its modifications depend on logistic interaction parameter γ. Observe that [image: there is no content] is positive, close to zero for [image: there is no content] and for [image: there is no content] grows slowly in all models considered. There is no significant difference between the values of [image: there is no content] for all models [image: there is no content] and [image: there is no content] when γ is fixed, which means that the additive part in the saturated logistic model has a weak influence on the interaction information. Index [image: there is no content] is also approximately 0 for [image: there is no content] but grows much faster than [image: there is no content] when γ increases. The differences between the values of [image: there is no content] for models [image: there is no content] and [image: there is no content] are much more pronounced than for interaction information [image: there is no content], and they increase with [image: there is no content] The values of all indices are larger when the logistic interaction is nonzero.


Figure 2. Theoretic values of the interaction measures for the logistic model with the interaction and independent SNPs.
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3.5. Behavior of Interaction Indices When [image: there is no content] and [image: there is no content] Are Dependent


The situation when [image: there is no content] and [image: there is no content] are dependent is more involved. First, Kirkwood superposition approximation does not have to be a probability distribution; therefore, the fact that [image: there is no content] is not equivalent to the equality of mass functions [image: there is no content] and [image: there is no content] Second, the dependence of predictors means that distribution [image: there is no content] deviates more strongly from joint independence, i.e., from the situation when the asymptotic behavior of [image: there is no content] is known and given in (38).



As before, we consider the logistic model with and without interactions. For logistic regression models, we choose the same values of parameters as in the previous section (see Table 1 and Table 2) with the exception of μ, which was set such that in every model, prevalence is equal approximately to [image: there is no content]



The behavior of interaction indices for the discussed models is shown below. Their variability in λ for models [image: there is no content] when predictors are dependent is shown in Figure 3 and for models with interaction in Figure 4. Model [image: there is no content] is omitted as all considered indices are zero there independently of λ. Note that we have a stronger dependence of [image: there is no content] on λ in [image: there is no content] than in [image: there is no content]; the effect is much weaker in the case of [image: there is no content] due to the fact that [image: there is no content] negatively depends on λ for M4. Furthermore, for this model, the dependence of [image: there is no content] on λ is much stronger than for the independent case.


Figure 3. Theoretic values of the interaction measures for the additive logistic model and dependent SNPs.
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Figure 4. Theoretic values of the interaction measures for the logistic model with the interaction and dependent SNPs.
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When logistic interaction is nonzero, we again see pronounced differences in the behavior of [image: there is no content] between [image: there is no content] and [image: there is no content]. This indicates that in the contrast to the independence case, two factors, namely the value of γ, as well as the form of main effects, influence the value of [image: there is no content]. The differences between the values of [image: there is no content] for different models are negligible. Values [image: there is no content] are larger for the dependent than for the independent case for the same value of γ. Note that from the logistic model perspective. the strength of interaction in all three models is the same and corresponds to the value of γ. Again, the dependence of [image: there is no content] and [image: there is no content] on γ is much stronger than for [image: there is no content].





4. Tests for Predictive Interaction


The main challenge with the application of the constructed statistics for testing is the determination of their behavior under the null hypothesis [image: there is no content]. The asymptotic distribution of [image: there is no content] is known only for the case when [image: there is no content] and Y are independent, which is a special case only of the null hypothesis, and the asymptotic distributions of [image: there is no content] and [image: there is no content] are unknown. In order to overcome this problem, we hypothesize that the distributions of all three statistics do not deviate much from the [image: there is no content] distribution, at least in the right tails, and we check the validity of our conjecture by calculating the actual Type I error rates for nominal error rates α using the Monte Carlo method. The results are shown in Figure 5 for the independent predictors and in Figure 6 for dependent ones. The results for LRT and ANOVA tests are included as the benchmarks. It is seen that for the independent predictors, discrepancies between actual and nominal rates for [image: there is no content] and [image: there is no content] are negligible and comparable to the discrepancy of LRT for all models [image: there is no content], and the same is true for [image: there is no content] in the case of models [image: there is no content] and [image: there is no content]. The same observation holds for the dependent predictors, although here, empirical evidence is restricted to model [image: there is no content], as it is the only model known to us that satisfies the null hypothesis in this case. Based on this observation, in the following, we compare the power of LRT and ANOVA with the powers of the new tests with a rejection region [image: there is no content], where [image: there is no content] stands for the quantile of order 0.95 of the [image: there is no content] distribution and [image: there is no content] stands for either [image: there is no content], [image: there is no content] or [image: there is no content].


