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Abstract: Cameras mounted on vehicles frequently suffer from image shake due to the vehicles’
motions. To remove jitter motions and preserve intentional motions, a hybrid digital image stabilization
method is proposed that uses variational mode decomposition (VMD) and relative entropy (RE). In this
paper, the global motion vector (GMV) is initially decomposed into several narrow-banded modes
by VMD. REs, which exhibit the difference of probability distribution between two modes, are
then calculated to identify the intentional and jitter motion modes. Finally, the summation of the
jitter motion modes constitutes jitter motions, whereas the subtraction of the resulting sum from
the GMV represents the intentional motions. The proposed stabilization method is compared with
several known methods, namely, medium filter (MF), Kalman filter (KF), wavelet decomposition
(MD) method, empirical mode decomposition (EMD)-based method, and enhanced EMD-based
method, to evaluate stabilization performance. Experimental results show that the proposed method
outperforms the other stabilization methods.

Keywords: digital image stabilization; variational mode decomposition; relative entropy; jitter
motion; intentional motion

1. Introduction

Digital cameras are frequently used to record video information. However, cameras mounted
on vehicles frequently suffer from image shaking caused by the vehicles’ motion [1,2]. In particular,
serious image shake occurs in complex terrains or under strenuous motions, thereby blurring the video
sequences captured by cameras. Image shake does not only reduce the accuracy of observation, but
also increases eye strain of users. To solve this problem, image stabilization has been widely studied in
recent years [3–5].

Recent image stabilization systems can be generally classified into four categories: (1) optical
image stabilization systems, which feature a kind of mechanism that stabilizes video sequences by
optical computing with high accuracy and speed [6,7]; (2) electronic image stabilization systems, that
use accelerometers or motion gyroscopes to detect camera motion and then compensate the jitter
motion [8]; (3) orthogonal transfer charge-coupled device (CCD) stabilization systems, which use
CCDs to measure image displacement and shifts the deviation according to the motion of bright
stars [9]; (4) digital image stabilization (DIS), which estimates the global motion vector (GMV) and
removes unintentional motion components from the GMV to generate stable video sequences using
image processing algorithms [10–12]. DIS methods outperform other image stabilization methods
because they are more flexible and are hardware-independent.
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Motion separation is the most critical step in DIS. In signal processing, jitter motion separation
from GMV can be considered a noise removal issue. Intentional motions can be considered useful
signals, whereas jitter motions can be considered noisy signals. Therefore, various traditional filter
methods can be used to remove jitter motions. MF includes a simple mathematical model and is a
widely used scheme [13,14]. In this method, intentional motion vector is smoothed by averaging GMVs
within a window. However, MF performance highly depends on window size. Another traditional
method is KF, which estimates intentional motions using a dynamic motion model [15–17]. KF uses
the current observation and previously estimated state to generate intentional motion. KF can be easily
designed; however, it is unsuitable for nonlinear conditions [18]. WD method is proposed to satisfy
nonlinear conditions [19]. However, the WD method must determine a proper wavelet basis function
in advance, and this task becomes very difficult in complex conditions. Recently, many empirical
mode decomposition (EMD)-based DIS algorithms have been proposed [20,21]. These techniques can
adaptively separate jitter and intentional motions from GMV. However, EMD-based methods present
many defects, such as having no precise mathematical model, sensitivity to noise, and sampling and
mode mixing, which may result in inaccurate separation [22,23].

In the current study, a hybrid DIS method is proposed that uses variational mode decomposition
(VMD) and relative entropy (RE). First, the GMV of video sequence is estimated using the scale-invariant
feature transform (SIFT) feature matching algorithm. Then, the GMV is decomposed into several
band-limit modes via VMD. Intentional motions possess low frequency and high amplitude because
they are much slower than the frame rate, whereas jitter motion exhibit the opposite nature [13,20];
thus, jitter and intentional motions usually exhibit different statistical properties. Therefore, the RE
value between two jitter motion modes is low, whereas the RE value between the intentional and jitter
motion modes is high. Based on this fact, jitter motion modes can be determined. The summation of
jitter motion modes constitutes the jitter motion vector, while the substraction of the resulting sum
from the GMV represents the intentional motion vector. Several algorithms are then compared, and the
experimental results show that the proposed method has better performance than the other algorithms.

