

 Using k-Mix-Neighborhood Subdigraphs to Compute Canonical Labelings of Digraphs

Using k-Mix-Neighborhood Subdigraphs to Compute Canonical Labelings of Digraphs

Entropy 2017, 19(2), 79; doi:10.3390/e19020079

Article

Using k-Mix-Neighborhood Subdigraphs to Compute Canonical Labelings of Digraphs

Jianqiang Hao 1,2,*, Yunzhan Gong 1, Yawen Wang 1, Li Tan 2 and Jianzhi Sun 2

1

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, 100876 Beijing, China

2

School of Computer and Information Engineering, Beijing Technology and Business University, 100048 Beijing, China

*

Correspondence: Tel.: +86-10-6898-5704

Academic Editors: Raúl Alcaraz Martínez and Kevin H. Knuth

Received: 18 October 2016 / Accepted: 15 February 2017 / Published: 22 February 2017

Abstract:

This paper presents a novel theory and method to calculate the canonical labelings of digraphs whose definition is entirely different from the traditional definition of Nauty. It indicates the mutual relationships that exist between the canonical labeling of a digraph and the canonical labeling of its complement graph. It systematically examines the link between computing the canonical labeling of a digraph and the k-neighborhood and k-mix-neighborhood subdigraphs. To facilitate the presentation, it introduces several concepts including mix diffusion outdegree sequence and entire mix diffusion outdegree sequences. For each node in a digraph G, it assigns an attribute m_NearestNode to enhance the accuracy of calculating canonical labeling. The four theorems proved here demonstrate how to determine the first nodes added into [image: there is no content]. Further, the other two theorems stated below deal with identifying the second nodes added into [image: there is no content]. When computing [image: there is no content], if [image: there is no content] already contains the first i vertices [image: there is no content], Diffusion Theorem provides a guideline on how to choose the subsequent node of [image: there is no content]. Besides, the Mix Diffusion Theorem shows that the selection of the [image: there is no content]th vertex of [image: there is no content] for computing [image: there is no content] is from the open mix-neighborhood subdigraph [image: there is no content] of the nodes set [image: there is no content]. It also offers two theorems to calculate the [image: there is no content] of the disconnected digraphs. The four algorithms implemented in it illustrate how to calculate [image: there is no content] of a digraph. Through software testing, the correctness of our algorithms is preliminarily verified. Our method can be utilized to mine the frequent subdigraph. We also guess that if there exists a vertex [image: there is no content] satisfying conditions [image: there is no content] for each [image: there is no content], then [image: there is no content] for [image: there is no content].

Keywords:

canonical labeling; k-mix-neighborhood subdigraph; algorithm; adjacency matrix; mix diffusion degree sequence; entire mix diffusion degree sequences

1. Introduction

A canonical labeling [1,2,3] of a graph, also called a canonical form [4], a canonical code [5], or an optimum code [6], is a unique string corresponding to the graph and is lexicographically smallest or largest according to the different definitions used in the studies. Two digraphs are isomorphic if and only if they have the same canonical labelings. Until now, the computation of the canonical labeling as the digraph isomorphism problem remains an unsolved problem in computational complexity theory in the sense that no polynomial-time algorithm exists for calculating the canonical labeling of a digraph. Therefore, the computation of the canonical labeling is NP-hard [4,7].

Numerous methods have emerged to calculate the canonical labelings of undirected graphs. However, different methods use distinct definitions of the canonical labeling. Given a graph with n vertices, Huan et al. concatenates the lower triangular entries (including the diagonal entries) of its adjacency matrix to produce its canonical labeling [8]. Kuramochi and Karypis construct the canonical labeling by concatenating the columns of the upper-triangular portion of its adjacency matrix [9,10]. To create the canonical labeling, He et al. concatenate the rows of its adjacency matrix to form a [image: there is no content] binary number [11,12].

Babai and Luks pioneered the establishment of a general group-theoretic approach to compute canonical labeling [4]. However, combinatorial methods have worked well in various special cases. For random graphs, Babai et al. produce a canonical labeling with high probability [4,13]. Arvind et al. propose two corresponding logspace algorithms for partial 2- and 3-Trees [7,14].

Jianqiang Hao establishes a new theoretical framework to compute the canonical labeling [image: there is no content] of undirected graphs by defining a set of concepts useful for classifying graphs [15].

Currently, Nauty [1,16,17,18] is the most popular and practical tools for considering the automorphism group and the canonical label of a graph or digraph. On isomorphism testing, Nauty is more efficient than Ullmann [19]. It has almost become the industry standard used to calculate the canonical label, as well as the automorphism group. For computing the canonical labeling and automorphism group, Nauty and [20] use the depth-first search to traverse the potential intermediate nodes in the search tree. The nodes of the search tree generated by Nauty are equitable ordered partitions of nodes in G. Nauty iteratively refines partitioning nodes until places the nodes that have the same properties into an automorphism orbit. As the partition refinement becomes finer and smaller, it automatically creates the canonical label. Nauty also requires exponential time to compute the canonical labeling for a given Miyazaki graph [21]. Tener and Deo [22] made improvements for dealing with the problem.

Besides Nauty, Bliss [3,23], Traces [2], and Conauto [24] are also state-of-the-art tools for graphs isomorphism testing. Based on backtracking, individualization of vertices, and partition refinement, Bliss [3,23] is an efficient canonical labeling tool for handling large and sparse graphs. Katebi et al. [25] can find the symmetry while calculating the canonical labeling. To fix the glitch of Nauty, Traces [2] uses the strategy of breadth-first search to find the automorphism group and the canonical labeling. Conauto also uses the basic individualization/refinement technique and is very fast for random graphs and several families of hard graphs.

For the improvement of performance, existing algorithms commonly utilize backtracking and orbit partitioning technique to avoid repeatedly visiting the same vertices, as well as manage to reduce the accessed nodes in the search tree. McKay and Piperno provides a comprehensive discussion of the issue [18].

Nauty dominated the field for several decades. As a result, an in-depth study for the canonical labeling has been confined to the theoretical framework of Nauty. This means that people just follow the research trajectory of nauty to extend and establish further study. When the graph under consideration contains a large number of automorphisms, it is difficult to verify the correctness of the canonical labeling obtained by performing Nauty according to the standard of Nauty.

Although many algorithms have emerged to calculate the canonical labelings of undirected graphs, to our best knowledge no algorithm other than Nauty exists for computing the canonical labelings of digraphs.

Throughout the paper, the canonical labeling [image: there is no content] of a digraph is the lexicographically largest code obtained by concatenating the rows of the associated adjacency matrix (see Definition 7). Our definition of canonical labeling is entirely different from that of Nauty.

Although a few algorithms also give the same definition of the canonical labeling as described in Definition 7, their primary purpose is not to study how to construct a canonical labeling of a digraph, but for other intentions such as to mine the frequent subdigraphs. As a result, they can only work for some restricted undirected graph classes. Jianqiang Hao utilizes the [image: there is no content] to calculate the first node [image: there is no content] added into [image: there is no content] of simple undirected graphs [15]. Based on current knowledge and Definition 7, a general algorithm for computing the canonical labelings of digraphs is not available.