Figure 5. Actual Type I error rates against the nominal error α rate when [image: there is no content] and [image: there is no content] are independent for models [image: there is no content] and [image: there is no content]
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Figure 6. Actual Type I error rates against nominal error rate α when [image: there is no content] and [image: there is no content] are dependent for model [image: there is no content]
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Datasets pertaining to the discussed models are generated as described in the Appendix. The pertinent parameters are:

	
[image: there is no content], the number of observations in controls ([image: there is no content]) and cases ([image: there is no content]), set equal in our experiments and [image: there is no content], the total number of observations. Values of [image: there is no content] and [image: there is no content] were considered.



	
MAF, the minor allele frequency for [image: there is no content] and [image: there is no content]. We set [image: there is no content] for both loci.



	
copula, the function that determines the cumulative distribution of [image: there is no content] based on its marginal distributions.



	
[image: there is no content], the prevalence mapping, which in our experiments was either additive logistic or logistic with nonzero interaction.








For every model, 1000 datasets were generated, and for each of them, tests of the interaction effect based on the introduced indices were performed. The null hypothesis is the lack of predictive interaction [image: there is no content] The null hypothesis at the specific significance level α is not rejected if the value of the test statistic is less than [image: there is no content], the quantile of appropriate distribution; otherwise, we reject this hypothesis and claim that there is a predictive interaction effect. As discussed above, the tests based on all indices except the ANOVA test were compared with the [image: there is no content] distribution, and for the ANOVA test, null distribution was the F-Snedecor distribution with parameters four and [image: there is no content]. For models with [image: there is no content], we estimate the probability of Type I error for a given α as a fraction of the tests that are falsely rejected. For the model with the predictive interaction effect, statistical power is estimated as a fraction of the tests that are rejected at a significance level of [image: there is no content]. We will refer to those tests as simply interaction information, [image: there is no content], LRT and ANOVA tests in the following.



All experiments have been performed in the R environment. The source codes of functions used are available from the corresponding author’s website.



4.1. Behavior of Interaction Tests When [image: there is no content] and [image: there is no content] Are Independent


We consider the situation when SNPs [image: there is no content] and [image: there is no content] are independent. In this case, [image: there is no content] and both [image: there is no content] and [image: there is no content] estimate [image: there is no content] consistently.



4.1.1. Type I Errors for Models [image: there is no content]–[image: there is no content]


First, we consider models [image: there is no content]–[image: there is no content] where [image: there is no content] and for which the null hypothesis holds. Recall that for [image: there is no content], all components of random vector [image: there is no content] are independent; thus, in this case, convergence (38) to the [image: there is no content] distribution holds. In Figure 5, we compare the Type I error rate with the nominal error rate. Note that Type I errors of [image: there is no content] and [image: there is no content] approximately agree with nominal level [image: there is no content] This indicates that the distributions of these statistics under the null hypothesis are approximately [image: there is no content] distributed. For ANOVA and [image: there is no content] tests, the probability of Type I error is slightly smaller than α. For the maximum statistic [image: there is no content], the probability of Type I error agrees well with the nominal level for models [image: there is no content] and [image: there is no content] for [image: there is no content]; it exceeds α, but the relative difference is not larger than [image: there is no content] for [image: there is no content].




4.1.2. Power for Additive Logistic Models


Now, we focus on models [image: there is no content] and [image: there is no content]. From Figure 1, we see that for [image: there is no content], index [image: there is no content] is very close to zero, and predictably, the power is close to the significance level for such λ (see Figure 7). However, for larger λ, the power of [image: there is no content] and [image: there is no content] increases for [image: there is no content], and in the case of [image: there is no content], this holds also for [image: there is no content]. The difference between the behavior of [image: there is no content] on the one side and [image: there is no content] and [image: there is no content] approximations on the other for model [image: there is no content] is remarkable and shows that modification incorporating [image: there is no content] is worthwhile. However, for model [image: there is no content], it does not improve the performance of [image: there is no content]. Note also that unsurprisingly. The power of the [image: there is no content] test stays close to the significance level, but the power of ANOVA starts to increase for large λ. A clear winner in both cases is the test based on [image: there is no content], which performs very well for both models, as it takes advantage of the good performance of [image: there is no content] for [image: there is no content] and [image: there is no content] for model [image: there is no content].


Figure 7. Powers for models [image: there is no content] and [image: there is no content] against λ when [image: there is no content] and [image: there is no content] are independent.
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4.1.3. Power for the Logistic Model with Interactions


We consider now the power of the tests with respect to logistic interaction parameter γ for models [image: there is no content] and [image: there is no content] Note that [image: there is no content] is now included as [image: there is no content] is positive for [image: there is no content]. In all cases, [image: there is no content] performs better than [image: there is no content], supporting the usefulness of the correction. [image: there is no content] works comparably to ANOVA and, in some cases, worse than [image: there is no content] and [image: there is no content]. We stress that this does not contradict the fact that [image: there is no content] is the most powerful test at the level α for null hypothesis [image: there is no content]. Indeed, it follows from the previous experiments that predictive interaction tests are not level α tests for [image: there is no content]; thus, they may have larger power than [image: there is no content]. The power of [image: there is no content] and [image: there is no content] is around [image: there is no content] for [image: there is no content], even for γ close to zero, when for [image: there is no content], it stays around a significance level of 0.05. Note also that [image: there is no content] and [image: there is no content] fail to detect the predictive interaction for model [image: there is no content].