The main contributions of this work are listed as follows: (1) A VMD-based motion separation
method is proposed in this work. The VMD divides GMV into several narrow-banded modes, which
has different center frequencies. The modes with different frequency characteristics decomposed
by VMD can reproduce the original GMV. (2) A RE method is proposed to identify relevant modes.
The proposed method utilizes statistical information to represent the internal relationship between
different modes. Thus, compared with other existing methods (Hausdorff distance [24], power
of amplitude [20], correlation coefficients [25]), the proposed method can better differentiate the
intentional and jitter motions.

The rest of this paper is organized as follows: Section 2 introduces the related work, including
the mathematical model of jitter motions, the VMD theory, and the RE theory. Section 3 illustrates
the proposed DIS framework. Section 4 provides the experimental results of the proposed method
compared with other methods. Finally, conclusions are drawn in Section 5.

2. Related Work

2.1. Mathematic Model of Jitter Motion

In a vehicle-mounted camera system, irregular pavement, engine, transmission system, and tire
vibration all cause random jitters in the camera holder, which makes the video sequences unstable.
Among them, the irregular pavement is the most serious factor. The jitter level of the camera pan
has strong relationship with road roughness (RR) [26]. The statistical characteristics of RR can be
illustrated by the power spectral density of pavement displacement:

Gd(n) = Gd(n0)(
n
n0

)
−W

(1)
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where n denotes spatial frequency; n0 is the reference spatial frequency, which can be set as 0.1 m−1;
Gd(n0) is the coefficient of RR; and W is the frequency index, which is set as 2.

Aside from RR, vehicle speed can affect the frequency of jitter motions [27], as expressed as follows:

f = u× n (2)

J( f ) =
1
u
× Gd(n) (3)

where J( f ) is the time spectral of RR, which reflects the frequency of jitter motions; and u represents
the vehicle speed. Equation (3) indicates that the frequency of jitter motions is only relative to vehicle
speed and RR. In general, the sampling frequency of the video frequency is considerably higher than
the frequency of motion vector. Thus, RR and vehicle speed can be assumed invariable within a
short time. Then the frequency of jitter motions will be band-limited with large probability within a
short time.

2.2. VMD Theory

VMD is different from traditional recursive model. This method concurrently searches modes and
their center frequencies. By performing VMD, the signal can be decomposed into several band-limit
modes uk (k = 1, 2, . . . , K), where K is the number of modes. Each mode converges around the
center frequency ωk (k = 1, 2, . . . , K). Therefore, variational problem can be constructed, as shown by
Equation (4) [28]:

min
{uk},{ωk}

{∑
k

∥∥∥∂t[(δ(t) +
j

πt
) ∗ uk(t)]e−jωkt}

∥∥∥2

2

}, s.t. ∑
k

uk = f , (4)

where f is the input signal, δ is Dirac distribution, t is time script, and ∗ denotes convolution.
To solve Equation (4), a quadratic penalty term α and Lagrangian multiplier λ are used to

transform the constrained variational problem into the following unconstrained variational problem:

L({uk}, {ωk}, λ) = α∑
k

∥∥∥∂t[(δ(t) +
j

πt
)e−jωkt]

∥∥∥2

2

+
∥∥∥ f (t)−∑

k
uk(t)

∥∥∥2

2

+ 〈λ(t), f (t)−∑
k

uk(t)〉, (5)

Then, using the alternate direction method of multipliers (by updating the un+1
k , ωn+1

k , and λn+1

alternately), the solution of the optimal problem can be obtained by searching the saddle point of
Equation (5) [29]. VMD is implemented as follows:

(1) Initialize the modes uk, center pulsation ωk, Lagrangian multiplier λ and the maximum iterations
N (5000 in this paper). The cycle index is set to n = 0.

(2) The cycle is started, n = n + 1.
(3) The first inner loop is executed, and uk is updated according to following function:

un+1
k = argmin

uk

L({un+1
i<k }, {u

n
i≥k}, {ω

n
i }, λn). (6)

(4) The second inner loop is executed, and ωk is updated according to the following function:

ωn+1
k = argmin

ωK

L({un+1
i }, {ωn+1

i<k }, {ω
n
i≥k}, λn). (7)

(5) λ is updated according to the following:

λn+1 = λn − τ( f −∑
k

un+1
k ). (8)
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(6) Steps (2)–(5) are repeated until convergence, as follows:

∑
k

‖un+1
k − un

k ‖
2
2

‖un
k ‖

2
2

< ε, (9)

where τ is an update parameter, ε is a small number (0.00001 in this paper). The solution to
update ûk and ωk can be solved in the spectral domain, as follows:

