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Abstract: Complexity analysis of dynamic systems provides a better understanding of the internal
behaviours that are associated with tension and efficiency, which in the socio-technical systems may
lead to innovation. One of the popular approaches for the assessment of complexity is associated
with self-similarity. The dynamic component of dynamic systems represents the relationships and
interactions among the inner elements (and its surroundings) and fully describes its behaviour.
The approach used in this work addresses complexity analysis in terms of system behaviour, i.e.,
the so-called behavioural analysis of complexity. The self-similarity of a system (structural or
behavioural) can be determined, for example, using fractal geometry, whose toolbox provides a
number of methods for the measurement of the so-called fractal dimension. Other instruments
for measuring the self-similarity in a system, include the Hurst exponent and the framework of
complex system theory in general. The approach introduced in this work defines the complexity
analysis in a social-technical system under tension. The proposed procedure consists of modelling
the key dynamic components of a discrete event dynamic system by any definition of Petri nets.
From the stationary probabilities, one can then decide whether the system is self-similar using the
abovementioned tools. In addition, the proposed approach allows for finding the critical values
(phase transitions) of the analysed systems.

Keywords: complexity; self-similarity; information dimension; Hurst exponent; petri nets; complex
systems

1. Introduction

The complexity analysis of systems is currently a widespread theme. It reflects system features
such as comprehensibility, modifiability, uncertainty, or maintainability. These features are especially
important during design optimization (e.g., information systems). There are a number of complexity
measures that have been defined in a number of areas such as physics, biology, sociology, and others.
A brief overview of complexity measures can be found in [1]. In the field of complex systems, exist the
so-called phase transitions that change the structural and behavioural properties of the system, and thus
its complexity. These changes represent, for example, the change of the information system, change of
the top management, etc. The complexity of a system is generally dependent on the degree of its
tension that invokes the occurrence of phase transitions and the related qualitative properties, such as
efficiency, productivity, sustainability, or adaptability. One of the most widespread examples of
complex systems is socio-technical systems that deal with human interaction with technical systems.
One of the largest challenges in socio-technical systems is creating an appropriate environment in
which the entities show maximum performance without requiring explicit management [2] or that
require minimal management. Higher performances of the entities can be achieved through effective
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management (motivation, reward, tasks, etc.) or with a suitable environment (an environment in which
the entities are implicitly motivated towards greater performance—self-imposed tension). An example
could be a reward/motivation system for employees in a company, the structure of a workspace,
or the flexible system of working hours. Various models for optimal performance are suitable for
different types of systems, for example, creative work vs. administrative work. Figure 1 illustrates
the general structure of a socio-technical system. Examples of socio-technical systems are workspaces,
information systems, organizations, and work teams.
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Typically, the issue of optimal management can be summarized as the ability to have the
appropriate people at the appropriate time in the appropriate place with the appropriate knowledge
and motivation. There are a large number of studies on this issue that are based on the top-down
perspective, i.e., the central entity manages the activity of the child entities (contemporary management
theories). Currently, the bottom-up approach is becoming increasingly popular, i.e., the entities manage
themselves (self-organization). These systems are the main focus of complexity theory, where we
comprehend hardly manageable systems as so-called complex systems, i.e., systems with a large
number of elements, self-organization, self-similarity at different levels of abstraction, and emergence.
With the theory of complex systems is possible to explore arbitrary socio-technical systems from
different degrees of imposed tension (e.g., workload, tasks, and mental stress) and analyse their
behaviour (e.g., the occurrence of self-similarity or self-organization). The tension can represent the
amount of work, tasks, goals, etc. Overall, it is possible to classify three distinct states of each system
based on the level of imposed tension (see Figure 2).
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Without tension (or with insufficient tension), the system gravitates to the equilibrium state with
maximum entropy, i.e., the system is usually dysfunctional or non-flexible. With increasing tension,
the system spontaneously tips over into the so-called zone of emergence, in which it starts adaptive
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processes that ensure optimal efficiency and performance of the system while changing the conditions
(environment). Examples of adaptive processes are innovation, patents, increased labour productivity,
business process optimization, and optimization of the organizational structure. The transition from
the equilibrium (inefficient) zone to the zone of emergence is widely called the edge of order (phase
transition, also known as the first critical value). Too much tension can also force the system to
become inoperable, because its elements cannot then respond sufficiently in a manner that is quick and
efficient, and usually, the system moves to the zone of chaos (deterministic or stochastic) and become
dysfunctional. The phase transition that indicates entry of the system into chaotic behaviour is often
called the edge of chaos (the second critical value). The amount of tension needed for the occurrence
of these phase transitions is variable and depends on the specific system and time. Factors that affect
these variables are the motivation, money, environment, ability to work in a team, qualification of
personnel, workspace optimization, etc. For example, a high motivation in the employees reduces
the amount of tension needed to transition the system into the zone of emergence (edge of order).
The higher abilities to work in a team and better organizations of work improve the robustness of the
system (increasing the amount of tension that the system is capable of resisting, push the edge of chaos
higher). It is apparent that a system should optimally be in the zone of emergence and should have the
lowest edge of order and the highest edge of chaos. The aim of this work is to propose an approach
(using an analysis of self-similarity) that could determine whether a system with a specific degree of
tension is situated in the zone of emergence. It also can find the borders of the zone of emergence (the
edge of order and the edge of chaos).

