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Abstract: While the modern definition of entropy is genuinely probabilistic, in entropy production the
classical thermodynamic definition, as in heat transfer, is typically used. Here we explore the concept
of entropy production within stochastics and, particularly, two forms of entropy production in
logarithmic time, unconditionally (EPLT) or conditionally on the past and present having been
observed (CEPLT). We study the theoretical properties of both forms, in general and in application to
a broad set of stochastic processes. A main question investigated, related to model identification and
fitting from data, is how to estimate the entropy production from a time series. It turns out that there
is a link of the EPLT with the climacogram, and of the CEPLT with two additional tools introduced
here, namely the differenced climacogram and the climacospectrum. In particular, EPLT and CEPLT
are related to slopes of log-log plots of these tools, with the asymptotic slopes at the tails being most
important as they justify the emergence of scaling laws of second-order characteristics of stochastic
processes. As a real-world application, we use an extraordinary long time series of turbulent velocity
and show how a parsimonious stochastic model can be identified and fitted using the tools developed.

Keywords: entropy production; conditional entropy production; stochastic processes; scaling;
climacogram; turbulence

1. Introduction

Entropy was first recognized as a probabilistic concept in 1887 by Boltzmann [1], who established
a relationship of entropy with probabilities of statistical mechanical system states, thus explaining
the Second Law of Thermodynamics as the tendency of the system to run toward more probable
states. In 1948 Shannon [2] used an essentially similar, albeit more general, definition of entropy as
a probabilistic concept, a measure of information or, equivalently, uncertainty. In 1957 Jaynes [3]
introduced the principle of maximum entropy thus equipping the entropy concept with a powerful
tool for logical inference.

A decade later, probabilistic entropy and the principle of maximum entropy were used in
geophysical sciences and particularly hydrology, initially for parameter estimation of models [4]
and probability distributions [5]. Detailed reviews on the use of entropy in applications in hydrology,
and water and environmental engineering have been provided by Singh ([6,7] and more recently [8–11]).
Most applications of probabilistic entropy are static, disregarding time. In studying systems out of
the equilibrium, time should necessarily be involved (e.g., [12]) and the paths of the systems should be
inferred. The more recently developed, within non-equilibrium thermodynamics, extremum principles
of entropy production attempt to predict the most likely path of system evolution [13–15]. Central
among the latter are Prigogine’s minimum entropy production principle [16] and Ziegler’s maximum
entropy production principle [17,18].

Entropy production in thermodynamic systems is typically defined in terms of the derivative
of entropy with respect to time, while the entropy flux in open systems is also considered. Niven
and Ozawa [19] provide a general definition of entropy production along with a brief review of
applications of extremum principles in geophysics and particularly hydrology. It can be seen that in
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these applications, the entropy concept is typically used with its classical thermodynamic definition
and in deterministic terms, without reference to its modern probabilistic definition.

Deterministic descriptions of the evolution of uncertain physical and geophysical systems are
generally inefficient [20,21], while a much more powerful alternative is offered by stochastics. The term
‘stochastics’ describes the mathematics of random variables and stochastic processes, and comprises
probability theory, statistics and stochastic processes. While the entropy concept is well defined within
stochastics, the entropy production does not have a scientifically mature definition. By analogy to
classical thermodynamic versions, we may define entropy production in stochastics as the derivative
of (probabilistic) entropy with respect to time. As here we deal with a single stochastic process and not
with interaction of many processes, there are no entropy fluxes and, thus, entropy production should
merely rely on the time derivative of entropy. In an earlier study [22], the derivative with respect to
the logarithm of time was introduced and termed ‘entropy production in logarithmic time’ (EPLT).
Differentiation with respect to the logarithm of time has some attractive elements, such as:

• It is dimensionless as d(ln t) = dt/t and thus, given that entropy is a dimensionless quantity per
se (see next section), the EPLT remains a dimensionless quantity.

• It is consistent with the notion of the ‘arrow of time’. Usually entropy per se is related to the time
asymmetry and the Second Law is regarded as the origin of the arrow. However, it may be simpler
to think that it is the action of observation that creates time asymmetry. In this respect, we can set
t = 0 for the observation time, i.e., the present, while t < 0 denotes the observable past and t > 0
denotes the unknown future. The fact that the past is observable, but the future not, generates
the asymmetry. It is clarified that when the future becomes observable, it is no longer future;
rather it has become present or past. Once the future (t > 0) is treated separately from the past,
it is legitimate to differentiate with respect to the logarithm of time.

• It makes extremization of entropy production easier, particularly for asymptotic times t→ 0 and
t → ∞, as it avoids infinite or zero values of entropy production [22]; indeed, the asymptotic
values of EPLT are always bounded (see Section 2.4).

• It provides the means to study or even explain the scaling behaviour often observed in geophysical
processes (see Sections 2.2 and 2.4).

Here we advance the study of the EPLT concept, with particular emphasis on the conditional
entropy production (CEPLT), when the past and present have been observed (Section 2.2). The theoretical
properties of EPLT and CEPLT are studied in a general setting and in application to a broad set of
specific types of stochastic processes (Sections 3.1 and 3.2). A main question studied is how the entropy
production can be estimated from time series, i.e., realizations of stochastic processes. It turns out that
there is a strong link of the EPLT with the climacogram, with the slope of a log-log plot of the latter
representing the EPLT. Further, we introduce two new tools, additional to the climacogram and based
on it, the differenced climacogram and the climacospectrum, where the latter has properties similar
to those of the power spectrum. The slope of a log-log plot of either of the two additional tools can
be used as an estimator of CEPLT. Of particular importance are the asymptotic slopes for time scale
tending to zero or infinity (Section 3.3). To illustrate the theoretical and empirical properties of EPLT
and CEPLT using real-world data and to test the applicability of the specific models proposed, a long
time series of very fine resolution is needed in order to allow viewing the real-world behaviour at
the far-left and the far-right tails. Fine resolution measurements of turbulence can provide an ideal test
series and indeed a time series of length 36 × 106 of turbulent velocities is utilized for illustration and
testing (Section 3.4).

To avoid bothering the reader with derivations and theoretical details, most of them have been
put in a series of annexed sections organized as Appendix A.1. In addition, the details of the specific
stochastic models and their behaviour have been grouped in Appendix A.2. While the two appendices
are made in a stand-alone form separate from the body of the article, they are perhaps the most
essential part of the study.
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2. Methods

2.1. General Context

The evolution of a system state x over time t is usually represented as a trajectory x(t), but such
a description is often inefficient. Instead, the evolution can be represented as a stochastic process x(t),
which is a collection of (infinitely many) random variables x indexed by t. A realization (sample) x(t)
of x(t) is a trajectory; if it is known at certain points ti, i = 1, 2, . . . , the realization is called a time series.

A random variable x is an abstract mathematical entity associated with a probability density
(or mass) function f (x); the realizations x of x belong to a set of possible numerical values. Notice
the different notation of random variables and hence stochastic processes (underlined, according to
the Dutch notation [23]) from regular ones.

Most natural processes evolve in continuous time but they are observed in discrete time, typically
by averaging. Accordingly, the stochastic processes devised to represent the natural processes should
evolve in continuous time and be converted into discrete time, as illustrated in Figure 1.
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Figure 1. Explanatory sketch for a stochastic process in continuous time and in discrete time. Note that
the graphs display a realization of the process (it is impossible to display the process as such) while
the notation is for the process per se (adapted from [24]).

While a stochastic process denotes, by conception, change (process = a series of changes), there
should be some properties that are unchanged in time. This implies the concept of stationarity [25],
which is central in stochastics. According to Kolmogorov’s definition [26], a stochastic process x(t)
is stationary if the distributions of (x(t1), x(t2), . . . , x(tn)) and (x(t1 + τ), x(t2 + τ), . . . , x(tn + τ))

coincide for any n, t1, t2, . . . , tn, τ. By negation, in a nonstationary process the probability density
f (x(t1), x(t2), . . . , x(tn)) for some (or all) τ is not equal to f (x(t1 + τ), x(t2 + τ), . . . , x(tn + τ)), which
means that the mathematical expression of the latter should explicitly contain the time shift τ, or else
that it should be a deterministic function of τ.

Stationarity is closely related to ergodicity, which in turn is a prerequisite to make inference
from data, that is, induction. Within the stochastics domain ([20,27] (p. 427)) ergodicity is defined in
the following manner: A stochastic process x(t) is ergodic if the time average of any function g(x(t)),
as time tends to infinity, equals the true (ensemble) expectation E[g(x(t))]. This allows the estimation
(i.e., approximate calculation) of the true but unknown quantity E[g(x(t))] (e.g., the true average
E[x(t)]) from the available data, i.e., from the sample mean). Without stationarity there is no ergodicity
and without ergodicity inference from data is impossible. More details about stationarity and ergodicity,
and their importance, are provided by Koutsoyiannis and Montanari [25], along with highlights of
the misconceptions and abuses of these concepts which abound in the literature.

For the remaining part of this article, unless otherwise stated, the processes are assumed to be
stationary and ergodic, noting that nonstationary processes should be converted to stationary before
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their study. For example, the cumulative process X(t) in Figure 1 is nonstationary, but by differentiating
it in time we obtain the stationary process x(t).

Without loss of generality we assume that the mean of the process x(t) is zero (E[x(t)] = 0) and we
denote its variance as:

γ0 := Var[x(t)] (1)

Let:
Γ(t) := Var[X(t)], γ(k) := Var[(1/k)(X(t + k) − X(t))] = Γ(k)/k2 (2)

be the variances of the cumulative and the averaged process, respectively (note that Γ(0) = 0 and
γ(0) = γ0). While Γ(t), the variance of the nonstationary process X(t), is a function of t, γ(k) is
the variance of the stationary process x(k)τ , i.e., γ(k) = Var[x(k)τ ] and thus it is not a function of time
τ. We call Γ(t) and γ(k), as functions of time t and time scale k, the cumulative climacogram and
the climacogram of the process, respectively.

The climacogram is the second central moment of the process, as a function of time scale, and
thus it is a second-order characteristic of the process. Other customary second order characteristics
of a stationary process are the autocovariance function c(h), where h denotes time lag, the power
spectrum s(w), where w denotes frequency, and the structure function v(h) (also known, for a stationary
process, as the semivariogram or variogram). The latter has a direct analogy based on the climacogram,
the climacostructure function ξ(k). Definitions and notation for these second order characteristics are
contained in Table 1 for the continuous time domain and in Table 2 for the discrete time case. All of
these functions are transformations of one another, as shown in Table 3.

The climacogram, like the autocovariance function, is a positive definite function (see proof in
Appendix A.1.2) but of the time scale k, rather than the time lag h. It is not as popular as the other
tools but it has several good properties due to its simplicity, close relationship to entropy (see below),
and more stable behaviour, which is an advantage in model identification and fitting from data.
In particular, when estimated from data, the climacogram behaves better than all other tools, which
involve high bias and statistical variation [24,28].

Table 1. Definition of main characteristics and notations for a stochastic process in continuous time;
see Figure 1 for clarification.

Name of Quantity or
Characteristic Symbol and Definition Remarks Equation

Stochastic process of interest x(t) Assumed stationary

Time, continuous t Dimensional quantity

Cumulative process X(t) :=
∫ t

0 x(ξ)dξ Nonstationary (3)

Variance, instantaneous γ0 := Var[x(t)] Constant (not a function of t) (4)

Cumulative climacogram Γ(t) := Var[X(t)] A function of t, Γ(0) = 0 (5)

Climacogram γ(k) := Var[(1/k)(X(t + k) − X(t))]
= Var[X(k)/k] = Γ(k)/k2 Not a function of t, γ(0) = γ0 (6)

Time scale, continuous k Units of time

Autocovariance function c(h) := Cov[x(t), x(t + h)] c(0) = γ0 (7)

Time lag, continuous h Units of time

Structure function (or
semivariogram or variogram) v(h) := 1

2 Var[x(t) − x(t + h)] (8)

Climacostructure function ξ(k) := γ0 − γ(k) (9)

Power spectrum (or spectral
density) s(w) := 4

∫ ∞
0 c(h) cos(2πwh)dh (10)

Frequency, continuous w = 1/k Units of inverse time (11)
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Table 2. Definition of main characteristics and notations for a stochastic process in discrete time and
their relationship with those in continuous time; see Figure 1 for clarification.

Name of Quantity or
Characteristic Symbol and Definition Remarks Equation

Stochastic process, discrete time
x(D)

τ := 1
D
∫ τD
(τ−1)D x(u)du =

1
D

(
X(τD)− X((τ − 1)D)

) (12)

Time unit = discretization time step D Time step or length of time
window of averaging

Time, discrete τ := t/D Dimensionless quantity,
integer (13)

Characteristic variance Var[ x(D)
τ ] = γ(D) (14)

Climacogram γ
(D)
κ := γ(κD) =

Γ(κD)

(κD)2 γ
(D)
1 = γ(D) (15)

Time scale, discrete κ := k/D Dimensionless quantity (16)

Autocovariance function c(D)
η := Cov[x(D)

τ , x(D)
τ+η] c(D)

0 = γ(D)

Time lag, discrete η := h/D Dimensionless quantity (17)

Structure function v(D)
η := γ(D)− c(D)

η (18)

Power spectrum
s(D)

d (ω) :=
1
D ∑∞

j=−∞ s
(

ω+j
D

)
sinc2(π(ω + j))

(19)

Frequency, discrete ω := wD = 1/κ Dimensionless quantity (20)

Note: In time-related quantities, Latin letters denote dimensional quantities and Greek letters dimensionless ones.
The Latin i, j, l may also be used as integers to denote quantities τ, η, κ, depending on the context.

Table 3. Relationships between several characteristics of a process in continuous and discrete time.