This paper focuses on the development of general theory and methods to calculate the canonical labeling [image: there is no content] of digraphs. In the rest of this paper, Section 2 establishes some basic terminology and preliminary information. Section 3 describes the results accompanied by some discussion. Section 4 presents our algorithms for computing the canonical labeling of digraphs. Section 5 displays the implementation of our algorithms and evaluates our approach through many examples. Finally, Section 6 comments on our results and future work.

2. Preliminaries

In this section, we provide a brief review of the fundamental information used throughout the paper. A more comprehensive presentation can be found in most standard textbooks [26,27]. A directed graph (or digraph) [image: there is no content], [image: there is no content] consists of a nonempty set [image: there is no content] of vertices (or nodes) and a set [image: there is no content] of directed edges (or arcs). A directed edge associated with the ordered pair [image: there is no content] is said to start at u and end at v. We also say that the vertex u is its tail and the vertex v is its head. Throughout the paper, we denote [image: there is no content] by [image: there is no content]. For the edge [image: there is no content], the vertex v is said to be adjacent from the vertex u, the vertex u is said to be adjacent to the vertex v, and the edge [image: there is no content] is said to be incident from the vertex u and incident to the vertex v. The directed distance [image: there is no content] from vertex u to vertex v in G is the length of the shortest directed path from u to v [28], if any; otherwise [image: there is no content].

This paper deals with only finite simple digraphs, which have no loops and no multiple edges. For each [image: there is no content], let [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] denote the outindegree, outdegree, indegree, and degree of u respectively, and omit the subscript G when no ambiguity can arise. Denote by [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] the maximum degree, the maximum outindegree, the maximum outdegree, and the maximum indegree of all vertices of a graph G, respectively.

Denote by [image: there is no content], [image: there is no content], ⋯, [image: there is no content] the degree sequence of G, by [image: there is no content], [image: there is no content], ⋯, [image: there is no content] the degree sequence of a subset [image: there is no content] with [image: there is no content], [image: there is no content], and by [image: there is no content], [image: there is no content], ⋯, [image: there is no content] the degree sequence of a subdigraph [image: there is no content] with [image: there is no content], [image: there is no content], and omit the subscript G when no ambiguity can arise.

In addition, denote by [image: there is no content], [image: there is no content], ⋯, [image: there is no content] the outdegree sequence of G, by [image: there is no content], [image: there is no content], ⋯, [image: there is no content] the outdegree sequence of a subset [image: there is no content] with [image: there is no content], [image: there is no content], and by [image: there is no content], [image: there is no content], ⋯, [image: there is no content] the outdegree sequence of a subdigraph [image: there is no content] with [image: there is no content], [image: there is no content], and omit the subscript G when no ambiguity can arise.

Similarly, denote by [image: there is no content], [image: there is no content], ⋯, [image: there is no content] the indegree sequence of G, by [image: there is no content], [image: there is no content], ⋯, [image: there is no content] the indegree sequence of a subset [image: there is no content] with [image: there is no content], [image: there is no content], and by [image: there is no content], [image: there is no content], ⋯, [image: there is no content] the indegree sequence of a subdigraph [image: there is no content] with [image: there is no content], [image: there is no content], and omit the subscript G when no ambiguity can arise.

Throughout this paper, unless otherwise specified, any given degree sequence is non-increasing. Throughout this paper, let [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] where [image: there is no content].

Definition 1.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. The vertex-induced subdigraph on [image: there is no content]of G is the subdigraph with the nodes set [image: there is no content]together with any directed edge whose endpoints are both in [image: there is no content], denoted by [image: there is no content].

Definition 2.

Let [image: there is no content], [image: there is no content]and [image: there is no content], [image: there is no content]be two digraphs with n nodes. If there exists a bijection [image: there is no content]such that [image: there is no content]if and only if [image: there is no content]. We say f is an isomorphic map of [image: there is no content]. Furthermore, we say that the graph G and H are isomorphic, denoted by [image: there is no content]. An isomorphic map f of G onto itself is said to be an automorphism of G.

Definition 3.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes [image: there is no content], [image: there is no content], ⋯, [image: there is no content]. The adjacency matrix [image: there is no content]of G is a [image: there is no content]-square matrix such that [image: there is no content]if there is an edge [image: there is no content]and [image: there is no content]otherwise.

The adjacency matrix for a digraph G does not have to be symmetric, because there may not be an edge [image: there is no content], when there is an edge from [image: there is no content]. In addition, [image: there is no content] for every [image: there is no content] since G has no loops.

Given two vectors [image: there is no content], [image: there is no content] in [image: there is no content] and [image: there is no content], [image: there is no content], ⋯, [image: there is no content] in [image: there is no content], the question arises as to how to decide which one is greater. The following conventions apply when comparing two vectors.

Definition 4.

Let [image: there is no content], [image: there is no content]and [image: there is no content]be two vectors in N (the collection of natural numbers) with [image: there is no content]and [image: there is no content], respectively. Then, defined the lexicographic order for the two vectors as follows:

	1.

	
[image: there is no content], if [image: there is no content]and [image: there is no content]for all [image: there is no content].

	2.

	
[image: there is no content]if and only if either of the following is true.

	(a)

	
[image: there is no content]for [image: there is no content], [image: there is no content].

	(b)

	
[image: there is no content]for [image: there is no content]and [image: there is no content].

Definition 5.

Let [image: there is no content], [image: there is no content]and [image: there is no content]be two vectors with [image: there is no content]and [image: there is no content]respectively, with each [image: there is no content], [image: there is no content]being a vector in N (the collection of natural numbers). Then, defined the lexicographic order for the two vectors as follows:

	1.

	
[image: there is no content], if [image: there is no content]and [image: there is no content]for all [image: there is no content].

	2.

	
[image: there is no content]if and only if either of the following is true.

	(a)

	
[image: there is no content]for [image: there is no content], [image: there is no content].

	(b)

	
[image: there is no content]for [image: there is no content]and [image: there is no content].

Definition 6.

Let [image: there is no content]and [image: there is no content]be two matrices with [image: there is no content], [image: there is no content]for [image: there is no content]. Then, defined the lexicographic order for the two matrix as follows:

	1.

	
[image: there is no content], if [image: there is no content]for all [image: there is no content].

	2.

	
[image: there is no content], if [image: there is no content]satisfying conditions [image: there is no content]for all [image: there is no content], [image: there is no content], and [image: there is no content]with [image: there is no content]or [image: there is no content]with [image: there is no content].

Given a matrix X, if there is at least one positive element and the remaining elements are 0, we call [image: there is no content]. Otherwise, if all elements of X are 0, we call [image: there is no content].