ûn+1
k (ω) =

f̂ (ω)− ∑
i 6=k

ûi(ω) + λ̂(ω)
2

1 + 2α(ω−ωk)
2 , (10)

ωn+1
k =

∞∫
0

ω|ûk(ω)|2dω

∞∫
0
|ûk(ω)|2dω

. (11)

Then, the obtained modes ûk(ω) in frequency domain are transformed into the time domain
via inverse Fourier transform. According to Dragomeretskiy’s theory, there are two important
parameters that has influence on the result: the penalty parameter α and the mode number K [28].
First, Dragomeretskiy suggested that if the principle frequencies of the sub-components are estimated a
priori, then a low α is preferred to use because ωk gains freedom of mobility to the appropriate modes [28].
In the proposed method, a low α (100) is preferred because no prior frequencies of the sub-components
are given. Second, when α is small, either one of the modes is shared by the neighboring modes
(underbinning) or several additional modes will generally consist of texture with a low structure
(overbinning). In the first case, the intentional motion and jitter motion may be in the same mode,
thereby impeding the good results. If the excess modes are decomposed, then the performance will
not be significantly improved, but the computation will be increased. In our simulation, the number 5
can meet the requirement of most tests.

2.3. RE Theroy

In mathematical statistics, RE measures the difference between two probability distributions [30].
For discrete probability distributions P and Q, RE from Q to P is defined as follows:

D(P||Q) = ∑ (P(i) log(P(i)/Q(i))) (12)

The RE between two modes reflects the difference of probability distribution. In most cases, jitter
and intentional motions exhibit different statistical properties. The jitter motion vector is wide-sense
stationary or approximate to the Gaussian distribution, whereas the intentional motion vector is
arbitrary. Thus, the RE value between two jitter motion modes is low, whereas that between the
intentional and jitter motion modes is high.

3. Proposed Digital Image Stabilization Framework

There are three key procedures in the proposed DIS framework, namely, motion estimation,
motion separation, and intentional motion vector reconstruction. During the first step, GMV is
estimated using the SIFT feature point matching algorithm. Subsequently, VMD is applied to
decompose GMV into different modes. RE is used in determining the intentional and jitter motion
modes to separate them. Finally, the summation of the jitter motion modes constitutes the jitter motion
vector, whereas the subtraction of the resulting sum from the GMV represents the intentional motion
vector. The framework of the proposed DIS method is shown in Figure 1.



Entropy 2017, 19, 623 5 of 14
Entropy 2017, 19, 623 5 of 14 

 

Motion estimation VMD

Mode 1

Mode 2

Mode 3

Mode K

.

.

.

Input video GMV
RE

Intentional motion

Jitter motion

Intentional 
motion
modes

Jitter
motion
modes 	

Figure 1. Proposed DIS framework based on VMD and RE. 

3.1. Motion Estimation 

Lowe proposed SIFT in 1999 [31]. SIFT feature is robust against rotation, scaling, and 
illumination changes and considered one of the best feature extraction methods. SIFT searches 
extreme values in the scale space and generates 128 dimensions descriptors. Figures 2 and 3 show the 
SIFT feature points and feature points of matching results of two test images, respectively. SIFT 
feature significantly reduces the probability of mismatch. Nevertheless, false matching can still occur 
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3.1. Motion Estimation

Lowe proposed SIFT in 1999 [31]. SIFT feature is robust against rotation, scaling, and illumination
changes and considered one of the best feature extraction methods. SIFT searches extreme values
in the scale space and generates 128 dimensions descriptors. Figures 2 and 3 show the SIFT feature
points and feature points of matching results of two test images, respectively. SIFT feature significantly
reduces the probability of mismatch. Nevertheless, false matching can still occur among candidate
points, as presented in Figure 3. Matching results may also represent the local motion vector instead of
GMV when SIFT feature points are on the foreground objects. In general, random sample consensus
(RANSAC) is used to solve the mismatching problem [32]. Finally, GMV between two consecutive
frames are calculated by averaging the displacements of different feature points. The motion vector
between arbitrary two frames can be obtained by following method: Designate a frame as the reference
frame, and calculate the motion vectors between the reference frame and current frames.
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3.2. Motion Separation

Although the GMV contains translation, rotation, and scaling motions, the motion can be analyzed
independently [20]. We take 1D translation displacement as an example in this study.