Related
Characteristics Direct Relationship Inverse Relationship Equation

γ(k)↔ c(h) γ(k) = 2
∫ 1

0 (1− χ)c(χk)dχ c(h) = 1
2

d2(h2γ(h))
dh2

(21)

s(w)↔ c(h) s(w) := 4
∫ ∞

0 c(h) cos(2πwh)dh c(h) =
∫ ∞

0 s(w) cos(2πwh)dw (22)

γ(k)↔ s(w) γ(k) =
∫ ∞

0 s(w) sinc2(πwk)dw s(w) := 2
∫ ∞

0
d2(h2γ(h))

dh2 cos(2πwh)dh (23)

v(h)↔ c(h) v(h) = γ0 − c(h) c(h) = v(∞)− v(h) (v(∞) = γ0) (24)

ξ(k)↔ γ(k) ξ(k) := γ0 − γ(k) γ(k) = ξ(∞) − ξ(k) (ξ(∞) = γ0) (25)

ξ(k)↔ v(h) ξ(k) = 2
∫ 1

0 (1− χ)v(χk)dχ v(h) = 1
2

d2(h2ξ(h))
dh2

(26)

γ
(D)
κ ≡ γ(κD)

↔ c(D)
η

γ
(D)
κ = 1

κ

(
c(D)

0 + 2 ∑κ−1
η=1
(
1− η

κ

)
c(D)

η

)
Alternatively, γ

(D)
κ =

Γ(κD)

(κD)2 where, in recursive

mode,
Γ(κD) = 2Γ((κ − 1)D)− Γ((κ − 2)D) + 2c(D)

j−1D2

with Γ(0) = 0, Γ(D) = c(D)
0 D2

c(D)
η = 1

D2

(
Γ(|η+1|D)+Γ

(
(|η−1|D

)
2 − Γ(|η|D)

)
(27)

c(D)
η ↔ s(D)

d (ω) s(D)
d (ω) = 2c(D)

0 + 4 ∑∞
η=1 c(D)

η cos(2πηω) c(D)
η =

∫ 1/2
0 s(D)

d (ω) cos(2πωη)dω (28)

v(D)
η ↔ c(D)

η v(D)
η = γ(D)− c(D)

η c(D)
η γ(D)− v(D)

η (29)

The climacogram involves bias too, but this can be determined analytically and included in
the estimation. Specifically, assuming that we have n observations of the averaged process x(k)i , at scale
k = κD, so that T = nk is the observation period (rounded off to an integer multiple of k), the standard
statistical estimator of variance has expected value:

E
[
γ̂(k)

]
= θ(k, T)γ(k) (30)

where θ is the bias correction coefficient, given by [22,24]:
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θ(k, T) =
1− γ(T)/γ(k)

1− k/T
=

1− (k/T)2Γ(T)/Γ(k)
1− k/T

(31)

It becomes clear from the above equations, which are valid for any process, that direct estimation
of the variance γ(k) for any time scale k, let alone that of the instantaneous process γ0, is not possible
merely from the data. We need to know the ratio γ(T)/γ(k) and thus we should assume a stochastic
model which evidently influences the estimation of γ(k). Once the model is assumed and its parameters
estimated based on the data, we can expand our calculations to estimate the variance for any time
scale, including that of the instantaneous scale γ0.

2.2. Entropy and Entropy Production

Historically entropy was introduced in thermodynamics but its rigorous definition was given
within probability theory. Thermodynamic and probabilistic entropy are regarded by many as different
concepts having in common only their name. However, here we embrace the view that they are
essentially the same thing, as has articulated elsewhere [29,30]. According to the latter interpretation,
the mathematical description of thermodynamic systems could be produced by the probabilistic
definition of entropy. As an example indicating how powerful this interpretation could be, the law
of phase change transition of water (Clausius-Clapeyron equation) has been produced in [30], with
impressive agreement with reality, by maximizing, in a formal probabilistic frame, the entropy, i.e.,
the total uncertainty about the state of a single molecule of water.

In this frame, entropy (often called Boltzmann-Gibbs-Shannon entropy to give credit to its pioneers
and distinguish it from other forms of generalized entropies) is a dimensionless measure of uncertainty
defined as follows:

• For a discrete random variable x with probability mass function Pj := P{x = xj}, j = 1, . . . , w:

Φ[x] := E[− ln Px] = −∑w
j = 1 Pj ln Pj (32)

• For a continuous random variable z with probability density function f (z):

Φ[x] := E
[
− ln

f (x)
m(x)

]
= −

∫ ∞

−∞
ln

f (x)
m(x)

f (x)dx (33)

where m(x) is the density of a background measure (usually Lebesgue, i.e., m(x) = 1, with
dimensions [x−1]).

Entropy acquires its importance from the principle of maximum entropy [3], which postulates
that the entropy of a random variable should be at maximum, under some conditions, formulated as
constraints, which incorporate the information that is given about this variable. Its physical counterpart,
the tendency of entropy to become maximal (Second Law of thermodynamics) is the driving force of
natural change.

The definition of the entropy of a stochastic process directly follows that of a random variable. Thus,
the entropy of the cumulative process X(t) with probability density function f (X; t) is a dimensionless
quantity defined as:

Φ [X(t)] := E
[
− ln

f (X; t)
m(X)

]
= −

∞∫
−∞

ln
f (X; t)
m(X)

f (X; t)dX (34)

In a stochastic process, which by definition involves time, it is natural to consider the change of
entropy in time. Intuitively, for the stochastic process X(t) we can define entropy production as the time
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derivative, i.e., Φ′[X(t)] := dΦ[X(t)]/dt. This has dimensions of inverse time. Koutsoyiannis [22] defined
the entropy production in logarithmic time (EPLT) as the derivative of entropy in logarithmic time:

φ(t) ≡ φ[X(t)] := Φ’[X(t)] t ≡ dΦ[X(t)]/d(lnt) (35)

and showed that it has some advantages over Φ’[x(t)] as described above.
Assuming that the background density is constant, m(X) ≡ m, and using simple constraints

related to the preservation of the mean and variance, the principle of maximum entropy yields that
the probability distribution of X will be Gaussian. For a Gaussian process the entropy depends on its
variance Γ(t) and is:

Φ[X(t)] = (1/2) ln(2πe Γ(t)/m2) (36)

Hence:
φ(t) = Γ’(t) t/2Γ(t) = 1+ γ’(t) t/2γ(t) (37)

Because of the simplicity of the Gaussian case, we are basing further analyses on that assumption,
noting that for large times, due to the Central Limit Theorem, the cumulative process X(t) will tend to
Gaussian, even if for the smallest scales it deviates from Gaussian.

A question arises whether φ(t) is a totally abstract concept useful for theoretical analyses only or
it can be related to data, and visualized or estimated from them. The reply is fortunate if, in addition,
we consider another concept, the log-log derivative (LLD) of a function f (x), formally expressed by:

f #(x) :=
d(ln f (x))

d(lnx)
=

x f ′(x)
f (x)

(38)

This is visualized as the (local) slope on the popular log-log plot (plot of log f (x) vs. log x). It is then
seen that (37) can be written as:

φ(t) = 1⁄2 Γ#(t) = 1 + 1⁄2 γ#(t) (39)

In other words, EPLT is visualized and estimated by the slope of a log-log plot of the climacogram.
The quantity φ(t) represents the entropy production when nothing is known (observed) about

the process realization. More interesting is the conditional EPLT (CEPLT, φC(t)) when the past (t < 0)
and the present (t = 0) are observed. In this case, instead of the unconditional variance Γ(t) we
should use a variance ΓC(t) conditional on the past and present. It has been shown [22,24] that for
a Markov process (see definition of the Markov process in Section 3.1 and its details in Appendix A.2.1),
the conditional variance is:

ΓC(t) ≈ 2Γ(t)− Γ(2t)
2

, γC(k) ≈ 2(γ(k)− γ(2k)) (40)

We note that the difference γ(k) − γ(2k) is always nonnegative (this is shown in Appendix A.1.3,
Equation (A21)) and thus it can indeed represent a (conditional) variance.

For a non-Markov process the following adaptation is necessary:

γC(k) = ε(γ(k) –γ(2k)) (41)

where ε is a constant, ensuring that as k → ∞, γC(k)/γ(k)→ 1 ; the rationale of this limit is that
the information about the past and present will tend not to affect the far distant future. As shown in
the Appendix A.1.4, its value is:

ε =
1

1− 2γ#(∞)
(42)

It is easily verified that for a Markov process in which γ#(∞) = −1 (see Appendix A.2.1), ε = 2,
while for a Hurst-Kolmogorov process (original or filtered; see details in [24], in next session and in
Appendix A.2) for which γ#(∞) = 2H − 2, ε = 1/

(
1− 22H−2), where H is the Hurst parameter.
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Due to its mathematical form, we will refer to γC(k) as the differenced climacogram. The inverse
transformation, i.e., that giving the climacogram γ(k) once the differenced climacogram γC(k) is
known, can be easily deduced by iterative evaluations also observing that γ(∞) = γC(∞) = 0 (this
is a necessary condition in order for a stochastic process to be ergodic [27] (p. 429)) and takes both
the following forms:

γ(k) =
1
ε

∞

∑
i=0

γC

(
2ik
)
= γ(0)− 1

ε

∞

∑
i=1

γC

(
2−ik

)
(43)

whereas for numerical evaluations it should be kept in mind that for large time scales k, γ(k) ≈ γC(k).
Note that (43) entails:

γ(0) =
1
ε

∞

∑
i=−∞

γC

(
2ik
)

(44)

and this is valid for any k. The importance of the differenced climacogram stems from the fact that it is
directly related to the CEPLT, through its obvious relationship (similar to (39)):

ϕC(k) = 1 + 1/2γ#
C(k) (45)

As the differenced climacogram can be easily visualized from data, because it only needs calculation of
variances, it directly provides a means for estimation and visualization of the CEPLT in terms of the
slope in a log-log plot of the differenced climacogram.

In Appendix A.1.5 it is shown that the asymptotic properties of γC(k) are:

γC(0) = γC(∞) = 0, γ#
C(0) = ξ#(0), γ#

C(∞) = γ#(∞) (46)

In other words, we need both the climacogram γ(k) and the climacostructure function ξ(k) to express
the asymptotic behaviour of γC(k). Once this is known, the asymptotic behaviour of CEPLT is also
known from (45).

As shown in Appendix A.1.6, the differenced climacogram for persistent processes (see their
definition in next subsection) is not integrable in (0, ∞). However, by slightly changing it multiplying
with k, we can obtain an additional tool which is integrable and has some additional good properties.
Specifically, we introduce the following tool, which, as we will see next, resembles the power spectrum
and thus we refer to it as the climacospectrum:

ζ(k) :=
k
(
γ(k)− γ(2k)

)
ln 2

(47)

The climacospectrum is also written in an alternative manner in terms of frequency w = 1/k:

ζ̃(w) := ζ(1/w) =
γ(1/w)− γ(2/w)

(ln 2)w
(48)

The inverse transformation, i.e., that giving the climacogram γ(k) once the climacospectrum ζ(k) is
known, can be easily deduced with the same method as before, and takes the form:

γ(k) = ln 2
∞

∑
i=0

ζ
(
2ik
)

2ik
= γ(0)− ln 2

∞

∑
i=1

ζ
(
2−ik

)
2−ik

(49)

A very good approximation in which the sum is replaced by an integral, is:

γ(k) ≈ (ε ln 2)k + 2
2k + 2

I(k), I(k) :=
∞∫

k

ζ(x)
x2 dx =

1/k∫
0

ζ̃(w)dw (50)
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This holds for all k and its details are given in Appendix A.1.7. For small k, it is easy to see
that the multiplier of the integral I(k) is 1. It follows that for small time scales k or large frequencies
w = 1/k the climacospectrum, expressed in terms of frequency, has an area I(k) on the left of w equal to
the variance γ(1/w). As shown in Appendix A.1.6, the entire area under the curve ζ̃(w) (i.e., I(0)) is
precisely equal to the variance γ(0) of the instantaneous process, a property also shared by the power
spectrum s(w). This is not the only connection with the power spectrum. The climacospectrum has
also the same asymptotic behaviour with the power spectrum, i.e.,

ζ̃#(0) = −ζ#(∞) = s#(0), ζ̃#(∞) = −ζ#(0) = s#(∞) (51)

(see Appendix A.1.9). This property holds almost always, with the exception of the cases where ζ#(0)
is a specific integer (ζ#(∞) = −1 or ζ#(0) = 3, as explained in Appendix A.1.9).

Again the connection of the climacospectrum with the CEPLT emerges through log-log derivatives.
Specifically, combining (41), (45) and (47) we find that ζ#(k) = 1 + γ#

C(k) = 1 + 2ϕC(k)− 2; hence:

ϕC(k) = 1/2
(

1 + ζ#(k)
)
= 1/2

(
1− ζ̃#(1/k)

)
(52)

By virtue of (51) and with the exceptions mentioned, the asymptotic CEPLT can also be inferred from
the slopes of the power spectrum and, as the climacospectrum slopes do not differ substantially from
those of the power spectrum even for intermediate time scales, the power spectrum slopes could also
be used for a qualitative estimation if the CEPLT.

Obviously, however, the climacospectrum is more advantageous than the power spectrum in
this respect, because the connection with conditional entropy production is more precise and without
exceptions at all. In addition, intuitively the variance, on which the definition of the climacospectrum
is based, is more closely related to uncertainty, and hence entropy of the process, than the power
spectrum and the autocovariance. Other advantages are the easy calculation only using the concept of
variance, without any need to perform laborious transformations (such as Fourier) and the fact that,
like the climacogram, it is not affected by discretization (while autocovariance and power spectrum are).
The empirical climacogram and climacospectrum are easily determined from data using nothing more
than the standard statistical estimator of variance and they have a smooth shape, much smoother than
those of the empirical autocovariance and power spectrum, thus enabling better model identification
and fitting.

When the objective is the model fitting, we should be aware that any of the statistical tools
entail estimation bias, which should be accounted for in the fitting. Again the climacogram and
the climacospectrum are preferable than other tools as the bias is explicitly calculated from the assumed
model (Equations (30) and (31)). In particular, the bias of the climacospectrum is usually very small (see
the relevant graphs in Appendix A.2) because of its definition as a difference of two variances, in which
the biases tend to cancel out. In comparison with another version of climacogram-based spectrum [24],
the climacospectrum introduced here has advantages. Namely, these are its simpler expression, as it is
a linear transformation (difference) of the climacogram, and the absence of the variance γ0 ≡ γ(0) from
the definition, which makes possible the calculation of the empirical climacospectrum prior to specifying
the model (note that γ0 is not known before a model is specified and its parameters are estimated).

2.3. Scaling

In the previous subsection we have shown that the EPLT and the CEPLT are related to LLDs or
slopes of log-log plots of second order tools such as climacogram, climacospectrum, power spectrum,
etc. With a few exceptions, these slopes are nonzero asymptotically, hence entailing asymptotic scaling
or asymptotic power laws with the LLDs being the scaling exponents. It is intuitive to expect that
an emerging asymptotic scaling law would provide a good approximation of the true law for a range
of scales. If the scaling law was appropriate for the entire range of scales, then we would have a simple
scaling law. Such simple scaling sounds attractive from a mathematical point of view, but, for reasons
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that will be explained in the next subsection, it turns out to be impossible to make it appropriate for
physical processes.

It is thus physically more realistic to expect two different types of asymptotic scaling laws, one
in each of the ends of the continuum of scales. We call these two behaviours local scaling or fractal
behaviour, when k→ 0 or w→ ∞, and global scaling, persistence or Hurst-Kolmogorov behaviour,
when k→ ∞ or w→ 0. The respective scaling exponents are (see Appendix A.1.8):

• For local scaling: γ#
C(0) = ξ#(0) = v#(0) = ζ#(0)− 1 = 2ϕC(0)− 2 = −s#(∞)− 1

• For global scaling: γ#
C(∞) = γ#(∞) = c#(∞) = ζ#(∞)− 1 = 2ϕC(∞)− 2 = −s#(0)− 1

Here, the emergence of scaling has been related to maximum entropy considerations, and this
may provide the theoretical background in modelling complex natural processes by such scaling
laws. However, as shown in Appendix A.1.8, scaling laws are a mathematical necessity and could
be constructed for virtually any continuous function defined in (0, ∞). In other words, there is no
magic in power laws, except that they are, logically and mathematically, a necessity. (No assumption
of criticality, self-organization, fractal or multi-fractal generating mechanisms, is necessary to justify
their emergence). Here we have focused on second order characteristics of a stochastic process. If we
also considered higher order (raw) moments, it is natural to expect that some other (different) power
laws would emerge (or could be constructed using the procedure described in Appendix A.1.8), and
then one would speak about multifractals everywhere, etc.

