Discussing Landscape Compositional Scenarios Generated with Maximization of Non-Expected Utility Decision Models Based on Weighted Entropies
Abstract
:1. Introduction
2. Methodology
2.1. Background
2.2. Decision Models
2.2.1. The Case for
2.2.2. The Case for
2.3. Decision Space
3. Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vranken, I.; Baudry, J.; Aubinet, M.; Visser, M.; Bogaert, J. A review on the use of entropy in landscape ecology: Heterogeneity, unpredictability, scale dependence and their links with thermodynamics. Landsc. Ecol. 2015, 30, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Lindley, D.V. On a measure of the information provided by an experiment. Ann. Math. Stat. 1956, 27, 986–1005. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Kornreich, P. Mathematical Models of Information and Stochastic Systems; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Hartley, R.V.L. Transmission of information. Bell Syst. Tech. J. 1927, 7, 535–563. [Google Scholar] [CrossRef]
- MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 1955, 36, 533–536. [Google Scholar] [CrossRef]
- Margalef, R. Information Theory in Ecology; Hall, W., Translator; Memorias de la Real Academia de Ciencias y Artes de Barcelona: Barcelona, Spain, 1957; Volume 23, pp. 373–449. [Google Scholar]
- Brillouin, L. Physical entropy and information. J. Appl. Phys. 1951, 22, 338–343. [Google Scholar] [CrossRef]
- Margalef, R. On certain unifying principles in ecology. Am. Nat. 1963, 97, 357–374. [Google Scholar] [CrossRef]
- Pielou, E.C. Shannon’s formula as a measure of specific diversity: Its use and misuse. Am. Nat. 1966, 100, 463–465. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Rao, C.R. Diversity and dissimilarity coefficients: A unified approach. Theor. Popul. Biol. 1982, 21, 24–43. [Google Scholar] [CrossRef]
- Zaller, J.G.; Kerschbaumer, G.; Rizzoli, R.; Tiefenbacher, A.; Gruber, E.; Schedl, H. Monitoring arthropods in protected grasslands: Comparing pitfall trapping, quadrat sampling and video monitoring. Web Ecol. 2015, 15, 15–23. [Google Scholar] [CrossRef]
- Rènyi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkley, CA, USA, 20 June–30 July 1961; Volume 1, pp. 547–561.
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Chiu, C.-H.; Chao, A. Distance-based functional diversity measures and their decomposition: A framework based on Hill numbers. PLoS ONE 2014, 9, e100014. [Google Scholar] [CrossRef] [PubMed]
- Ricotta, C. A semantic taxonomy for diversity measures. Acta Biotheor. 2007, 55, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.; Fürst, C.; Koschke, L.; Makeshin, F. A contribution towards a transfer of the ecosystem service concept to landscape planning using landscape metrics. Ecol. Indic. 2012, 21, 30–38. [Google Scholar] [CrossRef]
- Uuemaa, E.; Antrop, M.; Roosaare, J.; Marja, R.; Mander, U. Landscape metrics and indices: An overview of their use in landscape research. Living Rev. Landsc. Res. 2009, 3, 1–28. [Google Scholar] [CrossRef]
- Ramezani, H. A note on the normalized definition of Shannon’s diversity index in landscape pattern analysis. Environ. Nat. Resour. Res. 2012, 2, 54–60. [Google Scholar] [CrossRef]
- Diaz-Varela, E.; Roces-Diaz, J.V.; Álvarez-Álvarez, P. Detection of landscape heterogeneity at multiple scales: Use of the Quadratic Entropy index. Landsc. Urban Plan. 2016, 153, 149–159. [Google Scholar] [CrossRef]
- Carranza, M.L.; Acosta, A.; Ricotta, C. Analyzing landscape diversity in time: The use of Rènyi’s generalized entropy function. Ecol. Indic. 2007, 7, 505–510. [Google Scholar] [CrossRef]