Why is it important to know whether a system is located in the zone of emergence? As mentioned
above, a system that is located in this zone is characterized by a number of properties that stimulate
creative activities and high motivation of the entities (elements of the system). This state is considered
to be desirable, with exceptions, such as strictly hierarchical or bureaucratic systems. Determination
of the exact boundaries of the zone of emergence would allow a quantitative assessment about the
current robustness of a socio-technical system. Usually, it is preferred to have a system with the first
critical value as low as possible because the elements of the system can enter the adaptive zone with
a lower amount of imposed tension. This arrangement ensures that the system is flexible enough
in the context of a higher-level system (e.g., the flexibility of a company in a competitive market
environment). The second critical value should be as high as possible because it ensures maximum
system performance without signs of chaotic behaviour. The first critical value represents an existential
condition for the development or survival of a specific system in a competitive environment (a value
above a certain limit would be destructive), and the second critical value indicates the ability of the
system to be the best in the industry (competitive advantage).

The issue of determining whether a system is in the zone of emergence is, in the context of this
work, addressed with Petri nets, Markov chains, the Rényi information dimension, and the generalized
Hurst exponent. As part of the proposed approach, the considered system is modelled using any type
of Petri net (Place Transition Petri nets, Timed Petri nets, Coloured Petri nets, etc.). In the context of
this work, the Place Transition (P/T) Petri nets are used. The next step is to determine the stationary
probabilities of the individual states (the markings of the Petri net) using an analytical approach that
performs a transformation to a Markov chain (for the lower class of Petri nets, e.g., P/T or timed) or
using simulation (for the higher class of Petri nets, e.g., Coloured). From the stationary probabilities,
we then quantify the Rényi information dimension and the generalized Hurst exponent, from whose
mutual relationship a decision is made about the borders (critical values) of the analysed system.
Figure 3 briefly represents the chronological process of the present approach.
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Currently, the quality of a socio-technical system is judged mostly on its ability to respond
to stimuli as soon as possible with the lowest possible cost. The general objective of maximizing
the output (e.g., the profit) can lead to a series of unexpected events that are difficult to predict.
One such event is the edge of chaos (or any other phase transition in a system), which indicates a
quantitative change in the behaviour or structure of a system that could have catastrophic consequences.
From biological systems, one can present examples, such as the extinction of a species or a population
extinction (e.g., logistic growth with harvesting). In economic systems, the consequences of such
quantitative changes would not be very catastrophic, but the psychological problems of workers
(susceptibility to error/bad decisions) or dysfunctional workspaces will lead to lower profits or loss
of a competitive advantage (in marginal cases, bankruptcy). A field that addresses these issues is,
for example, ASM (Abnormal Situation Management).