2.4. Bounds of Scaling and Entropy Production

It is not well known that the asymptotic scaling exponents cannot take on any arbitrary values
but they should be constrained in rather narrow ranges. Instead, misconceptions and incorrect
applications resulting in inconsistent values abound in the literature. One of the most typical examples
is the asymptotic scaling of the power spectrum for w→ 0, for which often steep slopes are reported
for low frequencies (down to 0), based on data analyses. Usually these reports are accompanied with
a claim that the process with −s#(0) > 1 is nonstationary, going further to characterize the power
spectrum as a tool to identify whether a process is stationary or nonstationary (with values −s#(0)
below or above 1 suggesting stationarity and nonstationarity, respectively). As thoroughly studied
elsewhere [31], this entire line of thought is theoretically inconsistent and flawed, while such results
often reported are usually artefacts due to insufficient data or inadequate estimation algorithms.
In fact, it has been shown [31] that a process with −s#(0) > 1 is nonergodic. Inference from data
is only possible when the process is ergodic and thus, claiming that −s#(0) > 1 based on data is
self-contradictory. Furthermore, claiming nonstationarity using the power spectrum as a function
of frequency is also self-contradictory as in a nonstationary process both the autocovariance and
the spectral density, i.e., the Fourier transform of the autocovariance, are functions of two variables,
one being related to “absolute” time (see e.g., [32]).

An example of the conditions leading to misinterpreting a stationary process as nonstationary is
discussed in Section 3.3 and Appendix A.2.2. We must clarify though that steep slopes (–s#(w) > 1)
are mathematically and physically possible for medium and large w (see, e.g., Figure A7) and indeed
they are quite frequent in geophysical and other processes. In this respect, the estimation from data of
steep slopes is possible and not problematic, if we are conscious that such slopes are for intermediate
or large frequencies (actually, the estimation algorithms are bandpass filtered with the bounds of
the filter determined by the resolution and length of the series). The problem arises when such slopes
are interpreted as asymptotic ones and particularly when they are used for inference resulting in
self-contradicting conclusions.

Because of the equality of slopes of power spectrum and climacospectrum, the ergodicity
limitation holds also for the slope of the climacospectrum, i.e., ζ#(∞) = −ζ̃#(0) < 1. On the other
hand, too steep negative asymptotic slopes of the climacospectrum are also impossible. Indeed,
ζ#(k) = −ζ̃#(1/k) < −1 would entail (because of (52)) ϕC(k) < 0 and (because of (37) and (45)),
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Γ′C(k) < 0. This means that the variance of the cumulative process would be a decreasing function of
time, which is absurd. This holds both for the global case (k→ ∞, in which the conditional variance
ΓC(∞) equals the unconditional Γ(∞)) and the local case (k→ 0, for the conditional variance ΓC(0)).

However, in the local case there is a more severe limitation imposed by physical reasoning.
As demonstrated in Appendix A.1.10, the case ζ#(0) = −s#(∞) < 1 would entail infinite variance.
Infinite variance would require infinite energy to emerge, which is physically inconsistent. Therefore,
the physical lower limit for ζ#(0) = −s#(∞) is 1. Interestingly, the inconsistency if this constraint
is violated stems from the behaviour at high frequencies (see Appendix A.1.10), even though the
power spectrum at high frequencies in such cases tends to zero rather diverging to infinity. Therefore,
the related “catastrophe” is of “ultraviolet” type, while the infinite value of the power spectrum at
low frequencies, which was highlighted in several texts as “infrared catastrophe” [33] is not actually
a problem at all, nor does it impose any limitation on the scaling law additional to the limitation for
ergodicity discussed above.

A final—and quite severe—limitation is an upper bound of the local scaling exponent, which is 3
for ζ#(0) = −s#(∞). Proof is provided in Appendix A.1.11. The problem if this limitation is violated is
that the resulting autocovariance function is not positive definite or, equivalently, that the resulting
power spectrum is not always (for any frequency w) positive but takes on negative values for some w.
Likewise, the Fourier transform of the climacogram takes on negative values for some w.

Because of the relationship of the entropy production with the scaling exponents, the bounds on
the spectrum slopes translate directly into bounds of the CEPLT, i.e., 1 ≤ ϕC(0) ≤ 2 and 0 ≤ ϕC(∞) ≤ 1.
These define the “green square” of admissible values of ϕC in Figure 2, which is also depicted in terms
of admissible values of slopes ζ# and s# (noting that, as discussed above, s# can, by exception, take on
values out of the square when ϕC(0) = 2 or ϕC(∞) = 0. The reasons why a process out of the square
would be impossible or inconsistent, as discussed above, are also marked in Figure 2.
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admissible region (note that s# can, by exception, take on values out of the square when ϕC(0) = 2 or
ϕC(∞) = 0). The reasons why a process out of the square would be impossible or inconsistent are also
marked. The lines ϕC(0) = 3/2 and ϕC(∞) = 1/2 represent neutrality and support the classification of
stochastic processes into the indicated four categories (smaller squares within the “green square”).

Large values of ϕC(0) indicate a smooth process and small ones a rough process. Also, large
values of ϕC(∞) indicate a persistent process and small ones an antipersistent process. The centre of
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the square, with coordinates ϕC(0) = 3/2, ϕC(∞) = 1/2 represents a neutral process. As will be seen
in next section, neutrality corresponds to a Markov process, which is neither rough nor smooth, and
neither antipersistent nor persistent. Even though sometimes it is said to reflect short-term persistence,
we must have in mind that a discretized Markov process at time scale k tends to be uncorrelated in time
as k increases and therefore we may not have it in mind as persistent. In other words, here persistence
is used as synonymous to long-term persistence, while high autocorrelations at small lags or scales,
which die off at large lags or scales, are better described with the term smoothness. Both smoothness
and persistence reflect high entropy production, locally and globally, respectively.

A useful observation in Figure 2 is that the entire “green square” lies below the equality line, which
means that the same scaling exponent is not possible for both local and global behaviour, or else, it is
impossible to have a physically realistic simple scaling process. There is one exception, the upper-left
corner of the “green square”, which corresponds to the so-called “pink noise” or “1/f noise” and will
be discussed further in Section 3.3.

Since we have pointed out several inconsistent or contradictory results that are reported in
the literature, it may be useful to mention another case, which is frequently met in geostatistics.
The so-called intrinsic models are common in geostatistics but susceptible to inconsistent use, even
though the literature presents them as nonstationary to avoid some of the emerging problems. Such
models are defined in terms of their structure function (variogram), v(h), which tends to infinity as lag
h tends to infinity (e.g., [34]). An example is vI(h) = a hb with b > 0, in which we note that its formulation
with respect to a single scalar argument, h, does not reveal the nonstationarity. Thus, it may be treated
as if it was stationary. In that case, from (24) we have γ0 = vI(∞) = ∞ and thus the intrinsic
process violates the constraint for physical consistency. Moreover, since vI(h) = γ0 − c(h) < ∞
for h < ∞, it turns out that c(h) = ∞ for any h and, hence, (21) entails that γ(k) = ∞ for any k.
In other words, the infinity of vI(∞) is transferred to the entire autocorrelation function and the
entire climacogram. In particular, the property γ(k) = ∞ means that the process is non-ergodic (in
ergodic processes γ(k) should tend to zero as k tends to infinity; see [27] (p. 429)). Thus, in addition
to being physically inconsistent such a treatment of the process is mathematically inconsistent and
logically self-contradictory. A consistent way of treatment is to identify the intrinsic process with
the (nonstationary) cumulative process X(t) [35], derive the stationary process x(t) and treat the latter
further regularly. In that case the variogram is no longer related to the structure function of x(t) but to
its climacogram; namely, it is identical to the cumulative climacogram vI(h) = Γ(h) = γ(h) h2.

Another peculiarity in geostatisical analyses is the so-called “nugget effect”, which is also
problematic or enigmatic [36]. Namely, this is a discontinuity of the structure function at the origin.
An example is vE(h) = a (h +c)b, h > 0, with c, b > 0, while vE(0) = 0. Investigation shows that the “nugget
effect” does not necessarily create inconsistency. It is obviously associated with an infinite derivative
of the structure function at the origin, i.e., v′(0) = ∞. However, the LLD, v#(h) = v′(h)h/v(h)
can be finite at the limit as h → 0 (because of the multiplication by h). Therefore, the resulting
ϕC(0) = 1 + v#(0)/2 does not necessarily lie out of the “green square”.

Figure 3 illustrates both the “intrinsic” case and the “nugget effect” and provides hints how
to avoid both, adopting much better modelling alternatives. The above example of vE(h) was used
with parameters indicated in the figure caption. It is easy to find that a FHK-C model which is both
persistent (H = 0.75 > 1/2 ) and rough (M = 0.2 < 1/2 ) can replace the vE(h) and be used further.

Conversely, we can imagine that in the model identification and fitting of vE(h), persistence was
regarded as an “intrinsic” characteristic and roughness was interpreted as “nugget effect”. Note that
because M < 1/2, v′(h) = −c′(h) = ∞. Thus, a rough process seems like if it exhibited the “nuggest
effect”. However, if instead of the standard plot of the variogram, a logarithmic plot was made (also
shown in Figure 3 with respect to the upper horizontal axis), then the “nugget” would disappear.
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Figure 3. A power type variogram model with “nugget effect” (green dotted line), with equation
vE(h) = 0.83 (h + 0.05)0.03 (corresponding to a “nugget” value v(0) = 0.83 (0.05)0.03 = 0.76) and its
replacement with a FHK-C model with H = 0.75 and M = 0.2.

3. Results

3.1. Revisiting Earlier Results

In an earlier study (already mentioned, [22]) on subjects related to the present one, it was suggested
that extremization of EPLT in a continuous time representation could determine the entire dependence
structure of the process of interest based on simple constraints. The specific premises for EPLT
extremization were:

(a) Lebesgue background measure;
(b) constrained mean µ and variance γ(1) at a specified (observation) time scale;
(c) constrained lag-one autocorrelation ρ at the specified time scale;
(d) an inequality constraint φC(t) ≥ φ(t) to ensure physical realism as, naturally, by observing

the present and past state of a process, the future entropy is reduced, whereas as t → ∞
conditional and unconditional entropies should tend to be equal, which, however, cannot happen
if the entropy production is consistently lower in the conditional than in the unconditional case;

(e) extremization of entropy production at asymptotic time scales, i.e., t→ 0 and t→ ∞.

These premises after systematic analyses resulted in two processes extremizing entropy production:

• A Markov process:

c(h) = λe−h/α, γ(k) =
2λ

k/α

(
1− 1− e−k/α

k/α

)
(53)

maximizes entropy production for small times (t→ 0) but minimizes it for large times (t→ ∞).
• A Hurst-Kolmogorov (HK) process:

γ(k) = λ(α/k)2−2H (54)

maximizes entropy production for large times (t→ ∞) but minimizes it for small times (t→ 0).

In these definitions α and λ are scale parameters with dimensions of [t] and [x2], respectively.
The parameter H, known as the Hurst parameter, determines the global properties of the process with
the notable property:

H = ϕ(∞) = ϕC(∞) (55)

Here we revisit these results as well as the premises, in light of the theoretical analyses of
the previous section and incorporating empirical experience based on various data sets. These allow
the following notes:
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1. The minimal entropy production of the HK process at small times may not be plausible for
complex processes; rather we should generally expect that complex processes maximize entropy
production at both small and large times (asymptotically as t→ 0 and ∞).

2. The HK process is characterized by infinite variance (γ(0) = ∞), which, as discussed in
the previous section, makes it physically inconsistent.

3. The premise φC(t) ≥ φ(t) should certainly hold asymptotically (for t→ 0 and t→ ∞) but not
necessarily at intermediate times. A specific example is the process shown in Figure 4h which
includes a periodic component where the curve of φC(t) intersects that of φ(t) (the latter is
not shown in the figure), even though asymptotically the inequality holds. It can thus be
conjectured that if a process incorporates a deterministic component (e.g., periodic) while it is
treated stochastically without separating the deterministic component, the inequality for EPLT
and CEPLT could be violated at intermediate times.

4. While the Markov process represents the maximal EPLT as t → 0 (φ(0) = 1), this property is
shared by many other processes (see next subsection). Furthermore, in terms of CEPLT, while
the Markov process corresponds to φC(0) = 3/2, there are processes which have higher CEPLT
than the Markov, up to φC(0) = 2. These are smoother than the Markov process and have structure
function with v#(0) = ξ#(0) > 1, where the value 1 corresponds to the Markov process.

Based on these remarks, the Markov process remains a valid candidate of physically consistent
processes maximizing entropy production, if only the local asymptotic behaviour is of interest.
However, additional constraints to the above premises (a)–(e) (from [22]) are needed to confirm
its appropriateness, both on small scales (to enable determination of φC(0)) and large scales (to enable
determination of φC(∞) = φ(∞)).

On the contrary, the HK process should not be regarded as a candidate of general validity, even
though it is valid for large scales. Indeed, it is still quite useful as it results in high entropy production
at large scales, a property that cannot hold for processes with exponential decrease of autocovariance
such as the Markov process. We can thus regard the HK process as a useful mathematical construct
which does not appear in nature but can be filtered appropriately to make a physically consistent
process. This is the same with white noise (WN), which again is not physically consistent as it involves
infinite variance in continuous time (see the specific location and the relationship of the WN and HK
processes in the diagram of Figure 2).

It is well known that if a WN process y(t) is the input to a moving average filter x(t) =
1

2T
∫ t+T

t−T y(a)da, then it produces a physically consistent process x(t) with finite variance and
autocovariance linearly varying in the interval [0, 2T] ([27] (p. 325)). Also, if y(t) is the input to
a linear system corresponding to the linear differential equation x′(t) + αx(t) = y(t), then the output
x(t) is a Markov process ([27] (p. 326)), physically consistent.

Likewise if in these two cases the input y(t) is an HK process, then it is easy to see that the filtered
output is a physically realistic process with finite variance γ(0), practically unaffected climacogram γ(k)
at large scales, with γ#(∞) = 2H − 2 (as in the original HK process) but highly modified climacogram
at small scales, thus having a valid structure (and climacostructure) function with v#(0) = ξ#(0) = 2H.

3.2. Specific Processes

Following the theoretical analyses of Section 2 and the remarks of the Section 3.1, we describe here
a number of stochastic processes specified through any of their second order functions. All of these
processes respect the limitations discussed in Section 2.4 and thus they are consistent mathematically
and physically. Some of them correspond to high entropy production, but we also discuss processes
with low entropy production. The complete details of these processes, along with graphs illustrating
their properties and results of their application, are contained in Appendix A.2.