Definition 7.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes whose adjacency matrix is [image: there is no content] (see (1)). To concatenate the rows of [image: there is no content]according to the following order [image: there is no content], [image: there is no content], ⋯, [image: there is no content], [image: there is no content], [image: there is no content], ⋯, [image: there is no content], ⋯,[image: there is no content], [image: there is no content], ⋯, [image: there is no content], ⋯, [image: there is no content], [image: there is no content], ⋯, [image: there is no content]forms a corresponding binary number [image: there is no content][image: there is no content]⋯[image: there is no content]⋯[image: there is no content], which is called a labeling of G, denoted by [image: there is no content].

A(G)=→a1,1→a1,2→a1,3⋯⋯⋯⋯→a1,n→a2,1→a2,2→a2,3⋯⋯⋯⋯→a2,n↓⋮⋯⋱⋯⋯⋯⋯↓⋮↓⋮⋯⋯⋱⋯⋯⋯↓⋮→ai,1→ai,2⋯→ai,i−1→ai,i→ai,i+1⋯→ai,n↓⋮⋯⋯⋯⋯⋱⋯↓⋮↓⋮⋯⋯⋯⋯⋯⋱↓⋮→an,1→an,2→an,3⋯⋯⋯→an,n−1→an,n

(1)

The first row of [image: there is no content] is the labeling piece 1 of [image: there is no content], denoted by [image: there is no content]. Similarly, the second row is the labeling piece 2 of [image: there is no content], denoted by [image: there is no content]. ⋯. The nth row is the labeling piece n of [image: there is no content], denoted by [image: there is no content]. It is clear that [image: there is no content].

A permutation π of the vertices of G is an arrangement of the n vertices without repetition. The number of permutations of the vertices of G is [image: there is no content]. Clearly each distinct permutation π of the n vertices of [image: there is no content] defines a different adjacency matrix. Given a permutation π, one can obtain a labeling [image: there is no content] corresponding to π by Definition 7. Denote by [image: there is no content] the collection of all labelings of G.

For every [image: there is no content], [image: there is no content], assume that [image: there is no content], [image: there is no content] with [image: there is no content], [image: there is no content] or 1. Let [image: there is no content] and [image: there is no content]. By Definition 4, if [image: there is no content], then we call [image: there is no content]. Otherwise, if [image: there is no content], then we call [image: there is no content]. Otherwise, if [image: there is no content], then we call [image: there is no content].

It is clear that [image: there is no content], [image: there is no content] is a well-ordered set, where ⩽ denotes the less-than-or-equal-to binary relation on the set [image: there is no content] expressed as above. By the well-ordering theorem, it follows that [image: there is no content] has a minimum and maximum element, denoted by [image: there is no content] and [image: there is no content] respectively.

The two permutations of the n vertices of G corresponding to [image: there is no content] and [image: there is no content] are the minimum and maximum node sequence, denoted by [image: there is no content] and [image: there is no content], respectively. Likewise, the two adjacency matrices of G corresponding to [image: there is no content] and [image: there is no content] are the minimum and maximum canonical label matrix, denoted by [image: there is no content] and [image: there is no content], individually.

[image: there is no content] corresponding to [image: there is no content] are minimum canonical label piece [image: there is no content], ⋯, n of canonical labeling [image: there is no content], denoted by [image: there is no content], [image: there is no content], ⋯, [image: there is no content], respectively. Likewise, [image: there is no content], [image: there is no content], ⋯, [image: there is no content] corresponding to [image: there is no content] are maximum canonical label piece [image: there is no content] of canonical labeling [image: there is no content], denoted by [image: there is no content], [image: there is no content], ⋯, [image: there is no content], respectively.

Based on the above definitions, the following equations hold.

[image: there is no content]

(2)

[image: there is no content]

(3)

Theorem 1.

Let [image: there is no content], [image: there is no content]and [image: there is no content], [image: there is no content]be two digraphs with n nodes. Their adjacency matrices are [image: there is no content]and [image: there is no content]respectively. [image: there is no content]if and only if [image: there is no content]=[image: there is no content].

Definition 8.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. The complement [image: there is no content]of G is a digraph satisfying the following condition: for all [image: there is no content], [image: there is no content]if and only if [image: there is no content].

Lemma 1.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. [image: there is no content], [image: there is no content]is the complement digraph of G. We have [image: there is no content]and [image: there is no content].

Proof.

The adjacency matrices of G and [image: there is no content] satisfy the condition

[image: there is no content]

J is a [image: there is no content] matrix of zeros and ones whose main diagonal elements are 0, and all other elements are 1. By [image: there is no content] and the complement graph [image: there is no content], we have [image: there is no content]. Similarly, by [image: there is no content], we have [image: there is no content] for the complement graph [image: there is no content] of a graph G. ☐

Theorem 2.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. [image: there is no content], [image: there is no content]is the complement graph of G. We have

[image: there is no content]

(4)

[image: there is no content]

(5)

[image: there is no content]

(6)

[image: there is no content]

(7)

Proof.

By Lemma 1, it follows that [image: there is no content]. Clearly if the k-bit of [image: there is no content] is 0, the k-bit of [image: there is no content] is 1, and vice versa. Therefore, one can easily get the [image: there is no content] by performing a complement operation on [image: there is no content]. Similarly, by Lemma 1, the equality [image: there is no content] holds. Clearly if the k-bit of [image: there is no content] is 0, the k-bit of [image: there is no content] is 1, and vice versa. Accordingly, one can obtain the [image: there is no content] of [image: there is no content] by performing a complement operation on [image: there is no content].

Because [image: there is no content] is a constant binary number, to minimize [image: there is no content] one must maximize [image: there is no content]. On the contrary, to maximize [image: there is no content], one must maximize [image: there is no content]. Similarly, to minimize [image: there is no content] one must maximize [image: there is no content]. Contrarily to maximize [image: there is no content], one must minimize [image: there is no content]. From the above analysis, the following equations hold.

[image: there is no content]

☐

By Theorem 2, it can be observed that if one has calculated the [image: there is no content], one can easily get [image: there is no content]. Moreover, the calculation methods of [image: there is no content] and [image: there is no content] are same.

The paper focuses on the development of efficient methods to calculate [image: there is no content]. A MaxEm digraph is a digraph with the greatest [image: there is no content] that corresponds to a permutation of the vertices.

For every [image: there is no content], the number of nodes with outdegree [image: there is no content] is the outdegree multiplicity of u, denoted by [image: there is no content]. In addition, unless otherwise specified, throughout this paper, the outdegree sequence is non-increasing.

Definition 9.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. The open neighborhood, in-neighborhood, out-neighborhood, outin-neighborhood, and mix-neighborhood subdigraphs of a vertex u in G are subdigraphs of G defined as

N(u)=(V(N(u)),E(N(u))),N−(u)=(V(N−(u)),E(N−(u))),N+(u)=(V(N+(u)),E(N+(u))),N+−(u)=(V(N+−(u)),E(N+−(u))),N++(u)=(V(N++(u)),E(N++(u)))

(8)

where

V(N(u))={v∈V(G)−u|v→u∈E(G)∨u→v∈E(G)},E(N(u))={v→w∈E(G)|v,w∈V(N(u))},

(9)

V(N−(u))={v∈V(G)−u|v→u∈E(G)∧u→v∉E(G)},E(N−(u))={v→w∈E(G)|v,w∈V(N−(u))},

(10)

V(N+(u))={v∈V(G)−u|u→v∈E(G)∧v→u∉E(G)},E(N+(u))={v→w∈E(G)|v,w∈V(N+(u))},

(11)

V(N+−(u))={v∈V(G)−u|u→v∈E(G)∧v→u∈E(G)},E(N+−(u))={v→w∈E(G)|v,w∈V(N+−(u))}.