This article is structured as follows. The second section provides an overview of the current state
of all of the areas that are important for the purpose of this article. More specifically, the issue of
systems under tension and phase transitions, Petri nets, Hurst exponent, and fractal (information)
dimension. The third section contains the formal definition of the proposed approach, which starts
with modelling using any definition of Petri nets through the determination of stationary probabilities
to the quantification of individual characteristics (the fractal/information dimension and the Hurst
exponent). The fourth section provides an example that illustrates the approach of the complexity
analysis on a model example. The fifth section discusses the proposed approach, including a summary
of its advantages and disadvantages in the context of the current state of this issue. The final chapter
summarizes this article and outlines the possible future research in this area.

2. State of the Art

The issue of the appropriate settings for the parameters of a system (or the environment) touches
disciplines such as management (social science) and optimization (operational research). Depending on
the type and complexity of the system, it is possible to use various methods and models (analytical
vs. numerical, deterministic vs. stochastic, etc.). Currently, one of the most popular approaches is
the use of agent-based modelling, which is sufficiently robust for the analysis of complex systems.
Its disadvantage is an inability to implicitly verify the desired properties of the model and the
problematic interpretation of the simulation results. Another popular method that implicitly enable
us to verify the properties of the model is the use of Petri nets (see Section 2.4). Their disadvantage
is an exponential explosion (of system states), which makes it difficult to analyse larger models.
This paper presents an approach based on the analysis of socio-technical systems modelled by Petri
nets. A system can be seen from at least two different points of view. The first is the physical or logical
structure of the system, which reflects all of the elements of the system and their mutual connections.
During the systems analysis, usually the first step is to define all of the entities that the system contains
(people, documents, hardware, software, etc.). A second perspective on a system is its behaviour,
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i.e., its dynamic processes. The structure and behaviour of a system represent its static and dynamic
components, and in general, fully describe its existence. This paper works with the second viewpoint.
Examples from economic systems are, for example, the one-to-one variable pricing model [4] and
activity theory [5]. Examples from the analysis of abnormal situations are issues with humans [6] and
the prevention of such situations [7].

The following sections will provide a brief overview of the current state of knowledge in the
various areas of interest that are key to the proposed approach.

2.1. System under Tension, Critical Values and Phase Transitions

Usually, tension is imposed on the system to improve its performance [8]. An example of a
system can be, for example, a fuel boiler, where every unit of added fuel (at a given time) increases
its temperature (performance). However, each system is designed (by its nature or design) to have a
certain critical value that when reached, the system can stop (permanently or temporarily) fulfilling
the function for which it was designed or is used. For example, a fuel boiler could cause damage
or an explosion when a certain high temperature is reached. Systems with a biological component
have the advantage that they usually contain a larger number of critical values that they can adopt. In
such a system, when a certain critical value is reached, the system changes into a new state (through
self-organization), which can better withstand the imposed tension [9]. In general, two types of critical
values are used: the first critical value (edge of order) and the second critical value (edge of chaos).

The edge of order (the first critical value) usually represents a situation in which a system leaves
the existing order and passes in to a new order, which will comply better with the elements of the
system (the system is self-organized to its temporal optimal configuration). An example might be a
change to a certain technological process in manufacturing companies because of the inadequacy of
the original process or the response of an ecosystem to chemical waste (e.g., a change in the vegetation
to a more adaptable species). The first critical value is therefore a point at which the imposed tension
is dissolved through self-organization (phase transition to a more appropriate form of order).

The edge of chaos (the second critical value) represents a situation in which a system is no longer
capable of dissolving the imposed tension and becomes unusable (e.g., the abovementioned example
of the fuel boiler). The system is fading into chaos at this critical point. Between the first and second
critical values is the so-called zone of emergence (also called the melting zone), in which the imposed
tension initiates an adaptive process, which leads to improved structural and behavioural properties
of the system. The region of emergence should be as broad as possible, because the elements of the
system have greater space for adaptation (dissipation of the imposed tension). If the system is unable
to dissipate the imposed tension, its behaviour becomes chaotic, i.e., the system ceases to fulfil the
function for which it was designed. Prigogine and Stengers [10] found that if the energy exchange is
balanced and sufficiently intense, a surprising phenomenon occurs, i.e., the system goes to a higher
level of complexity. The characteristics of this transition are a crisis of energy exchanges and the
random effects of the chaos from the peripheral parts. The system attains new properties, structure,
and development. This finding means that all that is known about the system is no longer valid.