Entropy 2017, 19, 581 15 of 50
Entropy 2017, 19, 581 14 of 49 

 

 

 
Figure 4. The first fifty terms at time scales k = 1 and 20 of time series produced by various models, 
along with “stamps” of the models (green lines plotted with respect to the secondary axes) 
represented by the CEPLT, φC(k). The different models are (a) Markov; (b) FHK, with CEPLT close to 
the absolute maximum (H = M = 0.97); (c) FHK, with CEPLT close to the absolute minimum (H = M = 
0.05); (d) FHK, with CEPLT close to the absolute maximum for large scales (H = 0.99) and close to the 
absolute minimum for small scales (M = 0.01); (e) GP with n = 1 (blackbody spectrum) with CEPLT 
equal to the absolute minimum (0) for large scales and to the absolute maximum (2) for small scales; 
(f) Approximation of (e) by FHK (H = 0.01, M = 0.99, also using the same initial sequence of random 
numbers as in (e) to visualize similarity); (g) AE with n = 2; (h) average of a FHK with H = M = 0.8 and 
a harmonic oscillation with T = 5α = 50. In all cases the discretization time scale is D = 1, the 
characteristic time scale a = 10, and the characteristic variance scale λ is chosen so that for time scale 
D, γ(D) = 1. The mean is 0 in all cases and the marginal distribution is normal. The FHK is 
implemented using the Cauchy-type climacogram.  

0.01 0.1 1 10 100 1000

-0.5

0

0.5

1

1.5

2

2.5

-3

-2

-1

0

1

2

3

0 10 20 30 40 50

Time scale, k

φ
C(

k)

x(κ
) τ

Time, τ

x⁽¹⁾
x⁽²⁰⁾
φC

0.01 0.1 1 10 100 1000

-0.5

0

0.5

1

1.5

2

2.5

-3

-2

-1

0

1

2

3

0 10 20 30 40 50

Time scale, k

φ
C(

k)

x(κ
) τ

Time, τ

x⁽¹⁾
x⁽²⁰⁾
φC

0.01 0.1 1 10 100 1000

-0.5

0

0.5

1

1.5

2

2.5

-3

-2

-1

0

1

2

3

0 10 20 30 40 50

Time scale, k

φ C
(k

)

x(κ
) τ

Time, τ

x⁽¹⁾
x⁽²⁰⁾
φC

0.01 0.1 1 10 100 1000

-0.5

0

0.5

1

1.5

2

2.5

-3

-2

-1

0

1

2

3

0 10 20 30 40 50

Time scale, k

φ
C(

k)

x(κ
) τ

Time, τ

x⁽¹⁾
x⁽²⁰⁾
φC

0.01 0.1 1 10 100 1000

-0.5

0

0.5

1

1.5

2

2.5

-3

-2

-1

0

1

2

3

0 10 20 30 40 50

Time scale, k

φ
C(

k)

x(κ
) τ

Time, τ

x⁽¹⁾
x⁽²⁰⁾
φC

0.01 0.1 1 10 100 1000

-0.5

0

0.5

1

1.5

2

2.5

-3

-2

-1

0

1

2

3

0 10 20 30 40 50

Time scale, k

φ
C(

k)

x(κ
) τ

Time, τ

x⁽¹⁾
x⁽²⁰⁾
φC

0.01 0.1 1 10 100 1000

-0.5

0

0.5

1

1.5

2

2.5

-3

-2

-1

0

1

2

3

0 10 20 30 40 50

Time scale, k

φ
C(

k)

x(κ
) τ

Time, τ

x⁽¹⁾
x⁽²⁰⁾
φC

0.01 0.1 1 10 100 1000

-0.5

0

0.5

1

1.5

2

2.5

-3

-2

-1

0

1

2

3

0 10 20 30 40 50

Time scale, k

φ
C(

k)

x(κ
) τ

Time, τ

x⁽¹⁾
x⁽²⁰⁾
φC

(a) (b)

(e) (f)

(g) (h)

(c) (d)

Figure 4. The first fifty terms at time scales k = 1 and 20 of time series produced by various models,
along with “stamps” of the models (green lines plotted with respect to the secondary axes) represented
by the CEPLT, φC(k). The different models are (a) Markov; (b) FHK, with CEPLT close to the absolute
maximum (H = M = 0.97); (c) FHK, with CEPLT close to the absolute minimum (H = M = 0.05); (d) FHK,
with CEPLT close to the absolute maximum for large scales (H = 0.99) and close to the absolute minimum
for small scales (M = 0.01); (e) GP with n = 1 (blackbody spectrum) with CEPLT equal to the absolute
minimum (0) for large scales and to the absolute maximum (2) for small scales; (f) Approximation of
(e) by FHK (H = 0.01, M = 0.99, also using the same initial sequence of random numbers as in (e) to
visualize similarity); (g) AE with n = 2; (h) average of a FHK with H = M = 0.8 and a harmonic oscillation
with T = 5α = 50. In all cases the discretization time scale is D = 1, the characteristic time scale a = 10, and
the characteristic variance scale λ is chosen so that for time scale D, γ(D) = 1. The mean is 0 in all cases
and the marginal distribution is normal. The FHK is implemented using the Cauchy-type climacogram.
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We start with a general Filtered Hurst-Kolmogorov (FHK) process (which in some cases, e.g., [24],
has also been called the Hybrid Hurst-Kolmogorov—HHK—process). In Section 3.1 we briefly
discussed two types of linear filters to the HK process, whose asymptotic properties are determined
based on a single parameter, H. Here we generalize this result also making the asymptotic behaviour
on the left independent from that on the right (cf. [37]) through introducing another parameter denoted
as M (in honour of Mandelbrot, following [31]) which is called the smoothness (or fractal) parameter.
We avoid specifying the linear filter needed to convert the HK process into the types of the FHK
process given as this is not necessary (and in some cases it would be too involved). Rather we specify
these types in terms of a convenient expression of the climacogram. The first case is defined through
a generalized Cauchy-type climacogram (FHK-C) (see also [24]):

γ(k) = λ
(

1 + (k/α)2M
) H−1

M (56)

Both M and H are dimensionless parameters, and M and 1 − H vary in the interval (0, 1] with M < 1/2

or > 1/2 indicating a rough or a smooth process, respectively, and with H < 1/2 or > 1/2 indicating an
antipersistent or a persistent process, respectively.

The second case is defined through a Dagum-type (FHK-D) climacogram:

γ(k) = λ

(
1−

(
1 + (k/α)2(H−1)

) M
H−1
)

(57)

and, despite its different expression, its behaviour, as well as the meaning and ranges of parameters
are the same as in the Cauchy-type climacogram. For M = 1 − H both result in precisely the same
special case:

γ(k) =
λ

1 + (k/α)2(1−H)
(58)

The third case is obtained by summing a Cauchy-type climacogram with M = 1 and a Dagum-type
climacogram with H = 0. The climacogram of the thus produced model (FHK-CD) is:

γ(k) = λ1(1 + (k/α1)
2)

H−1
+ λ2(1− (1 + (k/α2)

−2)
−M

) (59)

This is a convenient form, in which the first additive term determines merely the persistence of the
process and the second one the smoothness of the process. In addition, it is more flexible and richer
than its constituents, as it contains two couples of scale parameters; however, if parsimony is sought,
then it can take the same number of parameters as each of the constituents by setting α1 = α2 and
λ1 = λ2 (note that, for dimensional consistency, one λ and one α are minimal parameter requirements).

Even in its most parsimonious form, the FHK in any of the above three variants can cover
the entire admissible range, i.e., the entire “green square” in Figure 2. The different patterns in time
series generated by different M and H (specifically for the Cauchy-type climacogram) are illustrated
in some plots of Figure 4 also in comparison with other models, first of which is the most customary
Markov model (Figure 4a). The Markov model is good as a benchmark for comparisons because,
as already discussed in Section 2, it is fully neutral (neither rough nor smooth as φC(0) = 3/2, and
neither antipersistent nor persistent as φC(∞) = 1/2).

Each of the panels shows the first fifty terms of time series produced by each of the model
implementations at time scales k = 1 and 20. In addition, each panel contains a “stamp” of the specific
model represented by the plot of CEPLT, φC(k). Additional plots for all second order tools of each of
the models are given in Appendix A.2. The time series for these models were generated quite easily
using the generic model proposed in [24]; their length is 1024 and this is also the length of the series of
coefficients a used for the generating symmetric moving average (SMA) scheme. All calculations are of
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algebraic type (based on the equations of Section 2 and Appendix A.2) and were performed in Excel
spreadsheets without difficulties.

In Figure 4b the CEPLT is close to the absolute maximum both for small and large scales
(H = M = 0.97 so as to obtain φC(0) = 1.97 ≈ 2 and φC(∞) = 0.97 ≈ 1); notable is the very smooth shape
at scale 1 and the large departures from the mean (which is 0) at scale 20. On the contrary, in Figure 4c
the CEPLT is close to the absolute minimum for all scales (H = M = 0.05, so as to obtain φC(0) = 1.05 ≈ 1
and φC(∞) = 0.05 ≈ 0—for better visualization it was preferred not to use values of H and M < 0.05).
Furthermore, in Figure 4d the CEPLT is close to the absolute maximum for large scales (H = φC(∞) =
0.99 ≈ 1) and close to the absolute minimum for small scales (M = 0.01 resulting in φC(0) = 1.01 ≈ 1).
Finally, in Figure 4f the conditions are opposite to those in 4d, i.e., the CEPLT is equal to the absolute
minimum for large scales (H = φC(∞) = 0.01 ≈ 0) and to the absolute maximum (2) for small scales
(M = 0.99 resulting in φC(0) = 1.99 ≈ 2).

The particular case of Figure 4d is close to what is usually called “pink noise” or “1/ f noise”,
as the power spectrum has almost constant slope −1 for the entire frequency domain (which is
the same in the climacospectrum). This means that using the FHK model we can theoretically represent
and practically produce even “pink noise” in a consistent stationary setting without linking it to
a nonstationary process [38,39], which actually involves several theoretical inconsistencies [31]. Indeed,
as can be seen more thoroughly in the detailed graphs of Figure A5 in Appendix A.2.2, which are for
the same application with that of Figure 4d, the small change of slope of from 0.99 to 1.01 is not actually
visible, especially in view of the very rough shape of the empirical periodogram, which certainly
cannot support differentiation between 0.99 and 1. The FHK model can be used also in other ways to
produce “pink noise”, that is, by selecting a very large (small) parameter α so as to expel from our
field of vision the asymptotic behaviour on large (small) scales. And we can imagine that in several
cases of empirical explorations using observations of natural processes, the observation resolution and
length, compared to characteristic scale(s) of the process, are such as to hide the asymptotic behaviour
of the process.

We can use this as a trick to obtain virtually constant power spectrum slopes much steeper than
−1. This is illustrated Figure A7 of Appendix A.2.2 where the FHK was used with H = M = 0.75 and
α = 100. These yield theoretical slopes ζ̃#(∞) = s#(∞) = −(1 + 2M) = −2.5 and ζ̃#(0) = s#(0) =

−(2H − 1) = −0.75. However, the large α does not allow viewing the asymptotic behaviour at
low frequencies or large scales and the slope −2.5 dominates everywhere. Actually the empirical
periodogram estimates an even steeper constant slope, s# = −2.6. This should not mislead us to
conclude that the process is nonstationary because the slope is steeper than −1 (as happens in many
studies in the literature). Likewise, in the case that the time series represented observations of a natural
process, such a result must not be misinterpreted as evidence that natural processes can lead to slopes
constant for all scales and steeper than −1. Clearly here, the process is stationary, the slope −2.5
refers to large frequencies or small scales but, because of the large characteristic scale and the limited
observation period (1024 in this example), we cannot see what happens at larger scales. If we saw, then
the slope would be −0.75, in accord with the theory.

As discussed, the Markov process is neutral but, by modifying its power spectrum, we can obtain
processes which are smooth or antipersistent. Two types of modifications are studied in Appendix A.2,
introduced in terms of their power spectrum, i.e.,

s(w) =
4n+1(n!)2

(2n)!
λα

(1 + (2παw)2)
n+1 (60)

and:

s(w) =
4n+1(n!)2

(2n)!
λα(2παw)2n

(1 + (2παw)2)
n+1 (61)
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where n = 0, 1, 2 . . . , and the value n = 0 results precisely in a Markov process. For n > 0, (60)
corresponds to a smooth process with φC(0) = 2 and (61) corresponds to an antipersistent process
with φC(∞) = 0. The resulting autocovariance function retains the characteristic exponential form of
the Markov process but is multiplied by a polynomial function of lag (see Appendix A.2). Therefore,
we call these two processes the smooth exponential (SE) and the antipersistent exponential (AE),
respectively. In each of the cases, a most extreme value of CEPLT is achieved (maximal for small scales
in SE and minimal for large scales in AE). Figure 4g, shows an example of AE for n = 2; the hole in
the function φC(k) for moderate k is a characteristic of this process.

An interesting process that is simultaneously extremely smooth (φC(0) = 2) and extremely
antipersistent (φC(∞) = 0) is defined by the following power spectrum:

s(w) =
cnλα(αw)2n+1

e2παw − 1
(62)

where cn is a normalizing constant making the area of the power spectrum equal to γ0 = λ. This
process, which we call generalized Planck (GP) is obtained by a generalization of Planck’s law of
black-body radiation, whereas it is identical to this law if n = 1. The detailed equations of this process
are also given in Appendix A.2. A characteristic plot of time series generated from this process is
shown in Figure 4e, and is almost indistinguishable from Figure 4f which, as already discussed, was
produced as an approximation by FHK.

A final case examined in the Appendix A.2 is a harmonic oscillation, which is very easily modelled
as a deterministic process but here it is treated as a stochastic process. Of course stochastic treatment
is not advisable in this case, but often such periodic behaviours appear as components of stochastic
processes. Obviously the second-order characteristics of such processes are affected by periodic
components and therefore we need to know which equations should be superimposed in those
of the pure stochastic process (see also [40,41]). As an example of such a case, Figure 4h shows
the behaviour of a process defined as the average of a FHK with H = M = 0.8 and a harmonic oscillation.
It is difficult to identify the presence of the oscillation from visual inspection of the time series, but
the detailed graph of any of the second order characteristics, plotted in Appendix A.2., captures
the periodic behaviour.

3.3. Comparison of Asymptotic Properties

Most of the models examined in the previous subsection can only reproduce specific values of
asymptotic properties. An exception is the FHK model which is the most powerful as it can perform in
the entire admissible domain of asymptotic properties. A visual comparison of all models examined,
it terms of the asymptotic values of the different second order characteristics is made in Figure 5, while
Figure 6 provides an envelope for all models, with classification of the ranges in terms of smoothness
and persistence.

Further comparative information about which model can perform for the most extremal cases is
provided in Table 4. These figures and the table can be useful for the model selection based on data.

Table 4. Models that can perform in each of the specified extremal or neutral cases of smoothness
and persistence.