(12)

V(N++(u))=V(N+−(u))∪V(N+(u)),E(N++(u))={v→w∈E(G)|v,w∈V(N++(u))}.

(13)

The open k-neighborhood, k-in-neighborhood, k-out-neighborhood, k-outin-neighborhood, and k-mix-neighborhood subdigraphs of u with k ⩾ 2 are subdigraphs of G defined as

Nk(u)=(V(Nk(u)),E(Nk(u))),Nk−(u)=(V(Nk−(u)),E(Nk−(u))),Nk+(u)=(V(Nk+(u)),E(Nk+(u))),Nk+−(u)=(V(Nk+−(u)),E(Nk+−(u))),Nk++(u)=(V(Nk++(u)),E(Nk++(u)))

where

V(Nk(u))={v∈V(G)−u|d(u,v)⩽k∨d(v,u)⩽k},E(Nk(u))={v→w∈E(G)|v,w∈V(Nk(u))},

(14)

V(Nk−(u))={v∈V(G)−u|d(v,u)⩽k},E(Nk−(u))={v→w∈E(G)|v,w∈V(Nk−(u))},

(15)

V(Nk+(u))={v∈V(G)−u|d(u,v)⩽k},E(Nk+(u))={v→w∈E(G)|v,w∈V(Nk+(u))},

(16)

V(Nk+−(u))={v∈V(G)−u|d(u,v)=d(v,u)⩽k},E(Nk+−(u))={v→w∈E(G)|v,w∈V(Nk+−(u))}.

(17)

V(Nk++(u))=V(Nk+−(u))∪V(Nk+(u)),E(Nk++(u))={v→w∈E(G)|v,w∈V(Nk++(u))}.

(18)

Definition 10.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. The close neighborhood, in-neighborhood, out-neighborhood, outin-neighborhood, and mix-neighborhood subdigraphs of a vertex u in G are subdigraphs of G defined as

N[u]=(V(N[u]),E(N[u])),N−[u]=(V(N−[u]),E(N−[u])),N+[u]=(V(N+[u]),E(N+[u])),N+−[u]=(V(N+−[u]),E(N+−[u])),N++[u]=(V(N++[u]),E(N++[u]))

where

V(N[u])=V(N(u))∪{u},E(N[u])={v→w∈E(G)|v,w∈V(N[u])},

(19)

V(N−[u])=V(N−(u))∪{u},E(N−[u])={v→w∈E(G)|v,w∈V(N−[u])},

(20)

V(N+[u])=V(N+(u))∪{u},E(N+[u])={v→w∈E(G)|v,w∈V(N+[u])},

(21)

V(N+−[u])=V(N+−(u))∪{u},E(N+−[u])={v→w∈E(G)|v,w∈V(N+−[u])},

(22)

V(N++[u])=V(N+−[u])∪V(N+[u]),E(N++[u])={v→w∈E(G)|v,w∈V(N++[u])}.

(23)

The close k-neighborhood, k-in-neighborhood, k-out-neighborhood, k-outin-neighborhood, and k-mix-neighborhood subdigraphs of u with k ⩾ 2 are subdigraphs of G defined as

Nk[u]=(V(Nk[u]),E(Nk[u])),Nk−[u]=(V(Nk−[u]),E(Nk−[u])),Nk+[u]=(V(Nk+[u]),E(Nk+[u])),Nk+−[u]=(V(Nk+−[u]),E(Nk+−[u])),Nk++[u]=(V(Nk++[u]),E(Nk++[u]))

where

V(Nk[u])=V(Nk(u))∪{u},E(Nk[u])={v→w∈E(G)|v,w∈V(Nk[u])},

(24)

V(Nk−[u])=V(Nk−(u))∪{u},E(Nk−[u])={v→w∈E(G)|v,w∈V(Nk−[u])},

(25)

V(Nk+[u])=V(Nk+(u))∪{u},E(Nk−[u])={v→w∈E(G)|v,w∈V(Nk+[u])},

(26)

V(Nk+−[u])=V(Nk+−(u))∪{u},E(Nk+−[u])={v→w∈E(G)|v,w∈V(Nk+−[u])},

(27)

V(Nk++[u])=V(Nk+−[u])∪V(Nk+[u]),E(Nk++[u])={v→w∈E(G)|v,w∈V(Nk++[u])}.

(28)

Definition 11.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. The open neighborhood, in-neighborhood, out-neighborhood, outin-neighborhood, and mix-neighborhood subdigraphs of a nodes set [image: there is no content]are subdigraphs of G defined as

N(Q)=(V(N(Q)),E(N(Q))),N−(Q)=(V(N−(Q)),E(N−(Q))),N+(Q)=(V(N+(Q)),E(N+(Q))),N+−(Q)=(V(N+−(Q)),E(N+−(Q))),N++(Q)=(V(N++(Q)),E(N++(Q)))

where

V(N(Q))={v∈V(G)−Q|∃u∈Q∧(v→u∈E(G)∨u→v∈E(G))},E(N(Q))={v→w∈E(G)|v,w∈V(N(Q))},

(29)

V(N−(Q))={v∈V(G)−Q|∃u∈Q∧v→u∈E(G)∧u→v∉E(G)},E(N−(Q))={v→w∈E(G)|v,w∈V(N−(Q))},

(30)

V(N+(Q))={v∈V(G)−Q|∃u∈Q∧u→v∈E(G)∧v→u∉E(G)},E(N+(Q))={v→w∈E(G)|v,w∈V(N+(Q))},

(31)

V(N+−(Q))={v∈V(G)−Q|∃u∈Q∧u→v∈E(G)∧v→u∈E(G)},E(N−+(Q))={v→w∈E(G)|v,w∈V(N+−(Q))},

(32)

V(N++(Q))=V(N+−(Q))∪V(N+(Q)),E(N++(Q))={v→w∈E(G)|v,w∈V(N++(Q))}.