2.2. Complexity Measures

Excessive complexity could be a source of vulnerability and could cause reduced profitability or
loss of controllability, i.e., a higher complexity relates to a closer position of the system to the edge of
chaos, and vice versa. For the purposes of the negation of its impacts, it must be managed, and therefore
measured, in the first place. Managing the complexity in systems makes them less vulnerable and
more resilient [11]. Over the past ten years, the research area that addresses the measurement of
the process of non-functional characteristics has expanded. These non-functional characteristics
are, for example, the complexity [12,13], uncertainty [14,15], cohesion [16], and fairness [17].
These characteristics are used for the quantification of the system properties, such as user-friendliness,
usability, comprehensibility, and predictability [18]. Complexity measures are historically associated
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with the analysis of source code [19]. Over time, there developed a pressure for their theoretical
and empirical validation [20], which resulted in the improvement of the newly proposed measures.
At present, complexity analysis is widely used in connection with business process models [21].
The main common characteristics of complexity measures are their ability to quantify the complexity
using a single number that is generally taken from the interval (0, ∞). For example, the analysis of
complexity associated with the issue of information systems can be found, for example, in [22–24].
Other examples are production [25] or application management [26].

2.3. The Fractal (Information) Dimension

Self-similarity is one of the fundamental features of complex systems. Self-similarity is assessed
from the time perspective (autocorrelation) or spatial perspective (the roughness or granularity of
a system). Self-similarity in terms of time is usually associated with the analysis of a time series
(typically one-dimensional), and the spatial self-similarity is associated with geometric formations,
for example, multidimensional rugged objects. Self-similarity can be quantified by using the fractal
dimension. A classic Euclidean (integer) dimension represents how many real numbers are needed to
describe the specific geometric formation (or the real object). The fractal dimension can be calculated by
a number of methods, which historically have originated in the solution of specific issues, for example,
the measurement of coastline length [27]. An example might be a method based on a coastal coverage
with circles of radius η [28], an idea based on the coverage of the coast with a strip of width 2η [29] or
an approach working with the term ε-entropie [30]. Over time, more approaches for determination of
the fractal dimension have been defined. A comprehensive overview of the various ways to determine
the fractal dimension can be found in [31].

2.4. The Hurst Exponent

The Hurst exponent is used for the analysis of times series with a long memory. Historically, the
Hurst exponent was associated with Harold Edwin Hurst, who conducted an analysis of the Nile river,
and more accurately, he determined the optimal size for a dam based on historical data of precipitation
and drought [32]. In the field of fractal mathematics, this approach was generalized by Benoît
Mandelbrot [33], with which he defined a direct relationship to the fractal dimension. The generalized
Hurst exponent measures the behavioural randomness of a time series [34]. The values of the Hurst
exponent are from the interval <0, 1>, where the values from the interval <0.5, 1> evoke a time series
with a long-term positive autocorrelation, and the values from the interval <0, 0.5> evoke a time series
in which the values are regularly interspersed between large and small. A Hurst exponent that equals
0.5 represents a non-correlated time series.

The generalized Hurst exponent is defined as Hq, and it is possible to determine it when solving
the following equation:

〈|x(t + τ)− x(t)|q
〉〈

|x(t)|q
〉 ∼ τqHq , (1)

where τ represents a time delay, t represents time, x(t) represents the individual values of the time
series, and q is a constant (real number). An example of the generalized Hurst exponent used for
a solution of specific issues is, for example, the scaling of differently developed markets [35] or the
monitoring of unstable periods in a financial time series [36].