Entropy 2017, 19, 623 6 of 14

After conducting motion estimation, the obtained GMV sequence can be considered as a
time-varying variable G. The amplitude of G can be regard as the motion displacement of the camera.
Consider the following typical GMV:

G(t) = I(t) + J(t), (13)

where G(t) represents GMV, I(t) is the intentional motion vector, and J(t) is the jitter motion vector.
To separate the jitter and intentional motion components, GMV is decomposed via VMD. For a testing
GMV (as Figure 4 shows), the generated modes are shown in Figure 5, which are arranged from low to
high frequencies.
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On the basis of VMD theory, the relationship between the obtained GMV and its modes is
exhibited as follows:

G(t) = ∑
i∈IM

Mi + ∑
i∈JM

Mi, (14)

where M represents the modes; IM and JM are the indexes of intentional and jitter motion
modes, respectively.

3.3. Intentional Motion Vector Reconstruction

In the current study, RE is used to identify relevance among modes. The first mode is an intentional
motion mode because it features the lowest frequency and largest amplitude [21]. Then, REs between
the first mode and the other modes are calculated in sequence (denoted as REi(i = 1, 2, · · · , K)).
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As the intentional motion is much slower than the frame rate, intentional motion shows smooth
transition with high amplitude and low frequency between frames. On the other hand, jitter motion is
characterized by low amplitude and high frequency. In general, jitter motions can be considered to
approximately obey Gaussian distribution [10,15]. Therefore, RE value will remain at low levels when
the two modes are both intentional motion components; otherwise, RE value will remain at high levels.
The modes exhibit low RE values with the first mode being dominated by intentional motion, whereas
the remaining modes are dominated by jitter motion.

The corresponding REs for the modes presented in Figure 5 are shown in Figure 6. RE1 is the
smallest, and RE2 stays at a low level. However, a sudden increase is observed at RE3, and the
subsequent REs all stay at a high level. From the preceding analysis, the modes behind the third mode
correspond to jitter motions (including the third mode), whereas the first and second modes comprise
intentional motions.
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The following procedures describe the DIS steps:

(1) Calculate the GMV by SIFT point matching algorithm.
(2) Decompose the GMV into modes via VMD.
(3) Calculate the REs between the first mode and other modes.
(4) If REi is smaller than a threshold T (usually, T = 1

2 ×max(REi) can meet the demands of most
situations), then the mode Mi is considered an intentional motion mode.

(5) Obtain the reconstructed intentional motion by summing the intentional motion modes as follows:

Ĩ(t) = ∑
i∈IM

Mi = G(t)− ∑
i∈JM

Mi. (15)

4. Experimental Results and Discussions

4.1. Performance of the RE

To illustrate the effectiveness of RE, three different tests are performed to evaluate mode separation
performance. Given a known clean signal fh(t), contaminate the signal with different kind of noises
(including the Gaussian noise, office noise, and factory noise) as follows:

f (t) = fh(t) + n(t), (16)

where n(t) is the noise signal with different input SNRs.
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The probability density function of Gaussian noise obeys the Gaussian distribution, which
includes a fixed mean and variance. Office noise consists of many signals with different frequencies
and high amplitude. Factory noise is caused by mechanical shock, rub impact, and air disturbance and
includes numerous intermittent and impulse noises. For signals with different noises, we compare
several selection criteria, including the Hausdorff distance [24], power amplitude [20], and correlation
coefficient [25]. The evaluation steps are as follows. Noises are downloaded from NoiseX-92 database.
Signal length is set as 200.

(1) Noises are added to the original clean signal fh(t), and input SNR ranges from −8 dB to 8 dB
with interval of 2 dB.

(2) Noisy signals are decomposed into several modes via VMD.
(3) According to different selection criteria, the modes are classified.
(4) The reconstructed clean signals are calculated by summing the relevant modes.
(5) Output SNRs are calculated for different reconstructed signals:

SNR = 10× log10(P/P), (17)

where P and P correspond to the powers of the original and reconstructed signals, respectively.
The plots of input SNR (SNRin) versus output SNR (SNRout) for different noisy signals are shown

in Figures 7–9, respectively. These figures showed that the SNRouts of the RE selection criteria are
higher than other selection criteria, which indicates that the RE selection criteria outperforms the other
selection criteria.
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4.2. Performance of the VMD-RE Method in DIS

Several simulation tests are performed to verify the effectiveness of the proposed VMD-RE method.
A camera that mounted on holder mechanism is used to capture the video sequences, as shown in
Figure 10. In this paper, we use the SNR and root mean square error (RMSE) [21]:

SNR = 10× log10(P/P), (18)