(33)

The open k-neighborhood, k-in-neighborhood, k-out-neighborhood, k-outin-neighborhood, and k-mix-neighborhood subdigraphs of Q with k ⩾ 2 are subdigraphs of G defined as

Nk(Q)=(V(Nk(Q)),E(Nk(Q))),Nk−(Q)=(V(Nk−(Q)),E(Nk−(Q))),Nk+(Q)=(V(Nk+(Q)),E(Nk+(Q))),Nk+−(Q)=(V(Nk+−(Q)),E(Nk+−(Q))),Nk++(Q)=(V(Nk++(Q)),E(Nk++(Q)))

where

V(Nk(Q))={v∈V(G)−Q|∃u∈Q∧(d(v,u)⩽k∨d(u,v)⩽k)},E(Nk(Q))={v→w∈E(G)|v,w∈V(Nk(Q))},

(34)

V(Nk−(Q))={v∈V(G)−Q|∃u∈Q∧d(v,u)⩽k},E(Nk−(Q))={v→w∈E(G)|v,w∈V(Nk−(Q))},

(35)

V(Nk+(Q))={v∈V(G)−Q|∃u∈Q∧d(u,v)⩽k},E(Nk+(Q))={v→w∈E(G)|v,w∈V(Nk+(Q))},

(36)

V(Nk+−(Q))={v∈V(G)−Q|∃u∈Q∧d(u,v)=d(v,u)⩽k},E(Nk+−(Q))={v→w∈E(G)|v,w∈V(Nk+−(Q))},

(37)

V(Nk++(Q))=V(Nk+−(Q))∪V(Nk+(Q)),E(Nk++(Q))={v→w∈E(G)|v,w∈V(Nk++(Q))}.

(38)

Definition 12.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. The close neighborhood, in-neighborhood, out-neighborhood, outin-neighborhood, and mix-neighborhood subdigraphs of a nodes set [image: there is no content]are subdigraphs of G defined as

N[Q]=(V(N[Q]),E(N[Q])),N−[Q]=(V(N−[Q]),E(N−[Q])),N+[Q]=(V(N+[Q]),E(N+[Q])),N+−[Q]=(V(N+−[Q]),E(N+−[Q])),N++[Q]=(V(N++[Q]),E(N++[Q]))

where

V(N[Q])=V(N(Q))∪Q,E(N[Q])={v→w∈E(G)|v,w∈V(N[Q])},

(39)

V(N−[Q])=V(N−(Q))∪Q,E(N−[Q])={v→w∈E(G)|v,w∈V(N−[Q])},

(40)

V(N+[Q])=V(N+(Q))∪Q,E(N+[Q])={v→w∈E(G)|v,w∈V(N+[Q])},

(41)

V(N+−[Q])=V(N+−(Q))∪Q,E(N+−[Q])={v→w∈E(G)|v,w∈V(N+−[Q])},

(42)

V(N++[Q])=V(N+−[Q])∪V(N+[Q]),E(N++[Q])={v→w∈E(G)|v,w∈V(N++[Q])}.

(43)

The close k-neighborhood, k-in-neighborhood, k-out-neighborhood, k-outin-neighborhood, and k-mix-neighborhood subdigraphs of Q with k ⩾ 2 are subdigraphs of G defined as

Nk[Q]=(V(Nk[Q]),E(Nk[Q])),Nk−[Q]=(V(Nk−[Q]),E(Nk−[Q])),Nk+[Q]=(V(Nk+[Q]),E(Nk+[Q])),Nk+−[Q]=(V(Nk+−[Q]),E(Nk+−[Q])),Nk++[Q]=(V(Nk++[Q]),E(Nk++[Q]))

where

V(Nk[Q])=V(Nk(Q))∪Q,E(Nk[Q])={v→w∈E(G)|v,w∈V(Nk[Q])},

(44)

V(Nk−[Q])=V(Nk−(Q))∪Q,E(Nk−[Q])={v→w∈E(G)|v,w∈V(Nk−[Q])},

(45)

V(Nk+[Q])=V(Nk+(Q))∪Q,E(Nk+[Q])={v→w∈E(G)|v,w∈V(Nk+[Q])},

(46)

V(Nk+−[Q])=V(Nk+−(Q))∪Q,E(Nk+−[Q])={v→w∈E(G)|v,w∈V(Nk+−[Q])},

(47)

V(Nk++[Q])=V(Nk+−[Q])∪V(Nk+[Q]),E(Nk++[Q])={v→w∈E(G)|v,w∈V(Nk++[Q])}.

(48)

In the following section, unless otherwise specified, each k-neighborhood, k-in-neighborhood, k-out-neighborhood, k-outin-neighborhood, and k-mix-neighborhood subdigraphs are closed.

A digraph is connected if its underlying graph is connected. For [image: there is no content], we omit the subscript 1 and let [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content].

Definition 13.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Suppose that [image: there is no content]and [image: there is no content]. We denote by [image: there is no content]the open k-neighborhood subdigraph of u in H, by [image: there is no content]the close k − neighborhood subdigraph of u in H, by [image: there is no content]the open k-mix-neighborhood subdigraph of u in H, and by [image: there is no content]the close k-mix-neighborhood subdigraph of u in H.

For [image: there is no content], we omit the superscript 1 and let [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content].

Definition 14.

Let [image: there is no content], [image: there is no content]be a simple connected digraph with n nodes. For every [image: there is no content], there exists a positive integer k satisfying conditions [image: there is no content]and [image: there is no content]. The value of k is called the diffusion radius of u denoted by of u denoted by [image: there is no content], and the subscript G can be omitted when no ambiguity can arise.

By Definition 14, it is clear that [image: there is no content] for every u in G.

Definition 15.

Let [image: there is no content], [image: there is no content]be a simple connected digraph with n nodes. For every [image: there is no content], there exists a positive integer k satisfying conditions [image: there is no content]and [image: there is no content]. The value of k is called the mix diffusion radius of u denoted by of u denoted by [image: there is no content], and the subscript G can be omitted when no ambiguity can arise.

Definition 16.

Let [image: there is no content], [image: there is no content]be a simple digraph and u be a node in G whose close k neighborhood subdigraph is [image: there is no content]with [image: there is no content]. A node in [image: there is no content]is a one diffusion node of u. For [image: there is no content], a node v in [image: there is no content]satisfying condition [image: there is no content]is a k diffusion node of u.

Definition 17.

Let [image: there is no content], [image: there is no content]be a simple digraph and u be a node in G whose close k-mix-neighborhood subdigraph is [image: there is no content]with [image: there is no content]. A node in [image: there is no content]is a one mix diffusion node of u. For [image: there is no content], a node v in [image: there is no content]satisfying condition [image: there is no content]is a k mix diffusion node of u.

Every node v in G is assigned an attribute m_NearestNode whose function, described in Section 3.1.2.

Definition 18.

Let [image: there is no content], [image: there is no content]be a simple digraph and u be a node in G whose close k neighborhood subdigraph is [image: there is no content]with [image: there is no content]. Assume that H is a connected component of [image: there is no content]with [image: there is no content]. Assume that [image: there is no content]with [image: there is no content], where [image: there is no content]is in ascending order of attribute [image: there is no content]with [image: there is no content]for every [image: there is no content], and [image: there is no content], [image: there is no content]contain the [image: there is no content]diffusion nodes of u respectively, satisfying conditions [image: there is no content]and [image: there is no content]for [image: there is no content].

We define [image: there is no content], ⋯, [image: there is no content], ⋯, [image: there is no content]to be the diffusion outdegree sequence of H where [image: there is no content]with [image: there is no content]are the outdegree sequences in descending order induced by all vertices in [image: there is no content]respectively.