For self-similar processes, the following equation holds [33,37]:

D = n + 1− H (2)

where D represents the fractal dimension, n represents the number of dimensions (n-dimensional
space), and H represents the Hurst exponent.
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2.5. Petri Nets

Petri nets are a useful tool for the modelling and analysis of behavioural and structural properties
of discrete event dynamic systems. Petri nets were first developed by Carl Adam Petri [38],
who sparked their continuous development to the present. Petri nets have been developed for many
application, which has led to their specialization for modelling and analysis of specific systems and
issues. One of the routes pursuing the development of Petri nets was the definition of new structural
and behavioural characteristics that allow for verifying specific properties of the modelled system.
Examples of properties that are verified on Petri nets can be liveness, boundedness, reachability,
and fairness [39]. Verification of individual properties is usually analytical (for basic classes of
Petri nets, e.g., Place Transition Petri nets and Stochastic Petri nets) or based on simulation (for
higher classes of Petri nets, e.g., Coloured Petri nets). The other development path has followed
the expansion of the basic definition of Petri nets in such a way that their modelling power meets
specific requirements. An example would be timed and stochastic Petri nets, which allow for
improving the individual state changes by reference to time complexity—deterministically [40,41]
or stochastically [42]. Other examples are coloured Petri nets [43,44], which combine Petri nets
with another modelling language and thus significantly widen (and mainly simplify) the modelling
capabilities of the Petri nets. The main disadvantage of this second path is the fact that the verification
options are limited since most of the assumptions (properties) must be determined by using simulation.

3. Proposed Approach

The proposed approach is based on a series of steps that lead first from the modelling of a real
system/process with Petri nets, through mapping the Petri net model to a Markov chain and the
calculation of the stationary probabilities, to the quantification of the fractal (information) dimension
and the Hurst exponent. The following section presents the procedure for the quantification of the
abovementioned characteristics together with the restrictions that limit this approach.

3.1. The Quantification of Stationary Probabilities

In the context of this work, an analysis of complexity is presented on the basic definition of Petri
nets. In general, the definition of a Petri net can be freely modified (e.g., to higher classes), while the
procedure of the complexity analysis remains the same, i.e., the approach is universal to all of the
commonly used classes of Petri nets (Place/Transition, Stochastic, Generalized Stochastic, Timed,
Coloured, etc.). The first step is the modelling of a specific area in the system using the selected Petri
net definition [38]. This step include the classic Place/Transition Petri net [39], timed Petri net [40],
stochastic and generalized stochastic Petri net [42] or coloured Petri net [43]. Each definition requires
a different approach for the quantification of the stationary probabilities (of individual markings,
places or sub-markings), which are the inputs to the second phase of our approach (the second phase
is the same for all classes of Petri nets). For the basic Place/Transition, timed and stochastic Petri
nets exist an analytical approach for the calculation of stationary probabilities, and for the higher
classes (e.g., generalized stochastic Petri nets), simulation must be used to approximate the stationary
probabilities. In the following, we present the abbreviated procedure for the quantification of stationary
probabilities for Place/Transition Petri net models, which can be found in full in [17]. The procedure
for the quantification of the stationary probabilities for stochastic Petri nets can be found in [15].

A generalized Place/Transition Petri net is a 5-tuple, PN = (P, T, F, W, M0) where

P = { p1, p2, p3,, . . . , pk}—a finite set of places,
T = {t1, t2, t3, . . . , tl}—a finite set of transitions,
P ∩ T = ∅—places and transition are mutually disjoint sets,
F ⊆ (P× T) ∪ (T × P)—a set of edges,
W : F → N1 —a weight function that determines the multiplicity of edges,
M0 : P → N0 —an initial marking.
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Since there is an isomorphic relationship between the state space of the Petri net and a Markov
chain [45–47], it is possible to perform a mapping from the Petri net terminology to that of Markov
chains. The first step in defining the stationary probabilities in Place/Transition Petri nets is the
conversion of all reachable markings into the Markov chain. A Petri net in terms of Markov chains can
be expressed by using a transition matrix, as follows:

Let PN = (P, T, F, W, M0) be a Place/Transition Petri net, and R(M0) is its set of all reachable
markings. The transition matrix A of the PN is defined as

A : (R(M0)× R(M0))→ 〈0, 1〉 (3)

The transition matrix A is a right stochastic matrix, where the individual values correspond to the
following rules:

Ai,j =

0 @(t ∈ T) : Mi[t〉Mj
1
|Mj| ∃(t ∈ T) : Mi[t〉Mj

(4)

where
∣∣Mj

∣∣ represents the number of markings that are reachable from Mi. Thus, each branching in
the state space is assigned a uniform probability for the different paths. However, it is possible to
choose the probability for the different branches explicitly but with the condition ∑

|R(M0)|
j=1 Ai,j = 1.