4.2. Behavior of the Interaction Tests When [image: there is no content] and [image: there is no content] Are Dependent


We consider the situation where SNPs [image: there is no content] and [image: there is no content] are dependent. The distribution of [image: there is no content] is modeled by the Frank copula with [image: there is no content] (see Table A1).



4.2.1. Type I Errors for Model [image: there is no content]


Note that for dependent [image: there is no content] and [image: there is no content], only [image: there is no content] satisfies the null hypothesis, as for the models [image: there is no content] and [image: there is no content], index [image: there is no content] is negative. It follows from Figure 6 that for all tests apart from [image: there is no content] tests, Type I error for [image: there is no content] is approximately α, and it is significantly smaller than α for both [image: there is no content] tests. For larger α and [image: there is no content] errors for information, interaction tests exceed slightly α, similarly to LRT.




4.2.2. Power for Additive Logistic Models When [image: there is no content] and [image: there is no content] Are Dependent


The behavior of the discussed tests is analogous to the case of independence (see Figure 8) with one important difference. Namely, now [image: there is no content] performs better than [image: there is no content] apart from model [image: there is no content] for [image: there is no content] and [image: there is no content]. [image: there is no content] and ANOVA do not detect any interaction for [image: there is no content], but the power of ANOVA starts to pick up for large λ. Note the erratic behavior of the [image: there is no content] test for which the power actually starts to decrease for larger λ. This possibly is caused by the fact that the test is not well calibrated and the fact that [image: there is no content] is likely to become negative for large λ. The power of [image: there is no content] is the largest one among all tests.


Figure 8. Powers for models [image: there is no content] and [image: there is no content] against λ when [image: there is no content] and [image: there is no content] are dependent.
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4.2.3. The Powers for Logistic Models with Interaction When [image: there is no content] and [image: there is no content] Are Dependent


Obviously, when logistic interaction is present, the [image: there is no content] test performs much better (see Figure 9). The same applies to ANOVA and [image: there is no content], but the best performance is again exhibited by [image: there is no content]. Consider, e.g., its performance for the model [image: there is no content]. Its excellent behavior for small γ’s stems from the very good performance of [image: there is no content], whereas for larger γ’s from the performance of [image: there is no content] Comparing Figure 9 and Figure 10, we see that the dependence between predictors improved the performance of the tests based on the interaction information measures, especially for a smaller sample size, which is consistent with the larger values of the interaction information in the dependent than in the independent case. Note that in the dependent case, the power of [image: there is no content] and [image: there is no content] for [image: there is no content] is above [image: there is no content] for γ close to zero, whereas it is less then [image: there is no content] for such γ in the independent case.


Figure 9. The power for models [image: there is no content] and [image: there is no content] against γ when [image: there is no content] and [image: there is no content] are dependent.
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Figure 10. Powers for models [image: there is no content] and [image: there is no content] against γ when [image: there is no content] and [image: there is no content] are independent.
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4.3. Real Data Example


We perform the analysis of a real dataset in order to show that the pairs of SNPs that correspond to large values of interaction indices exhibit interesting patterns of conditional dependence. We used data on pancreatic cancer studied by [27] and downloaded from the address [28]. They consist of 208 observations (121 cases and 87 controls) with values of 901 SNPs. We applied tests [image: there is no content], [image: there is no content] and [image: there is no content] for all pairs and [image: there is no content] with Bonferroni correction resulting in an individual level of significance [image: there is no content], where [image: there is no content]. All three tests rejected the null hypothesis [image: there is no content] for 11 pairs. The pair of SNPs with the largest values of [image: there is no content] and [image: there is no content] is the pair [image: there is no content](rs1131854,rs7374) with values [image: there is no content] and [image: there is no content]. Figure 11 shows the probability mass function of this pair (a) and of the conditional mass functions given [image: there is no content] (b) and [image: there is no content] (c).


Figure 11. Probability mass function for the pair (rs1131854,rs7374) (a) and for corresponding conditional mass functions given [image: there is no content] (b) and [image: there is no content] (c).