Definition 19.

Let [image: there is no content], [image: there is no content]be a simple digraph and u be a node in G whose close k-mix-neighborhood subdigraph is [image: there is no content]with [image: there is no content]. Assume that H is a connected component of [image: there is no content]with [image: there is no content]. Assume that [image: there is no content]with [image: there is no content], where [image: there is no content]is in ascending order of attribute [image: there is no content]with [image: there is no content]for every [image: there is no content], and [image: there is no content], [image: there is no content]contain the [image: there is no content]mix diffusion nodes of u respectively, satisfying conditions [image: there is no content]and [image: there is no content]for [image: there is no content].

We define [image: there is no content], ⋯, [image: there is no content], ⋯, [image: there is no content]to be the mix diffusion outdegree sequence of H where [image: there is no content]with [image: there is no content]are the outdegree sequences in descending order induced by all vertices in [image: there is no content]respectively.

Definition 20.

Let [image: there is no content], [image: there is no content]be a simple digraph and u be a node in G whose close k neighborhood subdigraph is [image: there is no content]with [image: there is no content]. Assume that [image: there is no content]has p connected components [image: there is no content], [image: there is no content], ⋯, [image: there is no content]with diffusion outdegree sequences [image: there is no content], [image: there is no content], ⋯, [image: there is no content]respectively, satisfying conditions [image: there is no content].

Define [image: there is no content], [image: there is no content], ⋯, [image: there is no content]to be the entire mix diffusion outdegree sequence of [image: there is no content]pertaining to u in G, and omit the subscript G when no ambiguity can arise.

Definition 21.

Let [image: there is no content], [image: there is no content]be a simple digraph and u be a node in G whose close k-mix neighborhood subdigraph is [image: there is no content]with [image: there is no content]. Assume that [image: there is no content]has p connected components [image: there is no content], [image: there is no content], ⋯, [image: there is no content]with mix diffusion outdegree sequences [image: there is no content], [image: there is no content], ⋯, [image: there is no content]respectively, satisfying conditions [image: there is no content].

Define [image: there is no content], [image: there is no content], ⋯, [image: there is no content]to be the entire mix diffusion outdegree sequence of [image: there is no content]pertaining to u in G, and omit the subscript G when no ambiguity can arise.

Definition 22.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. For every [image: there is no content]with [image: there is no content]and , let [image: there is no content], [image: there is no content], ⋯, [image: there is no content]be the close 1, 2, ⋯, [image: there is no content]mix-neighborhood subdigraph of u with entire mix diffusion outdegree sequences [image: there is no content], [image: there is no content], ⋯, [image: there is no content], respectively. Let [image: there is no content], [image: there is no content], ⋯, [image: there is no content]be the 1, 2, ⋯, [image: there is no content]mix-neighborhood subdigraph of v with entire mix diffusion outdegree sequences [image: there is no content], [image: there is no content], ⋯, [image: there is no content], respectively. Let [image: there is no content], [image: there is no content], ⋯, [image: there is no content]and [image: there is no content], [image: there is no content], ⋯, [image: there is no content]. If [image: there is no content], we write [image: there is no content]with respect to G. Otherwise, if [image: there is no content], we write [image: there is no content]with respect to G. Otherwise, if [image: there is no content], we write [image: there is no content]with respect to G, and omit the symbol G when no ambiguity can arise. Denote [image: there is no content]or [image: there is no content]by [image: there is no content]and [image: there is no content]or [image: there is no content]by [image: there is no content].

It is clear that ≻, ≺, ≍, ≽ define a binary relation on the set of nodes [image: there is no content]. By Definition 22, for every [image: there is no content] with [image: there is no content], one of the following statements is true: (1) [image: there is no content]. (2) [image: there is no content]. (3) [image: there is no content].

It can be shown that [image: there is no content], [image: there is no content] is a well-ordered set, where ≽ denotes the binary relation [image: there is no content] on the set [image: there is no content]. By the well-ordering theorem, it follows that there exists a maximum and minimum element in [image: there is no content], denoted by [image: there is no content] and [image: there is no content] respectively with [image: there is no content] and [image: there is no content]. The symbol ≽ can be omitted if no confusion arises. The following Lemmas 2–4 immediately follow from Definition 22.

Lemma 2.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. For every [image: there is no content]with [image: there is no content], if the symbol ≽ denotes the binary relation [image: there is no content]on the set [image: there is no content], then, all of the nodes in G form a single chain L on G: [image: there is no content]with [image: there is no content], [image: there is no content], [image: there is no content].

Lemma 3.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Let [image: there is no content]. For every [image: there is no content]with [image: there is no content], if the symbol ≽ denotes the binary relation [image: there is no content]on the set [image: there is no content], then, all of the nodes in [image: there is no content]form a single chain L on G: [image: there is no content]with [image: there is no content].

Lemma 4.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. For every [image: there is no content], suppose that [image: there is no content]is the close k mix-neighborhood subdigraph of u in G. Let [image: there is no content].

For every [image: there is no content]with [image: there is no content], if the symbol ≽ denotes the binary relation [image: there is no content]on the set [image: there is no content], then, all of the nodes in [image: there is no content]form a single chain L on [image: there is no content]: [image: there is no content]with [image: there is no content].

The conclusions in the following Propositions 1 and 2 are obvious by Definitions 4, 5, and 22.

Proposition 1.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. For every [image: there is no content]with [image: there is no content]and , let [image: there is no content], [image: there is no content], ⋯, [image: there is no content]be the close 1, 2, ⋯, [image: there is no content]mix-neighborhood subdigraph of u with entire mix diffusion outdegree sequences [image: there is no content], [image: there is no content], ⋯, [image: there is no content], respectively. Let [image: there is no content], [image: there is no content], ⋯, [image: there is no content]be the close 1, 2, ⋯, [image: there is no content]mix-neighborhood subdigraph of v with entire mix diffusion outdegree sequences [image: there is no content], [image: there is no content], ⋯, [image: there is no content], respectively. Let [image: there is no content], [image: there is no content], ⋯, [image: there is no content]with [image: there is no content], [image: there is no content], ⋯, [image: there is no content]and [image: there is no content], [image: there is no content], ⋯, [image: there is no content]. Let [image: there is no content], [image: there is no content], ⋯, [image: there is no content]with [image: there is no content], [image: there is no content], ⋯, [image: there is no content]and [image: there is no content], [image: there is no content], ⋯, [image: there is no content]. If [image: there is no content], then [image: there is no content]leads to [image: there is no content]. Otherwise, [image: there is no content]leads to [image: there is no content]. Otherwise, [image: there is no content]leads to [image: there is no content]. Accordingly, it follows that if [image: there is no content], then [image: there is no content]leads to [image: there is no content]. Otherwise, [image: there is no content]leads to [image: there is no content]. Otherwise, [image: there is no content]leads to [image: there is no content].