The stationary probabilities of Place Transition Petri nets are calculated as follows:
Let PN = (P, T, F, W, M0) be a P/T Petri net, and let A be its transition matrix. A vector of

stationary probabilities u is defined as the left Eigenvector of the transition matrix A:

uA = u (5)

The vector u then contains the individual stationary probabilities of all reachable markings
from R(M0):

u =


Pr(M0)

Pr(M1)
...

Pr
(

M|R(M0)|

)
 (6)

When calculating the stationary probabilities, it is necessary to analyse the model liveness, since each
dead marking corresponds to an absorption state in terms of the Markov chain. Each absorption state
can always occur, i.e., its probability is equal to one, and therefore, the stationary probabilities of all other
reachable markings are equal to zero.

3.2. The Calculation of the Fractal (Information) Dimension

In this work, the definition of the generalized fractal (information) dimension [48] is used and is
defined as follows:

Dq =
1

q− 1
lim
r→0

log ∑i Prq
i

log r
(7)

where r denotes the distinctive precision, Pri is the probability of the i-th marking, and q is a constant
from the interval (−∞, ∞). Since the set of all stationary probabilities is finite, it is possible to adjust
the definition as follows:

Dq =
1

q− 1
log ∑i Prq

i
log n

(8)

where n denotes the number of all reachable markings.
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3.3. The Calculation of the Hurst Exponent

As mentioned previously, the Hurst exponent is used for the analysis of time series with a long
memory. For the purpose of the proposed approach, in the analysis of complexity, we use the definition
of the generalized Hurst exponent (1), which is modified to match the terminology of the generalized
fractal dimension. The generalized Hurst exponent Hq is defined for the purpose of this approach
as follows: 〈

|Pri+τ − Pri|q
〉〈

|Pri|q
〉 ∼ cτqHq , (9)

where Pri is the stationary probability of the i-th place, τ is the size of the time delay from the
interval

〈
1, m

2
〉
, where m represents the number of all reachable markings, and q and c are constants.

One possible solution for Hq is the application of a logarithm to both sides of Equation (9):

log

〈
|Pri+τ − Pri|q

〉〈
|Pri|q

〉 ∼ qHq log τ + log c, (10)

Then, we use a linear regression to determine the slope qHq, from which we obtain the value of
the generalized Hurst exponent.

3.4. The Calculation of the Equilibrium q∗

Between the definitions of the generalized fractal (information) dimension and the generalized
Hurst exponent exist a direct relationship (2). For self-similar processes, the following equality holds:
D = n + 1− H, which is useful for the purpose of this approach. It simplifies as follows:

Dq = 1− Hq (11)

The justification is that the stationary probabilities of the individual markings represent a finite
set of points, i.e., the 0-dimensional Euclidean space (n = 0).

For the calculation of the equilibrium q∗, i.e., the constant q from the definition of the generalized
Hurst exponent and generalized fractal dimension for which the abovementioned (11) equality holds,
we define the following recursive Algorithm 1:

Algorithm 1

FindQstar(u, q0, q∆)

q0+∆ = q0 + q∆
q0−∆ = q0 − q∆
i f q∆ < 0.01

exit algorithm (q∗ found with the accuracy0.01)

else i f
[(

Dq0 > 1− Hq0

)
and

(
Dq0+∆ > 1− Hq0+∆

)]
or
[(

Dq0 < 1− Hq0

)
and

(
Dq0+∆ < 1− Hq0+∆

)]
FindQstar

(
u, q0∗2+q∆

2 , q∆
2

)
else i f

[(
Dq0 > 1− Hq0

)
and

(
Dq0−∆ > 1− Hq0−∆

)]
or
[(

Dq0 < 1− Hq0

)
and

(
Dq0−∆ < 1− Hq0−∆

)]
FindQstar

(
u, q0∗2−q∆

2 , q∆
2

)
else i f q∆ > qmax

exit algorithm (q∗ not found)
else

FindQstar(u, q0, q∆ ∗ 2)
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This algorithm can be initiated by specifying the default q0 and the change q∆, e.g.,
FindQstar(u, q0 = 0.5, q∆ = 1000), where u represents the vector of the stationary probabilities.
The algorithm finds the constant q∗ to the nearest one-hundredth (it is possible to change the accuracy
in the algorithm). The algorithm looks for q∗ in the interval (q0 − qmax, q0 + qmax).