- Verbič, M.; Slabe-Erker, R. An econometric analysis of willingness-to-pay for sustainable development: A case study of the Volčji Potok landscape area. Ecol. Econ. 2009, 68, 1316–1328. [Google Scholar] [CrossRef] [Green Version]
- Satake, A.; Janssen, M.A.; Levin, S.A.; Iwasa, Y. Synchronized deforestation induced by social learning under uncertainty of forest-use value. Ecol. Econ. 2007, 63, 452–462. [Google Scholar] [CrossRef]
- Smith, J.W.; Siderelis, C.; Moore, R.L.; Anderson, D.H. The effects of place meanings and social capital on desired forest management outcomes: A stated preference experiment. Landsc. Urban Plan. 2012, 196, 207–218. [Google Scholar] [CrossRef]
- Shaw, W.D.; Woodward, R.T. Why environmental and resource economists should care about non-expected utility models. Resour. Energy Econ. 2008, 30, 66–89. [Google Scholar] [CrossRef]
- Bartzack, A.; Chilton, S.; Meyerhoff, J. Wildfires in Poland: The impact of risk preferences and loss aversion on environmental choices. Ecol. Econ. 2015, 116, 300–309. [Google Scholar]
- Starmer, C. Developments in non-expected utility theory: The hunt for a descriptive theory of choice under risk. J. Econ. Lit. 2000, 38, 332–382. [Google Scholar] [CrossRef]
- Levy, H. Stochastic Dominance, 3rd ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Wu, G.; Gonzalez, R. Nonlinear decision weights in choice under uncertainty. Manag. Sci. 1999, 45, 74–85. [Google Scholar] [CrossRef]
- Weber, E.U. From subjective probabilities to decision weights: The effect of asymmetric loss functions on the evaluation of uncertain outcomes and events. Psychol. Bull. 1994, 115, 228–242. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, W. Normalized expected utility-entropy measure of risk. Entropy 2014, 16, 3590–3604. [Google Scholar] [CrossRef]
- Friedman, C.; Huang, J.; Sandow, S. A utility-based approach to some information measures. Entropy 2007, 9, 1–26. [Google Scholar] [CrossRef]
- Yu, J.-R.; Lee, W.-Y.; Chiou, W.-J.P. Diversified portfolios with different entropy measures. Appl. Math. Comput. 2014, 241, 47–63. [Google Scholar] [CrossRef]
- Belis, M.; Guiasu, S. A quantitative-qualitative measure of information in cybernetic systems. IEEE Trans. Inf. Theory 1968, 14, 593–594. [Google Scholar] [CrossRef]
- Aggarwal, N.L.; Picard, C.-F. Functional equations and information measures with preference. Kybernetika 1978, 14, 174–181. [Google Scholar]
- Emptoz, H. Information de Type β Intégrant un Concept d’Utilité. C. R. Acad. Sci. Paris 1976, 282, 911–914. (In French) [Google Scholar]
- Guiasu, R.C.; Guiasu, S. Conditional and weighted measures of ecological diversity. Int. J. Uncertain. Fuzz. Knowl. Based Syst. 2003, 11, 283–300. [Google Scholar] [CrossRef]
- Guiasu, R.C.; Guiasu, S. The weighted Gini-Simpson index: Revitalizing an old index of biodiversity. Int. J. Ecol. 2012. [Google Scholar] [CrossRef]
- Casquilho, J.P. A methodology to determine the maximum value of weighted Gini-Simpson index. SpringerPlus 2016, 5, 1143. [Google Scholar] [CrossRef] [PubMed]
- Subburayalu, S.; Sydnor, T.D. Assessing street tree diversity in four Ohio communities using the Weighted Simpson index. Landsc. Urban Plan. 2012, 106, 44–50. [Google Scholar] [CrossRef]
- Casquilho, J.P. Discussing an expected utility and weighted entropy framework. Nat. Sci. 2014, 6, 545–551. [Google Scholar] [CrossRef]
- Casquilho, J.P. Combining expected utility and weighted Gini–Simpson index into a non-expected utility device. TEL 2015, 5, 185–195. [Google Scholar] [CrossRef]
- Alatalo, R.V. Problems in the measurement of evenness in ecology. Oikos 1981, 37, 199–204. [Google Scholar] [CrossRef]
- Allen, C.R.; Gunderson, L.H.; Holling, C.S. Commentary on part three articles. In Foundations of Ecological Resilience; Gunderson, L.H., Allen, C.R., Holling, C.S., Eds.; Island Press: Washington DC, USA, 2010; pp. 301–307. [Google Scholar]