Proposition 2.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. For every [image: there is no content]with [image: there is no content]and , let [image: there is no content], [image: there is no content], ⋯, [image: there is no content]be the close 1, 2, ⋯, [image: there is no content]mix-neighborhood subdigraph of u with entire mix diffusion outdegree sequences [image: there is no content], [image: there is no content], ⋯, [image: there is no content], respectively. Let [image: there is no content], [image: there is no content], ⋯, [image: there is no content]be the close 1, 2, ⋯, [image: there is no content]mix-neighborhood subdigraph of v with entire mix diff usion outdegree sequences [image: there is no content], [image: there is no content], ⋯, [image: there is no content], respectively. If [image: there is no content], [image: there is no content], ⋯, [image: there is no content], [image: there is no content], then [image: there is no content]with respect to G (see Definition 22).

3. Results and Discussion

Let [image: there is no content], [image: there is no content] be a simple digraph with n nodes. In the section, we will study how to compute the maximum element [image: there is no content] of the digraph G. Without loss of generality, let MaxQ(G)=(u1,u2,⋯,ui,⋯,un). Throughout the paper, our algorithms mentioned use an adjacency list to store the digraph G.

3.1. Compute [image: there is no content] of the Digraph G

In this subsection, we examine how to compute the maximum element [image: there is no content] of a digraph G. What approach should one take to calculate the maximum element [image: there is no content]? From the connection between [image: there is no content] and [image: there is no content], any method for calculating [image: there is no content] must first obtain the permutation [image: there is no content] corresponding to the adjacency matrix [image: there is no content].

3.1.1. Compute the First Node [image: there is no content] Added into [image: there is no content]

In this sub-subsection, we examine how to compute the first vertex [image: there is no content] of [image: there is no content]. Here, assume that G is a connected digraph of order [image: there is no content]. Note that to maximize [image: there is no content] one must let [image: there is no content] (see (1)). [image: there is no content] can always be achieved since G is connected with order [image: there is no content]. Furthermore, to obtain [image: there is no content], one must select [image: there is no content] from [image: there is no content]. Only by so doing, there can be more “1”s in the high bits of [image: there is no content] such that ensures maximum [image: there is no content]. Otherwise, [image: there is no content] cannot reach the maximum value. From preceding discussion, we get the following result.

Proposition 3.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Let [image: there is no content]. Then the selection of [image: there is no content]of [image: there is no content]is from [image: there is no content]for obtaining [image: there is no content].

Proof.

Let us assume that [image: there is no content]. By (1), it follows that [image: there is no content]⋯[image: there is no content]. Since [image: there is no content], it can be shown that [image: there is no content], [image: there is no content], ⋯, [image: there is no content] for [image: there is no content]. Therefore, the conclusion of Proposition 3 holds. ☐

Proposition 4.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Let [image: there is no content]. If [image: there is no content]with [image: there is no content], then [image: there is no content]for [image: there is no content].

Proof.

By Proposition 3, it immediately follows that the selection of [image: there is no content] of [image: there is no content] is from [image: there is no content] for obtaining [image: there is no content]. Since [image: there is no content], therefore, [image: there is no content] for [image: there is no content]. ☐

Lemma 5.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Let [image: there is no content]with [image: there is no content]. Let [image: there is no content]be the set of all vertices [image: there is no content]satisfying [image: there is no content]. Then, [image: there is no content]for [image: there is no content].

Proof.

By Proposition 3, clearly [image: there is no content] is true. Since G is a simple digraph with n nodes, then [image: there is no content]⋯[image: there is no content] with [image: there is no content] and [image: there is no content][image: there is no content] with [image: there is no content] (see (1)). Since [image: there is no content], it follows that [image: there is no content] and [image: there is no content] for [image: there is no content].

If [image: there is no content], one can assert that [image: there is no content]. As a result, [image: there is no content] holds by the condition of Lemma 5. Therefore, [image: there is no content][image: there is no content] with [image: there is no content] and [image: there is no content].

Otherwise, if [image: there is no content], then [image: there is no content] holds by the condition of Lemma 5. Therefore, [image: there is no content][image: there is no content] with [image: there is no content] and [image: there is no content].

By comparing the above two results obtained for [image: there is no content], we have that [image: there is no content] holds for [image: there is no content]. ☐

Theorem 3.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Let [image: there is no content]with [image: there is no content]. Assume that [image: there is no content]have the open outin-neighborhood subdigraph [image: there is no content]with [image: there is no content](see Definition 9). Suppose that there exists a node [image: there is no content]satisfying condition [image: there is no content]where [image: there is no content].

For each [image: there is no content]with [image: there is no content], suppose that there exists a node [image: there is no content]satisfying condition [image: there is no content]where [image: there is no content]. If condition [image: there is no content]is satisfied, then [image: there is no content]for [image: there is no content].

Proof.

Since G is a simple digraph with n nodes, it follows that [image: there is no content]⋯[image: there is no content] with [image: there is no content] and [image: there is no content][image: there is no content] with [image: there is no content] (see (1)). Since [image: there is no content], it follows that [image: there is no content] for [image: there is no content].

By the conditions of Theorem 3, clearly [image: there is no content] and [image: there is no content]. For simplicity, let us assume that [image: there is no content], [image: there is no content].

If conditions [image: there is no content] hold for each [image: there is no content] and let the [image: there is no content], then at most [image: there is no content][image: there is no content] with [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] since there exists a node [image: there is no content] satisfying condition [image: there is no content] where [image: there is no content].

Otherwise, if let the [image: there is no content], then [image: there is no content] with [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] since there exists a node [image: there is no content] satisfying condition [image: there is no content] where [image: there is no content].

Since [image: there is no content], Theorem 3 holds by comparing the above two results of [image: there is no content] obtained. ☐

Theorem 4.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Let [image: there is no content]with [image: there is no content]. Assume that [image: there is no content]have the open outin-neighborhood subdigraph [image: there is no content]with [image: there is no content](see Definition 9). Suppose that there exists a node [image: there is no content]satisfying condition [image: there is no content]where [image: there is no content].

For each [image: there is no content]with [image: there is no content], suppose that there exists a node [image: there is no content]satisfying condition [image: there is no content]where [image: there is no content]. If conditions [image: there is no content]and [image: there is no content]hold, then [image: there is no content]for [image: there is no content].

Proof.

Since G is a simple digraph with n nodes, it follows that [image: there is no content]⋯[image: there is no content] with [image: there is no content] and [image: there is no content][image: there is no content] with [image: there is no content](see (1)). Since [image: there is no content], one can assert that [image: there is no content] and [image: there is no content] for [image: there is no content].

By the conditions of Theorem 4, clearly [image: there is no content]. For simplicity, let us assume that [image: there is no content] and [image: there is no content].

If conditions [image: there is no content] hold for each [image: there is no content] and let the [image: there is no content], then at most [image: there is no content] with [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]=[image: there is no content], and [image: there is no content]=[image: there is no content] since the node [image: there is no content] satisfying condition [image: there is no content] where [image: there is no content] (see (1)).