One can argue that if q is found, than the system exhibits the signs of self-similarity, and thus
apply the concepts of complex systems, i.e., the system should be situated in the zone of emergence.

4. Illustration of the Proposed Approach on an Example

In this section, we will illustrate the proposed approach of complexity analysis using a simple
example. Figure 4 illustrates an example that could represent a simple business process or a workflow
that represents a subset of the behavioural components of a sociotechnical system. The figure can
refer to, for example, the processing of an order or invoice, the approval process of loan applications,
or logistics.Entropy 2017, 19, 572  10 of 15 
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Figure 4. Simple example.

The example is modelled using the classical Place/Transition Petri net. The following are all of
the reachable markings in this model:

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

P1 2 1 0 1 1 0 0 1 0 0 0 0 0 0
P2 0 1 2 0 1 1 2 0 0 1 2 0 1 0
P3 0 1 2 0 1 1 2 0 0 1 2 0 1 0
P4 0 1 2 1 0 2 1 0 2 1 0 1 0 0
P5 0 0 0 1 0 1 0 1 2 1 0 2 1 2
P6 0 0 0 0 1 0 1 1 0 1 2 1 2 2

From all of the reachable markings are quantified their stationary probabilities (using the
procedure defined in the previous section). The stationary probabilities of the individual markings for
the presented model are as follows:

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

0.033 0.071 0.035 0.111 0.034 0.100 0.035 0.100 0.104 0.105 0.012 0.163 0.032 0.065
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From the calculated stationary probabilities are quantified the essential characteristics that are
specific to this approach, i.e., the fractal dimension, the Hurst exponent and the equilibrium q∗.
Figure 5 illustrates the size of the generalized fractal (information) dimension depending on the
changing constant q. The decreasing character of the generalized fractal dimension is given by the
growing constant q in Equation (9).
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Figure 5. The development of the fractal dimension (D) depending on the changing constant q.

Figure 6 shows the development of the generalized Hurst exponent depending on the constant q
(the Hurst exponent is not defined for q = 0, see Equation (10)).
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Figure 6. The development of the generalized Hurst exponent depending on the value of q.

The subsequent step is to find the equilibrium q∗, for which the equality in (11) holds. Figure 7
illustrates the process of finding the intersection between the generalized fractal dimension and the
right side of Equation (11), i.e., 1− H. Equilibrium has been found with the use of the abovementioned
algorithm for the case M(P1) = 2, where q∗ = −0.1543 and Dq∗ = 1− Hq∗ = 1.001. Thus, it can be
concluded that the model for two tokens at P1 indicates the signs of self-similarity (since equilibrium
was found).
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Next, it is possible to perform an analysis of the robustness in terms of self-similarity.
Figure 8 shows the evolution of the equilibrium q∗ when changing the number of tokens at P1.
The plot contains all of the situations for which the value of q∗ was found. In other cases, i.e.,
if M(P1) ∈ (0, 1 > ∪ < 18, ∞), there are no signs of self-similarity in the model (the equality D = 1−H
does not hold, for all q ∈ (−∞, ∞)).Entropy 2017, 19, 572  12 of 15 
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Figure 8. The development of q∗ when changing the number of tokens at P1.

These results suggest that the interval M(P1) ∈ 〈2, 17〉 corresponds to the zone of emergence in
this particular example (M(P1) = 2 represents the edge of order, and M(P1) = 17 is the edge of chaos).

5. Discussion

Complexity analysis in socio-technical systems provides valuable information about their inner
workings. Discrete event dynamic systems are one of the most widespread tools for modelling such
systems. A system is usually fully described by its structure and its behaviour. Individual dynamic
processes represent the relations and interactions between the various elements of the system (or the
surroundings of the system) and fully describe its behaviour. Identification and modelling of these
processes are among the most important phases of quality improvement in management and decision
making (e.g., for a company).