RMSE =
1
N

√√√√ N

∑
n=1

(xn − xn)
2, (19)

where P and P are the powers of the ground truth and the resulted intentional motion, respectively.
N is the number of sample points; and xn and xn are the amplitude of each point in the ground truth
and reconstructed motion vectors, respectively.
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Four typical unstable scouting video sequences are tested. For Test 1, intentional motion is
approximately linear, and jitter motion obeys a Gaussian distribution with fixed mean and variance.
For Test 2, intentional motion contains multi-frequency components, and jitter motion obeys a Gaussian
distribution. For Test 3, the level of jitter motion varies, and variance is low at former frames and
increases along with time. For Test 4, the amplitude of jitter motion is maintained at high levels
compared with that of intentional motions, and the level of jitter motion is time-varying. Experimental
tests are performed using MATLAB® R2013a running on a PC equipped with a 2.60 GHz Intel Core
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i7-6700HQ CPU with 8 GB RAM. As shown in Figures 11–14, four pairs of images are extracted from
different video sequences. The displacement between two frames can be obtained using the SIFT
feature point matching algorithm. The first picture in each group is the reference frame, whereas
the second picture is the current frame. The blue lines show the image matching results. The actual
GMV, ground truth intentional motions, and retrieved intentional motions are shown in Figures 15–18.
Tables 1 and 2 show the RMSE and SNR values obtained using six different DIS algorithms, including
the MF [11], KF [15], wavelet decomposition (WD) method [19], EMD-based method [20], enhanced
EMD-based (E-EMD) method [21], and the proposed method.
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Table 1. RMSE values of the DIS algorithms.

Method MF KF WD EMD E-EMD VMD

Test 1 0.0188 0.0161 0.0110 0.0151 0.0120 0.0071
Test 2 0.0384 0.0371 0.2125 0.0794 0.0337 0.0319
Test 3 0.0927 0.1131 0.1646 0.0838 0.0547 0.0426
Test 4 0.1038 0.1351 0.0815 0.0692 0.0670 0.0610

Table 2. SNR (DB) of the DIS algorithms.

Method MF KF WD EMD E-EMD VMD

Test 1 17.9043 19.5021 22.5678 19.8240 21.8030 26.3579
Test 2 27.4209 27.9321 12.5721 21.1245 28.5721 29.0528
Test 3 22.0902 20.3511 17.1060 22.9722 26.6741 28.8509
Test 4 10.0575 8.0307 12.1508 13.5821 13.8527 14.6741

First, from Tables 1 and 2, we can conclude that the MF generates the poorest results in Tests 1
and 2, KF in Test 4, and WD in Test 3. These three kinds of methods show unstable performances.
MF performance highly depends on window size [11]. Larger window size generates a smoother
intentional motion vector and vice versa. In this paper, window size is set as 5. Window size is accurate
in some conditions but not in others. KF is not adaptive to changing jitter levels in Tests 3 and 4,
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and stabilization results are insufficiently accurate. KF requires that observation and transition noises
obey the Gaussian distribution, and variances must be constant. However, in many cases, transition
variance is time-varying, causing KF to generate poor results in Test 4. The WD method can hardly
select an appropriate wavelet basis function applicable in all conditions [19]. The performance may
improve if basis function is well-selected and vice versa. These three traditional methods cannot be
adapted to changing conditions and cannot be used in complex vehicle-mounted DIS systems. Second,
comparing mode decomposition methods with traditional methods, we can conclude that mode
decomposition methods generally perform better than traditional ones. Nevertheless, we also note that
EMD method performs well in Tests 3 and 4 but poorly in Tests 1 and 2. This result can be attributed to
the difficulty of determining the relevant model in complex condition because frequency information
of intentional and jitter motions may overlap (mode mixing). E-EMD method generates better results
than the traditional EMD method (mode mixing problem can be alleviated by adding white noise series
to the targeted data and averaged corresponding intrinsic mode functions). However, compared with
the proposed method, such performance remains at a disadvantage. By contrast, the proposed method
calculates jitter motion variance and generates considerably better results than the other methods.
The proposed method produces the lowest RMSE values and the highest SNR values in all tests.

5. Conclusions

This study proposed a DIS method based on VMD and RE. GMV is estimated using a SIFT feature
point matching algorithm. Then, GMV is decomposed via VMD. According to the RE value between
modes, relevant modes of intentional and jitter motions are determined. Performance of the proposed
method is compared with several state-of-the-art methods. Simulation results show better performance
of the proposed method than other related methods based on quantitative comparisons of RMSE and
SNR values.
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