Persistence

Smoothness

Maximal Roughness
ϕC(0) = 1

Neutral Smoothness
ϕC(0) = 3/2

Maximal Smoothness
ϕC(0) = 2

Maximal Persistence, ϕC(∞) = 1 ~FHK ~FHK ~FHK
Neutral Persistence ϕC(∞) = 1/2 ~FHK Markov, FHK SE, GP, FHK

Maximal Antipersistence ϕC(∞) = 0 ~FHK AE, FHK GP, FHK

Note: the symbol ‘~’ indicates that the model can perform in close approximation but not precisely.
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Figure 5. Ranges of asymptotic values for each of the most important second order functions
of the examined processes. Wide light blue lines/boxes represent global properties (k, h → ∞,
w → 0) while narrow dark red lines/boxes represent local properties (k, h → 0, w → ∞). Markov:
Markov process; FHK: filtered Hurst-Kolmogorov process in any of the three forms; SE: smooth
process with generalized exponential-type autocovariance; AE: antipersistent process with generalized
exponential-type autocovariance; GP: generalized Planck. Note that the Markov process is identical
with the SE and PE for n = 0.
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3.4. Real World Case Study

Empirical testing of the theoretical analyses presented here needs fine resolution of measurements
and long time series, in order to reliably determine the asymptotic properties from data. Geophysical
time series usually do not satisfy either of these two conditions. However, laboratory measurements of
turbulent velocity can meet the conditions. Indeed, in laboratory experiments at sampling intervals of
µs, very large samples can be formed which can enable viewing the asymptotic behaviour. Here we use
grid data of nearly isotropic turbulence from the Corrsin Wind Tunnel at a high-Reynolds-number [42],
which were made available on the Internet by the Johns Hopkins University. This dataset consists
of 40 time series with n = 36 × 106 data points of wind velocity along the flow direction and
an equal number of time series of cross-stream velocity, all measured at a sampling time interval
D = 25 µs by X-wire probes placed downstream of the grid. Here we use part of the data, namely
the series of wind velocity along the flow direction at the first of the probes (first column of files
in http://pages.jh.edu/~cmeneve1/datasets/Activegrid/M20/H1/). More data and analyses have
been used by Dimitriadis and Koutsoyiannis [43] at a somewhat different context.

Characteristic plots of the turbulent velocity time series are shown in the Figure 7a for various
time scales. The large persistence of turbulence is evident from the large variability at the largest time
scales. Impressively, an FHK-CD model with five parameters describes well the data at the entire
range of available time scales which spans almost seven orders of magnitude.

The fitted model parameters are: H = 5/6 = 0.83, M = 1/3 = 0.33, a1= a2 = 2170 D = 54 ms,
λ1 = 1.13 m2/s2, λ2 = 2.39 m2/s2. These confirm the intense persistence and a small roughness,
which is reflected in a climacospectrum slope of −5/3 for large frequencies (the neutral would be −2),
in accord with Kolmogorov’s theory.

http://pages.jh.edu/~cmeneve1/datasets/Activegrid/M20/H1/
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Figure 7. Characteristic graphs of the turbulent velocity time series: (a) plot of the first fifty terms of
the time series at time scales κ = 1, 20, 400 and 8000, along with the “stamp” φC(k) of the fitted model
(green line plotted with respect to the secondary axes); (b) empirical and fitted theoretical climacogram;
(c) empirical and fitted theoretical climacospectrum.

4. Discussion and Conclusions

The question whether the probabilistic (information) entropy incorporates, as a special case,
thermodynamic entropy or the two are different concepts, is still debated [44,45]. If we adopt
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the former proposition of the dilemma, as we have done here, the requirement emerges that entropy
production should be formulated in a stochastic context, while current attempts mostly use the classical
thermodynamic entropy definition as in heat transfer. This is not an easy task and certainly requires
exploration of a broad spectrum of alternatives for a definition of the concept of entropy production.
Exploration of extremum principles for entropy production in a stochastic framework is also crucial.
The two versions proposed here, entropy production in logarithmic time, unconditionally (EPLT) or
conditionally on the past and present having been observed (CEPLT), may have some usefulness and
potential as explanatory and modelling tools. The findings of this study include the following:

• Definition of entropy production with respect to logarithmic time has some attractive
characteristics and is consistent with the notion of the time arrow.

• The asymptotic values of entropy production for time zero and infinity seem to be crucial for its
extremization and define important features of a process.

• In particular, the asymptotic value of CEPLT for zero time defines the roughness (fractality) of
the stochastic process while the common asymptotic value of EPLT and CEPLT for infinite time
defines the (long-term) persistence of the process and equals the Hurst parameter.

• Both ELPT and CEPLT are finite and constrained within specific theoretically justified bounds.
The scaling laws of all second order characteristics of stochastic processes are a result of these
finite values and are also subject to bounds (with few exceptions fully described). The proofs
of existence of these bounds offer the means to fight common misunderstanding, misuse, false
reporting and inconsistent estimation of characteristics of geophysical processes, as well as to
develop consistent estimation algorithms.

• The climacogram and its derivative tools introduced here, namely, the differenced climacogram
and the climacospectrum are very powerful and support the estimation of entropy production, in
either of its forms, from data series.

• The broad family of models for stochastic processes investigated here covers the entire admissible
range of asymptotic behaviours and offers the means for modelling any type of processes, either
using a single model or a combination of more than one model.

• The real-world application presented with the extraordinary long time series of turbulent velocity
shows how a parsimonious stochastic model can be identified and fitted using the tools developed.

Measurements of diverse turbulent phenomena can potentially provide equally long time series
with fine resolution, shaping a broader empirical basis for future work on identifying natural
behaviours, specifically on larger spatial and temporal scales, and further testing the adequacy of
the models. Characteristics of order higher than second, along with the effects of non-Gaussianity
on entropy production, are also interesting to examine in light of the developments for second-order
ones. A recent study [43] has already provided interesting results with respect to high-order moments.
Connections of microscale turbulence and macroscale atmospheric phenomena are also a broad field
for future studies. Further applications, also extending similar recent works in hydrology, geophysics
and ecosystems [30,40,41], would enrich our knowledge on natural behaviours.
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Appendix A

Appendix A.1. Derivations and Theoretical Details

Appendix A.1.1. Properties of the LLD

Here we examine some asymptotic properties of the log-log derivative of general validity, which
are useful in other derivations herein. First we examine the product of two functions, i.e.,

g(t) := f1(t) f2(t) (A1)

By applying the definition of LLD (Equation (38)) and using standard calculus, it is easy to show that:

g#(t) = f #
1 (t) + f #

2 (t) (A2)

which we can conveniently denote as:

( f1(t) f2(t))
# = f #

1 (t) + f #
2 (t) (A3)

Likewise, it is easily shown that:

( f1(t)/ f2(t))
# = f #

1 (t)− f #
2 (t) (A4)

By setting in (A3) f1(t) = λ (constant), f2(t) = f (t) and observing that f #
1 (t) = 0, it is easily

verified that:
(λ f (t))# = f #(t) (A5)

By setting in (A3) f1(t) = f2(t) = f (t) it is easily verified that:

( f (t)2)
#
= 2 f #(t) (A6)

and likewise, extending for any exponent λ:

( f (t)λ)
#
= λ f #(t) (A7)

We now examine the sum of two functions, i.e.,

g(t) := f1(t) + f2(t) (A8)

By applying the definition of LLD and using standard calculus, it is easy to show that:

g#(t) :=
f1(t) f #

1 (t) + f2(t) f #
2 (t)

f1(t) + f2(t)
(A9)

In other words:

( f1(t) + f2(t))
# =

f1(t) f #
1 (t) + f2(t) f #

2 (t)
f1(t) + f2(t)

(A10)

Finally, we examine the composition of two functions, i.e.,

( f ◦ g)(t) = f (g(t)) (A11)

Again by applying the definition of LLD and using standard calculus, we easily find:

(( f ◦ g)(t))# = ( f (g(t))# = f #(g(t)) g#(t) (A12)
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Appendix A.1.2. Proof of the Positive Definiteness of the Climacogram

We will demonstrate that γ(k) is a positive definite function based on the well-known fact that
the autocovariance function c(h) is positive definite. It suffices to show that the Fourier transform of
γ(k), i.e.,

sγ(w) = 4
∞∫

0

γ(k) cos(2πwk)dk (A13)

is positive. Expressing γ(k) in terms of c(k) from (21) we have:

sγ(w) = 8
∞∫

0

1∫
0

(1− χ)c(χk)dχ cos(2πwk)dk = 8
1∫

0

(1− χ)

∞∫
0

c(χk) cos(2πwk)dk dχ (A14)

Setting χk = ψ, χdk = dψ, we find:

sγ(w) = 8
1∫

0

(1− χ)

∞∫
0

c(ψ) cos(2πwψ/χ)(1/χ)dψ dχ (A15)

and invoking the definition of the power spectrum as the Fourier transform of c(h) (Equation (10)),
we get:

sγ(w) = 2
1∫

0

1− χ

χ
s(w/χ)dχ (A16)

Both quantities s(w/χ) and (1 − χ)/χ are positive for 0 < χ < 1 and thus sγ(w) ≥ 0.

Appendix A.1.3. Proof that the Differenced Climacogram Is Nonnegative

First we will prove a more general inequality that will be used for the proof, i.e.,

(h + r)
√

γ(h + r) ≤ h
√

γ(h) + r
√

γ(r), ∀h, r > 0 (A17)

With reference to the cumulative process, as seen in Figure 1, we have:

Γ(h + r) = Var[X(h + r)] = Var[(X(h + r)− X(h)) + X(h)]

= Var[X(h + r)− X(h)] + Var[X(h)] + 2Cov[(X(h + r)− X(h)), X(h)]

≤ Var[X(h + r)− X(h)] + Var[X(h)] + 2
√

Var[X(h + r)− X(h)] Var[X(h)]

(A18)

and since Var[X(h + r)− X(h)] = Var[X(r)], we find:

Γ(h + r) ≤ Γ(r) + Γ(h) + 2
√

Γ(r)Γ(h) =
(√

Γ(r) +
√

Γ(h)
)2

(A19)

or, taking the square roots as the quantities are positive:√
Γ(h + r) ≤

√
Γ(h) +

√
Γ(r) (A20)

By substituting Γ(h) = h2 γ(h) we get (A17). As a corollary, by setting r = h we derive:

γ(2h) ≤ γ(h) (A21)

which ensures that the differenced climacogram is nonnegative.
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Appendix A.1.4. Determination of the Characteristic Constant ε of CEPLT

From (41) and the condition put as desideratum (i.e., that, as k → ∞, γC(k)/γ(k)→ 1) ,
it follows that:

1
ε
= 1− lim

t→∞

γ(2t)
γ(t)

(A22)

Now assuming that b = γ#(∞), it follows that the limit:

lim
t→∞

t−bγ(t) = c (A23)

is finite. Likewise:
lim
t→∞

(2t)−bγ(2t) = c (A24)

By dividing the last two equations we find:

lim
t→∞

γ(2t)
γ(t)

(2t)−b

(t)−b = 1 (A25)

and finally:

lim
t→∞

γ(2t)
γ(t)

= 2b (A26)

which proves (42).

Appendix A.1.5. Asymptotic Properties of CEPLT

The fact that γC(0) = γC(∞) = 0 follows directly from the definition. For the LLDs, starting from
the definition of the differenced climacogram we proceed as follows:

γC(k) = ε(γ(k) − γ(2k)) = εγ(k)
(

1− γ(2k)
γ(k)

)
(A27)

Hence, by virtue of (A3):

γ#
C(k) = γ#(k) +

(
1− γ(2k)

γ(k)

)#
(A28)

According to the derivations in Appendix A.1.4, the quantity in parentheses has a finite limit as
k→ ∞, which specifically is 1− 2γ#(∞) = 1/ε. Thus, its LLD tends to zero as k→ ∞ (see explanation
in the last paragraph in Appendix A.1.8) and hence γ#

C(∞) = γ#(∞). Likewise, γ#(0) = 0 because
γ(0) = γ0 (finite). However the term in parenthesis is nonzero for k→ 0, so to determine the asymptotic
behaviour of γ#

C(k) in that case we follow a different path.
Specifically, we can express γC(k) in an alternative manner in terms of the climacostructure

function. Using the definition of the latter, we can write:

γC(k) = ε(ξ(2k)− ξ(k)) = εξ(k)
(

ξ(2k)
ξ(k)

− 1
)

(A29)

Hence:

γ#
C(k) = ξ#(k) +

(
ξ(2k)
ξ(k)

− 1
)#

(A30)

Proceeding as above we derive:

lim
k→0

ξ(2k)
ξ(k)

= 2ξ#(0) (A31)

and hence the quantity in parentheses in (A30) has a finite limit as k→ 0, which specifically is 2ξ#(0)− 1.
Thus, its log-log derivative tends to zero as k→ 0 and hence γ#

C(0) = ξ#(0).
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We further note that from the definition of the climacostructure function and using Equation (A10)
we get:

ξ#(k) =
−γ#(k)γ(k)
γ0 − γ(k)

(A32)

As k→ ∞, the numerator is zero, while the denominator is γ0, so that ξ#(∞) = 0. The concluding
remark is that, because γ#(0) = ξ#(∞) = 0, none of the two tools, climacogram and climacostructure
function suffices alone to express both the local and global asymptotic properties of γC(k). On the
other hand, the combination of the two suffices.