The approach defined in this work addresses the analysis of sociotechnical systems in terms of
their behaviour, i.e., the so-called behavioural analysis of complexity. Individual dynamical processes
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(e.g., business processes and workflows) and structures can contain repeating patterns, i.e., according to
their self-similarity, and we can determine the complexity of a dynamical system. Therefore, the more
self-similar the dynamic process is, the greater is its potential for simplification (repeating patterns
can be identified and the process adapted), i.e., its complexity can be reduced. The self-similarity
of a system (structural or behavioural) can be determined, for example, using fractal geometry,
whose toolbox provides a number of methods for the measurement of the so-called fractal dimension.
Other instruments for measuring the self-similarity in a system include the Hurst exponent. The other
methods for complexity analysis and its comparison are introduced in detail, for example, in our
previous work [15].

The dynamic processes that represent the behaviour of sociotechnical systems (or systems in
general) in the framework of the proposed approach are modelled using the appropriate class of Petri
nets, which constitute a useful tool for the modelling of discrete event dynamic systems. Based on the
calculated stationary probabilities (using an analytic approach or simulation) of all of the reachable
markings (or sub-markings), it is possible to quantify the abovementioned indicators (the fractal
dimension and the Hurst exponent) and decide on the self-similarity of a system. The tool for deciding
whether a given system is self-similar is the equality Dq = 1− Hq (for a 0-dimensional system with a
finite number of configurations). Through finding the equilibrium q∗ (see Figure 7), i.e., the constant, q,
where the abovementioned equality holds, it is possible to conclude that the system exhibits elements
of self-similarity.

Finding q∗ uses the analysis of the behavioural complexity of sociotechnical systems under tension.
The tension in a dynamic process model can be expressed as a number of tokens at key places, and
then analysed the development of the equilibrium q∗. It is possible to identify the critical values of the
modelled dynamic process where the system begins to show or ceases to show signs of self-similarity
(see Figure 8). All of the abovementioned cases have been presented on the simple example.

The advantages of the proposed approach are the following:

• A universal approach for the analysis of the behavioural complexity. Petri nets allow for
the modelling of an arbitrary dynamic discrete system. In addition, they have an exact
mathematical foundation that allows for verification of a broad number of structural and
behavioural characteristics.

• The possibility to analyse the behavioural complexity under tension. The possibility to find the
critical values of self-similarity.

The disadvantages of the proposed approach:

• The exponential complexity of the analytical approaches for Petri nets (this shortcoming can be
circumvented by simulation).

6. Conclusions

In this work, we have designed an approach that allows for analysing the behavioural
complexity in sociotechnical systems under tension. The behavioural complexity is analysed based
on self-similarity in the dynamic processes that represent the behaviour of sociotechnical systems.
Self-similarity in dynamic processes can be investigated with a number of tools. In this article,
self-similarity was analysed using the fractal (information) dimension and the Hurst exponent.
Based on the equality in (11), it is possible to determine the equilibrium q∗ and decide on the behaviour
of a system. If the equilibrium q∗ is found, then the system shows signs of self-similarity, and vice versa.
Based on this assumption, it is possible to analyse the model under tension and draw conclusions
about its behaviour under tension. In this way, it is possible to determine the limits of self-similarity
(the minimal and maximal number of tokens at a crucial place for which the system shows signs
of self-similarity).

The presented method allows for finding tension limits when the behaviour of the system becomes
chaotic. Knowing these limits can enable the optimum process design for the required system tension
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or for existing process leads to innovations. The presented approach for the analysis of complexity
in sociotechnical systems uses modelling with classical Place/Transition Petri nets. The number of
tokens on entry to the system represents the tension imposed on the system. The self-similarity of the
system has been established while changing the tension in the Petri net model. The presented example
has illustrated the approach for complexity analysis in sociotechnical systems under tension.

Future work will focus on the expansion of this approach using other tools that can analyse
complexity based on self-similarity or other features (e.g., an attractor in phase space, a disordered
state [49] or an agent-based simulation). This approach would ensure that the complexity analysis is
more robust (from different points of view) and in the case of agent based simulation also allow to
analyse other property of complex systems, the self-organization.
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