[image: Entropy 19 00023 g011]






Note that the pattern of the change of the conditional probabilities of the occurrence of the AA genotype for SNP2 given the genotypes of SNP1 for the cases [image: there is no content] is reversed in the case of the controls [image: there is no content]. For the pooled sample, the conditional probabilities are approximately equal. Moreover, observe that the conditional frequency of [image: there is no content] given [image: there is no content] is around 0.2 for the cases, whereas it is zero for the controls.



This preliminary example indicates that the analysis based on large values of interaction information indices allows one to detect interesting patterns of dependence between pairs of SNPs and the response.





5. Discussion


In the theoretical part of the paper, we reviewed and proved some new properties of interaction information, its modification and their approximations. It is argued that parameter η introduced in (11) plays an important role in establishing predictive interaction. Theoretical analysis supported considering a new measure defined in (16), being the maximum of interaction information, and its modified version, which was considered in numerical experiments. There are several conclusions that can be drawn from the conducted numerical experiments. The first one is that the dependence between predictors influences the performance of interaction information tests: while [image: there is no content] performs in general better than [image: there is no content] for independent predictors, the situation is reversed for dependent ones. Their natural combination, statistics [image: there is no content], is superior to any of them and [image: there is no content]. When compared to [image: there is no content], the difference in performance is most striking when detecting predictive interaction in the cases when logistic interaction is 0 as, e.g., in models [image: there is no content] and [image: there is no content]. This should serve as a cautionary remark for the situations when the interaction information test is used as a screening test and then LRT is applied for remaining pairs of genes: the screening test may rightly retain pairs of genes interacting predictively; however, the interaction may not be confirmed by the [image: there is no content] test. Such cases are likely to occur especially for dependent pairs. It is also worthwhile to note that [image: there is no content] is as least good as [image: there is no content] and sometimes much better for detecting interactions when the logistic interaction γ is close to zero. This is a promising feature, as detecting such weak interactions is the most challenging and bears important consequences for revealing the dependence structure of diseases. This of course requires the construction of interaction tests suitable for a huge number of pairs and is a subject of further study. On the negative side, tests based on [image: there is no content] approximations tend to perform less well than those based on interaction information and their modifications. This is possibly due to their non-adequate calibration in the case when the null hypothesis holds. It also should be stressed that in numerical experiments, we studied the problem of distinguishing between no interaction information ([image: there is no content]) and predictive interaction ([image: there is no content]). In the case when interaction information is negative, [image: there is no content] and [image: there is no content] are likely not to detect such an effect.
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Appendix A


We describe briefly the generation method. Our objective is to generate separately two samples from conditional distributions of [image: there is no content] given [image: there is no content] and [image: there is no content] with predetermined sizes [image: there is no content] and [image: there is no content]. This is easily performed for a given prevalence mapping [image: there is no content] and bivariate mass function [image: there is no content], as we have by Bayes’s theorem:


[image: there is no content]



(A1)







The prevalence mapping we consider is either additive logistic or logistic with interactions. We discuss below the choice of mass function [image: there is no content].



Appendix A.1. Distribution of X1,X2


We first specify marginal distributions of [image: there is no content] and [image: there is no content] and then construct bivariate mass function [image: there is no content] with those marginals. We fix Minor Allele Frequency ([image: there is no content]) for two SNPs (here, we use the same value of [image: there is no content] for [image: there is no content] and [image: there is no content]) and assume that both SNPs fulfil the Hardy–Weinberg principle, which means that px1=MAF2,px2=2·MAF(1−MAF) and [image: there is no content] Let [image: there is no content] and [image: there is no content] denote cumulative distributions of [image: there is no content] and [image: there is no content], respectively, which can be different in general. Then, we determine the bivariate distribution function [image: there is no content] of [image: there is no content] as:


[image: there is no content]



(A2)




where [image: there is no content] is a fixed copula (cf. [29]). This approach allows one to fix marginals in advance; moreover, it provides us with a simple method of introducing dependence between alleles. We consider the case when [image: there is no content] and [image: there is no content] are independent, for which [image: there is no content], and dependent [image: there is no content] and [image: there is no content] characterized by the Frank copula given by:


CθFru,v=−1θlog1+e−θu−1e−θv−1e−θ−1,θ∈R\{0}.



(A3)







Other popular copulas such as Gumbel’s and Clayton’s copula yield negative interaction information and are not considered here.



Below, we specify mass functions for independent and dependent [image: there is no content] and [image: there is no content] when the dependence is given by Frank copula with parameter [image: there is no content] and marginals have the same distribution with [image: there is no content].






Appendix A.2. Prevalence Mapping with the Logistic Regression Model


Logarithmic odds in the logistic regression model are given by (40):


[image: there is no content]



(A4)







This is equivalent to:


[image: there is no content]



(A5)







The above formula is used in (A1) in order to determine distributions of [image: there is no content] in both populations.
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