Appendix A.1.6. Area of Climacospectrum

From the definition of climacospectrum (48), the entire area under it is:

A :=
∞∫

0

ζ̃(w)dw =
1

ln 2

∞∫
0

γ(1/w)− γ(2/w)

w
dw (A33)

By changing variable, setting k = 1/w, dk = −(1/w2) dw, we get:

A =
1

ln 2

∞∫
0

γ(k)− γ(2k)
k

dk (A34)

We will evaluate A by taking the limit as x→ 0 of:

A(x) = A1(x)− A2(x), A1(x) :=
1

ln 2

∞∫
x

γ(k)
k

dk, A2(x) :=
1

ln 2

∞∫
x

γ(2k)
k

dk (A35)

The latter can be written as:

A2(x) =
1

ln 2

∞∫
2x

γ(k)
k

dk = A1(2x) (A36)

so that:

A(x) =
1

ln 2

2x∫
x

γ(k)
k

dk (A37)

For small x, because γ(k) is finite for any k and we are interested about the limit of A(k) as x→ 0,
at the limit we can replace γ(k) with γ(0) and get:

lim
x→0

A(x) =
γ(0)
ln 2

2x∫
x

1
k

dk =
γ(0)
ln 2

(ln 2x− ln x) =
γ(0) ln 2

ln 2
= γ(0) (A38)

For completeness we note that, as can be easily seen, the integral:

B :=
∞∫

0

(γ(k)− γ(2k))dk (A39)

evaluates to:

B =
1
2

∞∫
0

γ(k)dk (A40)

However, this is finite only for antipersistent processes, while it diverges to +∞ for persistent processes.
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Appendix A.1.7. Details and Derivation of the Inverse Transformation of Climacospectrum

Combining both forms of (49) we find:

γ(0) = ln 2
∞

∑
i=−∞

ζ
(
2ik
)

2ik
(A41)

or by setting k = 2x:

γ(0) = ln 2
∞

∑
i=−∞

ζ
(
2x+i)

2x+i (A42)

and this is valid for any x. This means that the function ζ(x) cannot take any arbitrary form but its
form should be such that (A42) is satisfied for any x. At the same time, as shown in Appendix A.1.6:

γ(0) =
∞∫

0

ζ̃(w)dw =

∞∫
0

ζ(k)
k2 dk = ln 2

∞∫
−∞

ζ(2x)

2x dx (A43)

where for the very last term we used the transformation k = 2x, dk = (ln 2) 2x dx. Combining (A42) and
(A43) we find that, for any k:

∞

∑
i=−∞

ζ
(
2ik
)

2ik
=

∞∫
−∞

ζ(2x)

2x dx =
γ(0)
ln 2

(A44)

Note, however, that the equality of the sum with the integral holds only if both limits for
summation and integration are infinite. It can be used also as an approximation for small k, by setting
the lower integration limit to k; thus the following approximations hold:

γ(k) =

{
I(k) k→ 0

ε ln 2 ζ(k)
k = ε ln 2

2 I(k) k→ ∞
(A45)

where I(k) has been defined in Equation (50). Combining these two cases we heuristically derive
the left part of Equation (50), which was shown by an extensive numerical investigation to be almost
indistinguishable from the exact solution (49). The advantage of (50) over (49) is that, to calculate
a sufficient approximation by (49), we need to go to very large time scales (2i k), which may not be
feasible when working with data series, while (50) can perform well in reasonably smaller time scales.
In numerical applications, the evaluation of the integral I(t) goes sequentially from large to small time
scales. To start the calculation, for the largest time scale k = q we exploit the second case of (A45) and
get I(q) = 2 ζ(q)/q. It should be kept in mind that both I(k) and ζ(k)/k are decreasing functions of k for
large scale. Even if we assumed that ζ(k)/k is constant, rather than decreasing, for a range of scales
close to q, we would derive from the second case of (A45) that I(q − iD) = (I(q)/q) (2 + 1/(q/D − 1) +
. . . + 1/(q/D − i)), which clearly shows that I(q) is a decreasing function of k.

Appendix A.1.8. Remarks on Asymptotic Scaling

We maintain that every nonzero continuous function f (x) defined in (0, ∞), whose limits as
x→ 0 and x→ ∞ exist, is associated with two asymptotic power laws, or else two asymptotic scaling
behaviours, one on each of the two ends, 0 (local scaling behaviour) and ∞ (global scaling behaviour).
To prove this, first we examine the asymptotic behaviour of f (x) as x → ∞ and we try to identify
the first asymptotic law. We perform the following steps:

1. We find β1 := lim
x → ∞

f (x). If β1 6= ±∞ then we replace f (x) with 1/( f (x)− β1), otherwise we

keep it as it is. Clearly then, | lim
x → ∞

f (x)| = ∞.
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2. We find β2 := lim
c→ ∞

(
lim

x→∞
x−c f (x)

)
. If β2 6= 0 then we replace f (x) with ln|f (x)| (which preserves

the property lim
x → ∞

f (x) = ∞); if necessary, we make iterations so that eventually lim
x → ∞

f (x) = ∞

and lim
c→ ∞

(
lim

x→∞
x−c f (x)

)
= 0.

3. Given the properties in point 2, there exists a unique b, 0 < b < ∞ satisfying:

| lim
x→∞

x−b f (x)| < ∞ (A46)

so that for any b′ 6= b:

| lim
x→∞

x−b′ f (x)| =
{

0, ∀b′ < b

∞, ∀b′ > b
(A47)

4. The constant b defines an asymptotic power law with exponent b (cf. Hausdorff dimension;
the case b = 0 signifies an improper scaling).

To identify the second asymptotic law as x→ 0, we define f̃ (x) := f (1/x) and we proceed in
the same manner to construct a function f̃ (x) satisfying the conditions in point 2 above. Proceeding
likewise, we determine the unique a for which | lim

x→∞
x−a f̃ (x)| < ∞. This determines an asymptotic

power law with exponent a for f (x) as x→ 0.
We remark that the two power laws refer to the same function f (x) but, due to the replacement

steps of the procedure, may eventually correspond to different functions, say, fa(x) and fb(x) for
the asymptotic behaviours as x → 0 (local behaviour) and x → ∞ (global behaviour), respectively.
However, it is easy to construct a single function that combines both, making a final replacement,
e.g., f (x) = fa(x)fb(x), but many different f (x) can actually be constructed. Thus, as well as any object
has a dimension, any continuous function entails asymptotic power laws; generally not one but two,
which in the special case of simple scaling can be identical.

Now, coming to the asymptotic values of f #(x) for x → 0 and ∞, symbolically f #(0) and f #(∞),
these are:

f #(∞) = b, f #(0) = a (A48)

To prove the former case, we proceed as follows:

lim
x→∞

x−b f (x) = lim
x→∞

f (x)
xb = lim

x→∞
f ′(x)

b xb−1 = lim
x→∞

(
x f ′(x)
b f (x)

f (x)
xb

)
= lim

x→∞

(
f #(x)

b
f (x)
xb

)
= lim

x→∞
f #(x)

b lim
x→∞

f (x)
xb (A49)

This implies that lim
x→∞

f #(x)/b = 1 and thus f #(∞) = b. The latter case ( f #(0) = a) can be

proved in the same manner.
A useful property is that if lim

x→∞
f (x) is a finite value (<∞), then b = f #(∞) = 0, because for any

b′ > 0, lim
x→∞

x−b′ f (x) = lim
x→∞

f (x)/xb′ = 0. Likewise, if lim
x→0

f (x) is a finite value, then a = f #(0) = 0.

Thus, to have asymptotic (for x→ 0 and ∞) values of f # different for 0 and ∞, the asymptotic values of
f should be either 0 or ∞. These properties are useful and are utilized in other proofs herein.

Appendix A.1.9. Asymptotic Scaling of the Different Second Order Tools

We assume that the asymptotic behaviour of the climacogram-based second order tools is given as:

γ#
C(0) = ξ#(0) = ζ#(0)− 1 = 2ϕC(0)− 2 = a > 0

γ#
C(∞) = γ#(∞) = ζ#(∞)− 1 = 2ϕC(∞)− 2 = b < 0

(A50)

and we will determine that of the autocovariance-based tools. Note that the equality of the different
function limits in (A50) has been proved in Appendix A.1.5.
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We will fist examine the asymptotic properties of the autocovariance function. Initially we note
that, because γ(0) = c(0) = γ0 (finite), it follows that γ#(0) = c#(0) = 0. Now, since b = γ#(∞) < 0,
it follows that:

lim
k→∞

k−bγ(k) = c (A51)

where c is finite. We use the relationship between γ(k) and c(h) (Equation (21)) to find:

lim
h→∞

h−bc(h) = lim
h→∞

c(h)
hb = lim

h→∞

1
2

d2(h2γ(h)
)
/dh2

hb = lim
h→∞

(
γ(h)

hb + 2
γ′(h)
hb−1 +

1
2

γ′′ (h)
hb−2

)
(A52)

Because both γ(h) and hb → 0 as h→ ∞, applying l’Hôpital’s rule we find:

lim
h→∞

γ(h)
hb = lim

h→∞

γ′(h)
bhb−1 = lim

h→∞

γ′′ (h)
b(b− 1)hb−2 (A53)

Since b < 0, γ′(h), γ′′ (h), hb−1 and hb−2 will also → 0 as h→ ∞. Thus:

lim
h→∞

h−bc(h) = lim
h→∞

(
γ(h)

hb + 2b γ(h)
hb + b(b−1)

2
γ(h)

hb

)
= 1

2 (b + 1)(b + 2) lim
h→∞

γ(h)
hb = 1

2 (b + 1)(b + 2)c (A54)

Unless b =−1 or b =−2, the limit lim
h→∞

h−bc(h) is 0, finite or ∞, if and only if lim
h→∞

h−bγ(h) is 0, finite

or ∞, respectively. Therefore, if b 6= −1, −2, then c#(∞) = γ#(∞) = b, otherwise lim
h→∞

h−bc(h) = 0,

which does not guarantee (nor does it exclude) that c#(∞) = γ#(∞) = b.
Next we will examine the asymptotic properties of the structure function. Initially we note

that, because ξ(∞) = v(∞) = γ0 (finite), it follows that ξ#(∞) = v#(∞) = 0. Now, since a = ξ#(0) > 0,
it follows that:

lim
k→0

k−αξ(k) = d (A55)

where d is finite. We use the relationship between ξ(k) and v(h) (Equation (26)) to find:

lim
h→0

h−av(h) = lim
h→0

v(h)
ha = lim

h→0

1
2

d2(h2ξ(h)
)
/dh2

hα
= lim

h→0

(
ξ(h)
ha + 2

ξ ′(h)
ha−1 +

1
2

ξ ′′ (h)
ha−2

)
(A56)

Because both ξ(h) and ha → 0 as h→ 0, applying l’Hôpital’s rule we find:

lim
h→0

ξ(h)
ha = lim

h→0

ξ ′(h)
aha−1 (A57)

If a > 1, then both γ′(h) and ha−1 will also → 0 as h→ 0. In this case, again applying l’Hôpital’s rule:

lim
h→0

ξ ′(h)
aha−1 = lim

h→0

ξ ′′ (h)
a(a− 1)ha−2 (A58)

If a < 1, then γ′(h) and ha−1 will both → ∞ as h→ 0. Thus, again applying l’Hôpital’s rule, we will
conclude with (A58) again. Thus, in both cases:

lim
h→0

h−av(h) = lim
h→0

(
ξ(h)
ha + 2a ξ(h)

ha + a(a−1)
2

ξ(h)
ha

)
= 1

2 (a + 1)(a + 2)lim
h→0

ξ(h)
ha = 1

2 (a + 1)(a + 2)d (A59)

Since a > 0 the rightmost expression cannot be zero unless d = 0. Therefore, the limit lim
h→0

h−av(h)

is 0, finite or ∞, if and only if lim
h→0

h−aξ(h) is 0, finite or ∞, respectively. Therefore, v#(0) = ξ#(0) = a.

If a = 1 precisely, then ha−1 = 1 (it does not tend to 0 or ∞), while lim
h→0

hξ ′′ (h) = 0. Thus, from (A56)

we get lim
h→0

h−1v(h) = 3d (finite), which again means that v#(0) = ξ#(0) = a. Also, if a = 2 precisely,
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then ha−2 = 1 and from (A56) we get lim
h→0

h−1v(h) = 6d (finite). In conclusion, in all cases it holds that

v#(∞) = ξ#(∞) = 0 and v#(0) = ξ#(0) = a, which means that v(k) has the same asymptotic behaviour
with ξ(k) in both ends. We can thus rewrite (A50) as:

γ#
C(0) = ξ#(0) = v#(0) = ζ#(0)− 1 = 2ϕC(0)− 2 = a > 0

γ#
C(∞) = γ#(∞) = c#(∞) = ζ#(∞)− 1 = 2ϕC(∞)− 2 = b < 0

Possible exceptions for c#(∞) : b = γ#
C(∞) = γ#(∞) = {−1,−2},

ζ#(∞) = {0, −1}, ϕC(∞) = {1/2, 0}

(A60)

Now coming to the asymptotic behaviour of the power spectrum, according to Gneiting and
Schlather [37] (who also cite [46–48]), the power spectrum is “typically” associated with the asymptotic
relationship s(w) ~w−a−1 as w→ ∞ and s(w) ~w−b−1 as w→ 0, where a (>0) and b (<0) are the LLDs
of the structure function, v#(0) and autocorrelation function c#(∞), respectively, same to the above
discourse. By inspection, it is seen that the slopes −(a + 1) and −(b + 1) are precisely the log-log slopes
of the climacospectrum expressed in terms of frequency, ζ̃(w), or equivalently −ζ#(0) and −ζ#(∞),
respectively. It can be conjectured that, since this is the “typical” behaviour, the non-typical cases
correspond to integral values of a and b.

In plain language, the above results can be expressed as follows:

1. The asymptotic behaviour of the autocovariance function is the same with that of the climacogram.
2. The asymptotic behaviour of the structure function is the same with that of the

climacostructure function.
3. The asymptotic behaviour of the power spectrum is the same with that of the climacospectrum.

Exceptions to the rule 1 may occur when b = −1 or b = −2 and this was indeed verified by
thorough analytical work using the series of models examined in Appendix A.2. Exception to rule 2
can also appear and indeed they were found when b = −2 or a = 2. The entire list of exceptions found
in this analytical work follows, also mentioning the specific models in which they appeared:

1. b = γ#(∞) = −1 and c#(∞) = −∞: Markov, Smooth Exponential models
2. b = γ#(∞) = −1 and c#(∞) = −2: Generalized Planck model for n = 0
3. b = γ#(∞) = −2 and c#(∞) = −∞, also −s#(0) = −2n while ζ#(∞) = −1: Antipersistent

Exponential model for n > 0
4. b = γ#(∞) = −2 and c#(∞) = −2(n + 1), also −s#(0) = −2n while ζ#(∞) = −1: Generalized

Planck model for n > 0
5. a = ξ#(0) = 2 and −s#(∞) = ∞ while ζ#(0) = 3: Generalized Planck model
6. a = ξ#(0) = 2 and −s#(∞) = 2(n + 1) while ζ#(0) = 3: Smooth Exponential for n > 0

Appendix A.1.10. Proof of Physical Inconsistency of too Mild Slopes at High Frequencies in
Power Spectrum

Let us assume that for small scales k < ε or high frequencies w > 1/ε, with ε however small,
the log-log derivative is s#(w) ≈ β, or else s(w) ~wβ where β is a constant satisfying β > −1. As the
area of the power spectrum equals the variance of the continuous time process, we will have:

γ(0) =
∫ ∞

0
s(w)dw =

∫ 1/ε

0
s(w)dw +

∫ ∞

1/ε
s(w)dw (A61)

Because s(w) ~wβ, there exist α > 0 so that s(w) ≥ α wβ for w > 1/ε. Thus the, rightmost of the above
integrals can be evaluated as:

∫ ∞

1/ε
s(w)dw ≥

∫ ∞

1/ε
αwβ dw =

αwβ+1

β + 1

∣∣∣∣∣
∞

1/ε

(A62)
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Clearly if β > −1, wβ+1 → ∞ as w→ ∞ and thus γ(0) = ∞. The same result could be obtained
if the climacospectrum ζ̃(w) was used instead of the power spectrum. Because infinite variance
means infinite energy, which is physically inconsistent, it turns out that the assumption β > −1 is
physically absurd.