- Casquilho, J.A.P. Ecomosaico Florestal: Composição, Índices de Informação e Abdução. Rev. Árvore 2012, 36, 321–329. (In Portuguese) [Google Scholar] [CrossRef]
- Aretano, R.; Petrosillo, I.; Zacarelli, N.; Semeraro, T.; Zurlini, G. People perception of landscape change effects on ecosystem services in small Mediterranean islands: A combination of subjective and objective assessments. Landsc. Urban Plan. 2013, 112, 63–73. [Google Scholar] [CrossRef]
- Li, H.; Wu, J. Landscape pattern analysis: Key issues and challenges. In Key Topics in Landscape Ecology; Wu, J., Hobbs, R., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 39–61. [Google Scholar]
- Schippers, P.; van der Heide, C.M.; Koelewijn, H.P.; Schouten, M.A.H.; Smulders, R.M.J.M.; Cobben, M.M.P.; Sterk, M.; Vos, C.C.; Verboom, J. Landscape diversity enhances the resilience of populations, ecosystems and local economy in rural areas. Landsc. Ecol. 2015, 30, 193–202. [Google Scholar] [CrossRef]
- Duarte, I.; Rego, F.C.; Casquilho, J.P.; Arsénio, P. A Relevance Index for the habitat areas of Natura 2000 network based on their rarity and representativeness. Ecol. Ind. 2016, 61, 202–213. [Google Scholar] [CrossRef]
- Hansen, V.L. Geometry in Nature; A K Peters Ltd.: Wellesley, MA, USA, 1993. [Google Scholar]
- Volterra, V. Principes de biologie mathématique. Acta Biotheor. 1937, 3, 1–36. (In French) [Google Scholar] [CrossRef]
- Nowak, M.A. The evolutionary dynamics of HIV infections. In Progress in Mathematics; Joseph, A., Mignot, F., Murat, F., Prum, B., Rentschler, R., Eds.; Birkhäuser Verlag: Basel, Switzerland, 1994; Volume 120, pp. 311–326. [Google Scholar]
- Millington, J.D.A.; Wainwright, J. Comparative approaches for innovation in agent-based modelling of landscape change. Land 2016, 5, 13. [Google Scholar] [CrossRef]
Utilities | Forest Habitat Type | ||||
---|---|---|---|---|---|
Qr | Eg | Pp | Qs | ||
(€/ha) | 112 | 136 | 494 | 618 | |
10.583 | 11.662 | 22.226 | 24.860 | ||
12,544.0 | 18,496.0 | 2.4404×10⁵ | 3.8192×10⁵ |
Decision Model | Forest Habitat Type—Optimal Proportions | ||||
---|---|---|---|---|---|
Qr | Eg | Pp | Qs | ||
1 | 0.02 | 0.05 | 0.43 | 0.50 | |
1 | 0 | 0 | 0.44 | 0.56 | |
0.5 | 0.11 | 0.14 | 0.35 | 0.40 | |
0.5 | 0 | 0 | 0.47 | 0.53 | |
2 | 0 † | 0 ‡ | 0.42 | 0.58 | |
2 | 0 | 0 | 0.39 | 0.61 |
Decision Model | Measures | |||
---|---|---|---|---|
530.46 | 2.5536 | 1354.6 | ||
563.44 | 1.9856 | 1118.8 | ||
451.46 | 3.4973 | 1578.9 | ||
559.72 | 1.9964 | 1117.4 | ||
565.92 | 1.9745 | 1117.4 | ||
569.64 | 1.9518 | 1111.8 | ||
340.00 | 4.0000 | 1360.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casquilho, J.P.; Rego, F.C. Discussing Landscape Compositional Scenarios Generated with Maximization of Non-Expected Utility Decision Models Based on Weighted Entropies. Entropy 2017, 19, 66. https://doi.org/10.3390/e19020066
Casquilho JP, Rego FC. Discussing Landscape Compositional Scenarios Generated with Maximization of Non-Expected Utility Decision Models Based on Weighted Entropies. Entropy. 2017; 19(2):66. https://doi.org/10.3390/e19020066
Chicago/Turabian StyleCasquilho, José Pinto, and Francisco Castro Rego. 2017. "Discussing Landscape Compositional Scenarios Generated with Maximization of Non-Expected Utility Decision Models Based on Weighted Entropies" Entropy 19, no. 2: 66. https://doi.org/10.3390/e19020066
APA StyleCasquilho, J. P., & Rego, F. C. (2017). Discussing Landscape Compositional Scenarios Generated with Maximization of Non-Expected Utility Decision Models Based on Weighted Entropies. Entropy, 19(2), 66. https://doi.org/10.3390/e19020066