Appendix A.1.11. Proof of the Inconsistency of too Steep Slopes at High Frequencies in Power Spectrum

We prove that ϕC(0) ≤ 2 or, equivalently, ξ#(0) ≤ 2, by contradiction, i.e., assuming ξ#(0) = 2M
with M > 1. In the latter case for small k we may approximate ξ(k) as:

ξ(k) ≈ λ
k2M

1 + k2M (A63)

which indeed yields ξ#(0) = 2M. The climacogram for small k is thus:

γ(k) =
λ

1 + k2M (A64)

The positive definiteness of γ(k) entails that any matrix A with elements ai,j = γ(ki − kj) should be
positive definite. Choosing three points, ki = k0, k0 + k and k0 + 2k, we form the 3 × 3 matrix:

A =

 γ(0) γ(k) γ(2k)
γ(k) γ(0) γ(k)

γ(2k) γ(k) γ(0)

 (A65)

whose determinant can be easily evaluated. Specifically, after algebraic manipulations we obtain:

B(k, M) := Det(A)/λ3 = 1− 2

(1 + k2M)
2 −

1(
1 + (2k)2M

)2 +
2

(1 + k2M)
2
(

1 + (2k)2M
) (A66)

This can also be written as:

B(k, M) =
22Mk4MG(k,M)

(1+k2M)
2(

1+(2k)2M
)2 ,

G(k, M) := 4− 22M + 2
(
1 + 22M)k2M + 22M(k2M)2

(A67)

We observe that G(k, M) is a second-order polynomial in terms of y := k2M with discriminant D(M) =

1 + 22M+1(22M − 1
)
, which is positive for any M > 0 and thus the equation G(k, M) = 0 has two

real solutions:

y1,2 = 2−2M
(
−1− 22M ∓

√
1 + 22M+1(22M − 1)

)
(A68)

Clearly, y1 < 0 for any M, while y2 < 0 only when M < 1 (for M = 1, y2 = 0 precisely). Therefore, if M > 1,
then for 0 < k2M < y2, G(k, M) < 0 and hence B(k, M) < 0, which proves that A is not positive definite as
its principal determinant is negative.

Solved for k, the interval where B(k, M) < 0 is:

0 < k <
1
2

(
−1− 22M +

√
1 + 22M+1(22M − 1)

)1/2M
(A69)

This means that, if M > 1, B(k, M) is negative for arbitrarily small k (in the neighbourhood of
0), which justifies the approximation we have used for ξ(k). Therefore the assumption M > 1 should
be rejected.

As an illustration by a different approach, Figure A1 shows for the FHK-C model, a single value
of the power spectrum, namely s(α), where α is the time scale parameter of the model, as a function of
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the parameter M. As seen in the plot, for M > 1, s(α) < 0 which confirms absence of positive definiteness,
now of the autocorrelation function. (We note that for M > 1 but very close to 1, the plot shows s(α)
slightly positive but in fact it is negative again for some w > α—not shown in the figure).
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Figure A1. Plot of the spectral density value at w = α, standardized by α, for the FHK-C model with
smoothness parameter M varying in [0.1, 10] and for the indicated values of the Hurst parameter H.

Appendix A.2. Specific Stochastic Models and Their Behaviour

In Appendix A.2 we provide detailed tables with mathematical expressions for all the models
used in the paper and detailed graphs with applications of these models. All models include two scale
parameters, α (scale parameter of time with dimensions of [t]) and λ (scale parameter of variance, with
dimensions of [x2]). These are absolutely necessary for dimensional consistency. Some models contain
additional dimensionless shape parameters, such as the smoothness parameter M, the persistence
(Hurst) parameter H, or other as specified in each of the models. The theoretical characteristics depicted
in the graphs are determined from the expressions given in the tables. The time series also depicted
in the graphs, along with and their empirical characteristics, were produced by the SMA model as
described in the text; their length is 1024 in all cases. For facilitating comparisons, in all applications
the parameter α is the same, α = 10 (except if stated otherwise in the caption), while λ is chosen so that
γ(1) = 1.

Appendix A.2.1. Markov Process

The Markov (also known as Ornstein–Uhlenbeck) process is the most convenient as all its
second-order characteristics have simple expressions (see Table A1) and, simultaneously, the most
parsimonious as it includes no other parameter additional to the two necessary scale parameters α and
λ. For these reasons it is the most common in applications. On the other hand, its neutrality in terms
of smoothness and persistence, and more specifically the low entropy production for large time scales,
does not make it a good candidate to model natural behaviours.

The application depicted in Figure A2 corresponds to an unusually high lag-one autocorrelation
(ρ = 0.94). Note that the model does not allow control of autocorrelation once the parameter α

is specified.
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Table A1. Mathematical expressions of the second order characteristics of the Markov process and
their asymptotic properties.

Characteristic Mathematical Expression Local Asymptotic
Properties

Global Asymptotic
Properties Equation

Climacogram γ(k) = 2λ
(k/α)2 (−1 + k/α + e−k/α) γ#(0) = 0 γ#(∞) = −1 (A70)

Climacospectrum
ζ(k) := k(γ(k)−γ(2k))

ln 2

=
λ(−3+2k/α+4e−k/α−e−2k/α)

2(ln 2)k/α

ζ#(0) = 2 ζ#(∞) = 0 (A71)

Entropy production

ϕ(k) =
2λ(1−e−k/α)

γ(k)(k/α)

=
(k/α)(1−e−k/α)

2(−1+k/α+e−k/α)

ϕC(k) =
ϕ(k)γ(k)−ϕ(2k)γ(2k)

γ(k)−γ(2k)

ϕ(0) = 1
ϕC(0) = 3/2 ϕ(∞) = ϕC(∞) = 1/2 (A72)

Autocovariance function c(h) = λe−h/α c#(0) = 0 c#(∞) = −∞ (A73)

Power spectrum s(w) = 4λα
1+(2παw)2 −s#(∞) = 2 −s#(0) = 0 (A74)

Appendix A.2.2. FHK Process with Cauchy-Type Climacogram (FHK-C)

General description of the FHK process with Cauchy-type climacogram (FHK-C) is given in
Section 3.2 and its detailed mathematical expressions and asymptotic processes are given in Table A2.

Table A2. Mathematical expressions of the second order characteristics of the FHK process with
Cauchy-type climacogram (FHK-C) and their asymptotic properties.

Characteristic Mathematical Expression Local Asymptotic
Properties

Global Asymptotic
Properties Equation

Climacogram γ(k) = λ(1 + (k/α)2M)
H−1

M γ#(0) = 0 γ#(∞) = 2H − 2 (A75)

Climacospectrum ζ(k) := k(γ(k)−γ(2k))
ln 2

ζ#(0) = 1 + 2M ζ#(∞) = 2H − 1 (A76)

Entropy production
ϕ(k) = H + 1−H

1+(k/α)2M

ϕC(k) =
ϕ(k)γ(k)−ϕ(2k)γ(2k)

γ(k)−γ(2k)

ϕ(0) = 1
ϕC(0) = 1 + M ϕ(∞) = ϕC(∞) = H (A77)

Autocovariance
function

c(h) = γ(h)×
1+(3H+2MH−2M−1)(h/α)2M+H(2H−1)(h/α)4M

1+2(h/α)2M+(h/α)4M
c#(0) = 0 c#(∞) = 2H − 2 (A78)

Power spectrum
Analytical expression not possible except in
special cases; numerical solution easily
derived from (10)

−s#(∞) = 1 + 2M −s#(0) = 2H − 1 (A79)

This model is very rich as it covers the entire admissible range, by appropriate choice of
the smoothness parameter (0 < M ≤ 1) and persistence parameter (0 ≤ H < 1). It represents smooth
processes (if M > 1⁄2), rough processes (if M < 1⁄2), persistent processes (if H > 1⁄2) and antipersistent
processes (if H < 1⁄2). For M = H = 1

2 it becomes a neutral process, practically identical to Markov.
The FHK process can even produce near pink (1/f ) noise if M = 1 − H ≈ 0, which is associated

with maximal entropy production for large scales and minimal for small scales. In this case the quantity
(k/α)2M is close to 1 and the following approximation holds:

γ(k) =
λ

1 + (k/α)2(1−H)
≈ λ(1 + (H − 1) ln(k/α))

2
(A80)

This can be verified by observing that for x close to 1 the quantities ln x and
(
x2 − 1

)
/
(
x2 + 1

)
are

close to each other, differing only by a factor of O[x − 1]3.
For M = H ≈ 0, we have minimal entropy production for all scales. In this case:

γ(k) = λ
(

1 + (k/α)2H
) H−1

H ≈ λ(k/α)H−1 (A81)
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This can be verified by observing that for x close to 1 the logarithms of the two quantities differ only by
a factor of H O[x− 1]2. We note that both (A80) and (A81) violate the condition for physical consistency
(finite variance).

A set of applications of the FHK-C are depicted in detail in Figures A3–A7, which are also
discussed in Section 3.2. It is observed that the SMA generation scheme performs almost perfectly
even in the most extreme cases and that the climacogram-based characteristics perform better than
the autocorrelation-based ones.

Appendix A.2.3. FHK Process with Dagum-Type Climacogram (FHK-D)

The FHK process with Dagum-type climacogram (FHK-D) has expressions for its second order
characteristics different from those of the Cauchy-type climacogram (see Table A3). However,
the behaviour of the two models, as well as the meaning and ranges of parameters, are the same. For
M = 1 − H the two models become precisely identical. The model is particularly useful in combination
with the FHK-C model as shown below.

Table A3. Mathematical expressions of the second order characteristics of the FHK process with
Dagum-type climacogram (FHK-D) and their asymptotic properties.

Characteristic Mathematical Expression Local Asymptotic
Properties

Global Asymptotic
Properties Equation

Climacogram γ(k) = λ (1− (1 + (k/α)2(H−1))
M

H−1

)
γ#(0) = 0 γ#(∞) = 2H − 2 (A82)

Climacospectrum ζ(k) := k(γ(k)−γ(2k))
ln 2

ζ#(0) = 1 + 2M ζ#(∞) = 2H − 1 (A83)

Entropy production
ϕ(k) = 1− λ−γ(k)

γ(k)
M

(1+(k/α)2−2H)

ϕC(k) =
ϕ(k)γ(k)−ϕ(2k)γ(2k)

γ(k)−γ(2k)

ϕ(0) = 1
ϕC(0) = 1 + M ϕ(∞) = ϕC(∞) = H (A84)

Autocovariance
function

c(h) = λ− (λ− γ(h))×
1+(2+M+2MH)(h/α)2H−2+(1+M)(1+2M)(h/α)4H−4

1+2(h/α)2H−2+(h/α)4H−4

c#(0) = 0 c#(∞) = 2H − 2 (A85)

Power spectrum
Analytical expression not possible except in
special cases; numerical solution easily
derived from (10)

−s#(∞) = 1 + 2M −s#(0) = 2H − 1 (A86)

Appendix A.2.4. FHK Process with Climacogram Equal to the Sum of a Cauchy and a Dagum
Climacograms (FHK-CD)

By summing a Cauchy-type climacogram with M = 1 and a Dagum-type climacogram with
H = 0 we get the FHK-CD model whose second-order characteristics are shown in Table A4. This is
a convenient model, in which the first additive term determines merely the persistence of the process
and the second one the smoothness of the process. It is more convenient that its constituents as
most of mathematical expressions are simpler; in particular, it results in an explicit relationship of
the power spectrum, which however is not very simple. In addition, it is more flexible and richer than
its constituents, as it contains two couples of scale parameters; however, if parsimony is sought, then it
can take the same number of parameters as each of the constituents by setting α1 = α2 and λ1 = λ2 (it is
reminded that one λ and one α are absolutely minimal requirements of parameters).

An application of the model based on real measurements of turbulent velocities is contained in
Section 3.4.

Another option, of the same type, not studied in detail here, would be to sum a Cauchy-type
climacogram with M = 1⁄2 and a Dagum-type climacogram with H = 1⁄2. The climacogram of the thus
formed model is:

γ(k) = λ1(1 + k/α1)
2H−2 + λ2(1− (1 + α2/k)−2M) (A87)

The model (A87), however, can only produce rough persistent processes with 0 < ϕC(0) ≤ 3/2
and 1/2 ≤ ϕC(∞) < 1. Indeed, it is easily shown that in this case ϕC(0) = min(1 + M, 3/2) and
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ϕ(∞) = ϕC(∞) = max(H, 1/2). The turbulent velocity case, studied in Section 3.4, belongs to this
domain and thus the model (A87) could also be used as an alternative.

Table A4. Mathematical expressions of the second order characteristics of the FHK process formed
as the sum of a Cauchy and a Dagum process (FHK-CD) dealing separately with persistence and
smoothness, respectively, and their asymptotic properties.

Characteristic Mathematical Expression Local Asymptotic
Properties

Global Asymptotic
Properties Equation

Climacogram

γ(k) = γ1(k) + γ2(k)

γ1(k) = λ1(1 + (k/α1)
2 )

H−1

γ2(k) = λ2(1− (1 + (k/α2)
−2)
−M

)

γ#(0) = 0 γ#(∞) = 2H − 2 (A88)

Climacospectrum ζ(k) := k(γ(k)−γ(2k))
ln 2

ζ#(0) = 1 + 2M ζ#(∞) = 2H − 1 (A89)

Entropy production

ϕ(k) = ϕ1(k)γ1(k)+ϕ2(k)γ2(k)
γ(k)

ϕ1(k) =
1+H(k/α1)

2

1+(k/α1)
2

ϕ2(k) = 1− M
(1+(k/α2)

2)((1+(k/α2)
−2)

M
−1)

ϕC(k) =
ϕ(k)γ(k)−ϕ(2k)γ(2k)

γ(k)−γ(2k)

ϕ(0) = 1
ϕC(0) = 1 + M ϕ(∞) = ϕC(∞) = H (A90)

Autocovariance
function

c(h) = c1(h) + c2(h)
c1(h) = γ1(h)×

1+(5H−3)(h/α1)
2+H(2H−1)(h/α1)

4

1+2(h/α1)
2+(h/α1)

4

c2(h) = λ2 − (λ2 − γ2(h))×
(1+M)(1+2M)+(2+M)(h/α)2+(h/α)4

1+2(h/α)2+(h/α)4

c#(0) = 0 c#(∞) = 2H − 2 (A91)

Power spectrum Analytical expression too complex,
derived from (10) −s#(∞) = 1 + 2M −s#(0) = 2H − 1 (A92)

Appendix A.2.5. Smooth Process with Generalized Exponential-Type Autocovariance (SE)

By generalizing the power spectrum of a Markov process, as seen in Table A5, we can obtain
a smooth processes (the smooth exponential process—SE). Generalization is made by introducing
an integral parameter n = 0, 1, 2, . . . , where the value n = 0 results precisely in a Markov process.
A notable characteristic of the process is that it corresponds to the absolute maximum of entropy
production for small scales.

Appendix A.2.6. Antipersistent Process with Generalized Exponential-Type Autocovariance (AE)

This is again a generalization of the Markov process by introducing an integral parameter n = 0,
1, 2, . . . , where the value n = 0 results precisely in a Markov process. Its characteristics are shown
in Table A6. The process is antipersistent and its most notable characteristic is that it corresponds to
the absolute minimum of entropy production for large scales. An application of the process is shown
in Figure A8 for n = 2; the hole in the function φC(k) for moderate k is a characteristic of this process.

Appendix A.2.7. Generalized Planck Model (GP)

The generalized Planck (GP) model is obtained by a generalization of Planck’s law of black-body
radiation, introducing an integral parameter n = 0, 1, 2, . . . , where the value n = 1 corresponds to
Planck’s law precisely. The process, whose detailed equations are given in Table A7, is simultaneously
extremely smooth (φC(0) = 2) and extremely antipersistent (φC(∞) = 0). An application for n = 1 is
depicted in Figure A9.
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Figure A2. Characteristic graphs of a time series of length 1024 generated by the Markov model with 
α = 10 and λ = 1.03 (so that γ(1) = 1): (a) plot of the first fifty terms of the at time scales κ = 1 and 20, 
along with the “stamp” φC(k) of the fitted model (green line plotted with respect to the secondary 
axes); (b) empirical and theoretical climacogram and autocovariance function; (c) empirical and 
fitted theoretical climacospectrum and power spectrum. 
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Figure A2. Characteristic graphs of a time series of length 1024 generated by the Markov model with
α = 10 and λ = 1.03 (so that γ(1) = 1): (a) plot of the first fifty terms of the at time scales κ = 1 and 20,
along with the “stamp” φC(k) of the fitted model (green line plotted with respect to the secondary
axes); (b) empirical and theoretical climacogram and autocovariance function; (c) empirical and fitted
theoretical climacospectrum and power spectrum.



Entropy 2017, 19, 581 37 of 50
Entropy 2017, 19, 581 34 of 49 

 
(a)

 
(b)

 
(c)

Figure A3. Characteristic graphs as in Figure A2 but for a time series generated by the FHK-C model 
with γ(1) = 1, α = 10 and H = M = 0.97. 
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Figure A3. Characteristic graphs as in Figure A2 but for a time series generated by the FHK-C model
with γ(1) = 1, α = 10 and H = M = 0.97.
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Figure A4. Characteristic graphs as in Figure A2 but for a time series generated by the FHK-C model 
with γ(1) = 1, α = 10, and H = M = 0.05.  
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Figure A4. Characteristic graphs as in Figure A2 but for a time series generated by the FHK-C model
with γ(1) = 1, α = 10, and H = M = 0.05.
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Figure A5. Characteristic graphs as in Figure A2 but for a time series generated by the FHK-C model 
with γ(1) = 1, α = 10, H = 0.99 and M = 0.01 (close to “pink noise”).  
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Figure A5. Characteristic graphs as in Figure A2 but for a time series generated by the FHK-C model
with γ(1) = 1, α = 10, H = 0.99 and M = 0.01 (close to “pink noise”).
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Figure A6. Characteristic graphs as in Figure A2 but for a time series generated by the FHK-C model 
with γ(1) = 1, α = 10, H = 0.01 and M = 0.99.  
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Figure A6. Characteristic graphs as in Figure A2 but for a time series generated by the FHK-C model
with γ(1) = 1, α = 10, H = 0.01 and M = 0.99.
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Figure A7. Characteristic graphs as in Figure A2 but for a time series generated by the FHK-C model 
with γ(1) = 1, α =100 and H = M = 0.75.  
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Figure A7. Characteristic graphs as in Figure A2 but for a time series generated by the FHK-C model
with γ(1) = 1, α = 100 and H = M = 0.75.
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Figure A8. Characteristic graphs as in Figure A2 but for a time series generated by the AE model 
with γ(1) = 1, α = 10 and n = 2.  
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Figure A8. Characteristic graphs as in Figure A2 but for a time series generated by the AE model with
γ(1) = 1, α = 10 and n = 2.
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Figure A9. Characteristic graphs as in Figure A2 but for a time series generated by the GP model 
with γ(1) = 1, α = 10 and n = 1.  
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Figure A9. Characteristic graphs as in Figure A2 but for a time series generated by the GP model with
γ(1) = 1, α = 10 and n = 1.
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Table A5. Mathematical expressions of the second order characteristics of the SE process and their asymptotic properties.

Characteristic Mathematical Expression Local Asymptotic
Properties

Global Asymptotic
Properties Equation

Climacogram

γ(k) = 2λ
(k/α)2 ×

(
−2n− 1 + aPE

n k/α + e−k/αPPE
n (k/α)

)
where n = 0, 1, 2, . . . , PPE

n (x) is a polynomial and aPE
n

a coefficient, both determined using (23); the first five are:
aPE

0 = 1, PPE
0 (x) = 1

aPE
1 = 2, PPE

1 (x) = 3 + x

aPE
2 = 8

3 , PPE
2 (x) = 5 + 7

3 x + 1
3 x2

aPE
3 = 16

5 , PPE
3 (x) = 7 + 57

15 x + 12
15 x2 + 1

15 x3

aPE
4 = 128

35 , PPE
4 (x) = 9 + 561

105 x + 141
105 x2 + 18

105 x3 + 1
105 x4

γ#(0) = 0 γ#(∞) = −1 (A93)

Climacospectrum ζ(k) := k(γ(k)−γ(2k))
ln 2

ζ#(0) = 2, n = 0
ζ#(0) = 3, n > 0 ζ#(∞) = 0 (A94)

Entropy production

ϕ(k) = 2λ
γ(k)(k/α)

(
aPE

n − e−k/αRPE
n (k/α)

)
where aPE

n are coefficients as above and RPE
n (x) are

polynomials determined using (39); the first five are:
RPE

0 (x) = 1

RPE
1 (x) = 2 + x

RPE
2 (x) = 8

3 + 5
3 x + 1

3 x2

RPE
3 (x) = 48

15 + 33
15 x + 9

15 x2 + 1
15 x3

RPE
4 (x) = 384

105 + 279
105 x + 87

105 x2 + 14
105 x3 + 1

105 x4

ϕC(k) =
ϕ(k)γ(k)−ϕ(2k)γ(2k)

γ(k)−γ(2k)

ϕ(0) = 1
ϕC(0) = 3/2, n = 0
ϕC(0) = 2, n > 0

ϕ(∞) = ϕC(∞) = 1/2 (A95)

Autocovariance function

c(h) = λe−h/αQPE
n (h/α)

where QA
n (x) is a polynomial determined by the power

spectrum (see below) using (22); the first five are:
QPE

0 (x) = 1

QA
1 (x) = 1 + x

QA
2 (x) = 1 + x + 1

3 x2

QA
3 (x) = 1 + x + 6

15 x2 + 1
15 x3

QA
4 (x) = 1 + x + 45

105 x2 + 10
105 x3 + 1

105 x4

c#(0) = 0 c#(∞) = −∞ (A96)

Power spectrum s(w) =
4n+1(n!)2

(2n)!
λα

(1+(2παw)2)
n+1 −s#(∞) = 2(n + 1) −s#(0) = 0 (A97)
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Table A6. Mathematical expressions of the second order characteristics of the AE process and their asymptotic properties.

Characteristic Mathematical Expression Local Asymptotic
Properties Global Asymptotic Properties Equation

Climacogram

γ(k) = 2λ
(k/α)2

(
1

2n−1 − e−k/αPAE
n (k/α)

)
where n = 0, 1, 2 . . . , PAE

0 (x) = −1− xex while for n > 0
PAE

n (x) is a polynomial determined using (23); the first
four are:
PAE

1 (x) = 1 + x

PAE
2 (x) = 1

3 + 1
3 x− 1

3 x2

PAE
3 (x) = 3

15 + 3
15 x− 6

15 x2 + 1
15 x3

PAE
4 (x) = 15

105 + 15
105 x− 45

105 x2 + 14
105 x3 − 1

105 x4

γ#(0) = 0 γ#(∞) = −1, n = 0
γ#(∞) = −2, n > 0

(A98)

Climacospectrum ζ(k) := k(γ(k)−γ(2k))
ln 2

ζ#(0) = 2 ζ#(∞) = 0, n = 0
ζ#(∞) = −1, n > 0

(A99)

Entropy production

ϕ(k) = 2λe−k/α

γ(k) RAE
n (k/α)

where RAE
0 (x) = −1−ex

h , while for n > 0 RAE
n (x) are

polynomials determined using (39); the first four are:
RPE

1 (x) = 1

RPE
2 (x) = 1− 1

3 x
RPE

3 (x) = 1− 9
15 x + 1

15 x2

RPE
4 (x) = 1− 87

105 x + 18
105 x2 − 1

105 x3

ϕC(k) =
ϕ(k)γ(k)−ϕ(2k)γ(2k)

γ(k)−γ(2k)

ϕ(0) = 1
ϕC(0) = 3/2

ϕ(∞) = ϕC(∞) = 1/2, n = 0
ϕ(∞) = ϕC(∞) = 0, n > 0 (A100)

Autocovariance function

c(h) = λe−h/αQA
n (h/α)

where QA
n (x) is a polynomial determined by the power

spectrum (see below) using (22); the first five are:
QA

0 (x) = 1

QA
1 (x) = 1− x

QA
2 (x) = 1− 5

3 x + 1
3 x2

QA
3 (x) = 1− 33

15 x + 12
15 x2 − 1

15 x3

QA
4 (x) = 1− 279

105 x + 141
105 x2 − 22

105 x3 − 1
105 x4

c#(0) = 0 c#(∞) = −∞ (A101)

Power spectrum s(w) =
4n+1(n!)2

(2n)!
λα(2παw)2n

(1+(2παw)2)
n+1 −s#(∞) = 2 −s#(0) = −2n (A102)
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Table A7. Mathematical expressions of the second order characteristics of the Generalized Planck (GP) process and their asymptotic properties.

Characteristic Mathematical Expression Local Asymptotic
Properties Global Asymptotic Properties Equation

Climacogram

γ(k) = γ
(πk/α)

PGP
n (πk/α)

where n = 0, 1, 2, . . . , PGP
n (x) is a function determined using (23)

the first three are:
PGP

0 (x) = 3
(

ln e2x−1
2x − x

)
PGP

1 (x) = 5
2

(
1− 3

x2 +
3

sinh2x

)
PGP

2 (x) = 21
40

(
1− 45

x4 − 30−2 cosh 2x
sinh4x

)
γ#(0) = 0

γ#(∞) = −1
n = 0
γ#(∞) = −2
n > 0

(A103)

Climacospectrum ζ(k) := k(γ(k)−γ(2k))
ln 2

ζ#(0) = 3

ζ#(∞) = 0
n = 0
ζ#(∞) = −1
n > 0

(A104)

Entropy production

φ(k) is determined from (39); the first three terms are:
ϕ0(k) =

1−(πk/α)coth(πk/α)
2πk/α−2 ln((e2πk/α−1)/(2πk/α))

ϕ1(k) =
3−3(πk/α)3coth(πk/α)

3(πk/α)2+((πk/α)2−3)sinh2(πk/α)

ϕ2(k) =
180−15(πk/α)5(11 cosh(πk/α)+cosh(3πk/α))

30(πk/α)4(2+cosh(2πk/α))sinh(πk/α)−(2(πk/α)4+90)sinh5(πk/α)

ϕC(k) =
ϕ(k)γ(k)−ϕ(2k)γ(2k)

γ(k)−γ(2k)

ϕ(0) = 1
ϕC(0) = 2

ϕ(∞) = ϕC(∞) = 1/2, n = 0
ϕ(∞) = ϕC(∞) = 0, n > 0 (A105)

Autocovariance function

c(h) = λ
(πk/α)2 QGP

n (πk/α)

where QA
n (x) is a function determined from (22); the first three are:

QGP
0 (x) = 3

(
1− x2

sinh2x

)
QGP

1 (x) = − 45
x2 +

15x2(2+cosh 2x)
sinh4x

QGP
2 (x) = 945

2x4 − x2(2079+1648 cos h2x++63 cos h4x))
8sinh6x

c#(0) = 0 c#(∞) = −2(n + 1) (A106)

Power spectrum
s(w) =

cnλα(αw)2n+1

e2παw−1
where cn is a normalizing constant making the area of the power
spectrum γ0 = λ; the first three are c0 = 24, c1 = 240, c2 = 504

−s#(∞) = ∞ −s#(0) = −2n (A107)



Entropy 2017, 19, 581 47 of 50

Appendix A.2.8. Harmonic Oscillation Treated as a Stochastic Process

A harmonic oscillation, here expressed as

x(t) =
√

2λ cos (2π(t + b)/T), 0 ≤ b ≤ T (A108)

is very easily modelled as a deterministic process but, when it is superimposed to a stochastic process,
the resulting process is a stochastic process, too. Obviously the second-order characteristics of this
composite process are affected by periodic components and therefore we need to know which equations
should be superimposed to those of the stochastic component (see also [40,41]). These equations are
given in Table A8. Remarkably, the climacogram retains information about the phase (2πb/T) of
the process (through the spikes appearing at k = (m + 1/2)T, m ∈ N0, which depend on the phase).
Note that this information is completely lost in the autocovariance function and the power spectrum.

An application is depicted in Figure A10. The example process is the average of a FHK with
H = M = 0.8 and a harmonic oscillation. It is difficult to identify the presence of the oscillation from
visual inspection of the time series, but the detailed graph of any of the second-order characteristics,
plotted in Figure A10, captures the periodic behaviour. Note that for the application, the generation
was done by the SMA model for the entire (composite) process and not by separating the generation of
the stochastic and the deterministic component. This is an indication of the flexibility and generality of
the generation algorithm.

Table A8. Mathematical expressions of the second order characteristics of a harmonic oscillation treated
as a stochastic process and their asymptotic properties.

Characteristic Mathematical Expression Local Asymptotic
Properties

Global Asymptotic
Properties Equation

Climacogram

γ(k) =


λT2

π2k2 sin2
(
πk
T

)
, k 6=

(
m + 1

2

)
T

2λT2

π2k2 sin2
(

2πb
T

)
, k =

(
m + 1

2

)
T

where T is the period, m ∈ N0 and the
harmonic oscillation is described by
x(t) =

√
2λ cos(2π(t + b)/T), 0 ≤ b ≤ T

γ#(0) = 0 γ#(∞) = −2 (A109)

Climacospectrum ζ(k) := k(γ(k)−γ(2k))
ln 2

ζ#(0) = 3 ζ#(k) does not
converge as k→ ∞

(A110)

Entropy
production

ϕ(k) = (πk/T) cot(πk/T)
ϕC(k) = (2πk/T) cot(πk/T) (for

k 6=
(

m + 1
2

)
T)

ϕ(0) = 1
ϕC(0) = 2

ϕ(k) and ϕC(k) do
not converge as
k→ ∞

(A111)

Autocovariance
function c(h) = λ cos(2πh/T) c#(0) = 0 c#(k) does not

converge as k→ ∞
(A112)

Power
spectrum s(w) = λTδ(Tw− 1) (not applicable) (A113)
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Figure A10. Characteristic graphs as in Figure A2 but for a time series generated by the FHK-C 
model with λ = 1, α = 10, and H = M = 0.8 in which a harmonic oscillation with T = 5α = 50 is 
superimposed.  
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Figure A10. Characteristic graphs as in Figure A2 but for a time series generated by the FHK-C model
with λ = 1, α = 10, and H = M = 0.8 in which a harmonic oscillation with T = 5α = 50 is superimposed.
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