On the contrary, if let the [image: there is no content], then [image: there is no content][image: there is no content] with [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]=[image: there is no content], [image: there is no content]=[image: there is no content] since the node [image: there is no content] satisfying condition [image: there is no content] where [image: there is no content] (see (1)).

Since [image: there is no content], then the binary number [image: there is no content]⋯[image: there is no content] the binary number [image: there is no content]⋯[image: there is no content]. Therefore, Theorem 4 holds. ☐

Theorem 5.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Let [image: there is no content]with [image: there is no content]. Suppose that [image: there is no content]holds for every [image: there is no content]. Let [image: there is no content]and [image: there is no content]satisfying condition [image: there is no content]where [image: there is no content]. Let [image: there is no content]and [image: there is no content]satisfying condition [image: there is no content]where [image: there is no content]. If condition [image: there is no content]holds, then [image: there is no content]for [image: there is no content].

Proof.

Since G is a simple digraph with n nodes, it follows that [image: there is no content]⋯[image: there is no content] with [image: there is no content] and [image: there is no content][image: there is no content] with [image: there is no content] (see (1)). Since [image: there is no content], it follows that [image: there is no content] for [image: there is no content].

By the conditions of Theorem 5, clearly [image: there is no content] and [image: there is no content]. For simplicity, let us assume that [image: there is no content], [image: there is no content].

If conditions [image: there is no content] hold for each [image: there is no content] and let the [image: there is no content], then at most [image: there is no content][image: there is no content] with [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] since [image: there is no content] holds and [image: there is no content] satisfies condition [image: there is no content] where [image: there is no content].

Conversely, if let the [image: there is no content], then [image: there is no content] with [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] since [image: there is no content] holds and [image: there is no content] satisfies condition [image: there is no content] where [image: there is no content].

Since [image: there is no content], Theorem 5 holds by comparing the above two results of [image: there is no content] obtained. ☐

Theorem 6.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Let [image: there is no content]with [image: there is no content]. Suppose that [image: there is no content]holds for every [image: there is no content]. Let [image: there is no content]and [image: there is no content]satisfying condition [image: there is no content]where [image: there is no content]. Let [image: there is no content]and [image: there is no content]satisfying condition [image: there is no content]where [image: there is no content]. If conditions [image: there is no content]and [image: there is no content]hold, then [image: there is no content]for [image: there is no content].

Proof.

Since G is a simple digraph with n nodes, it follows that [image: there is no content]⋯[image: there is no content] with [image: there is no content] and [image: there is no content][image: there is no content] with [image: there is no content] (see (1)). Since [image: there is no content], one can assert that [image: there is no content] and [image: there is no content] for [image: there is no content].

By the conditions of Theorem 6, clearly [image: there is no content]. For simplicity, let us assume that [image: there is no content] and [image: there is no content].

If conditions [image: there is no content] hold for each [image: there is no content] and let the [image: there is no content], then at most [image: there is no content] with [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]=[image: there is no content] since [image: there is no content] holds and [image: there is no content] satisfies condition [image: there is no content] where [image: there is no content] (see (1)).

Conversely, if let the [image: there is no content], then [image: there is no content][image: there is no content] with [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]=[image: there is no content], [image: there is no content]=[image: there is no content] since [image: there is no content] holds and [image: there is no content] satisfies condition [image: there is no content] where [image: there is no content] (see (1)).

Since [image: there is no content], then the binary number [image: there is no content]⋯[image: there is no content] the binary number [image: there is no content]⋯[image: there is no content]. Therefore, Theorem 6 holds. ☐

Conjecture 1.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Let [image: there is no content]with [image: there is no content]. If there exists a vertex [image: there is no content]satisfying conditions [image: there is no content]for each [image: there is no content], then [image: there is no content]for [image: there is no content].

3.1.2. Calculate the Intermediate Vertices Added into [image: there is no content]

When our algorithm has computed the first node [image: there is no content] of [image: there is no content], how would it determine the subsequent nodes for calculating [image: there is no content]? Note that a directed edge of G corresponds to 1 bit of the adjacency matrix [image: there is no content]. To maximize [image: there is no content] by maximizing [image: there is no content], one must let [image: there is no content] belong to the mix-neighborhood subdigraph [image: there is no content] so that makes [image: there is no content] (see (1)). Otherwise, if [image: there is no content], then [image: there is no content] (see (1)) and [image: there is no content][image: there is no content]. The following Lemma 6 summarizes the above results.

Lemma 6.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Let [image: there is no content]. Assume that [image: there is no content]is the first node of [image: there is no content]obtained for computing [image: there is no content]. By (12) of Definition 9, if condition [image: there is no content]holds, then [image: there is no content]for computing the second node of [image: there is no content]so that obtaining [image: there is no content]. Further, if [image: there is no content]with [image: there is no content], then [image: there is no content].

Proof.

We now prove the first statement of Lemma 6 by contradiction. Assume by contradiction that [image: there is no content]. By Definition 9 and the condition that [image: there is no content] is the first node of [image: there is no content], it follows that [image: there is no content] for obtaining [image: there is no content]. By the condition [image: there is no content], clearly [image: there is no content]⋯[image: there is no content] with [image: there is no content], [image: there is no content], ⋯, [image: there is no content], [image: there is no content], ⋯, [image: there is no content] since G is a simple digraph, and [image: there is no content]⋯[image: there is no content]. It can be seen that if [image: there is no content], then there are [image: there is no content] consistent with the requirement of [image: there is no content] and [image: there is no content] for [image: there is no content](see (1)).

If [image: there is no content], by (10) of Definition 9 then [image: there is no content] for [image: there is no content], leading to a contradiction with the constraint [image: there is no content] satisfied by [image: there is no content]. Otherwise, if [image: there is no content], by (11) of Definition 9 then [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content], resulting in a contradiction with the result [image: there is no content] obtained for [image: there is no content]. Therefore, the assumption that [image: there is no content] does not hold. The second claim of Lemma 7 immediately follows from the previous result. ☐

Lemma 7.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Let [image: there is no content]. Assume that [image: there is no content]is the first node of [image: there is no content]obtained for computing [image: there is no content]. By Definition 9, if conditions [image: there is no content]hold, then [image: there is no content]for computing the second node of [image: there is no content]so that getting [image: there is no content].

Proof.

Since [image: there is no content] is the first node of [image: there is no content] and G is a simple digraph, by [image: there is no content] then [image: there is no content]⋯[image: there is no content] with [image: there is no content], [image: there is no content] (see (1)). By the conditions [image: there is no content], it follows that [image: there is no content] for [image: there is no content]. Therefore, [image: there is no content] for [image: there is no content] due to [image: there is no content] holds. ☐

Lemma 8.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Let [image: there is no content]. Assume that [image: there is no content]is the first node of [image: there is no content]obtained for computing [image: there is no content]. By Definition 9, if conditions [image: there is no content]hold, then [image: there is no content]for computing the second node of [image: there is no content]so that getting [image: there is no content].

Proof.

Since [image: there is no content] is the first node of [image: there is no content], G is a simple digraph, and [image: there is no content], then [image: there is no content]⋯[image: there is no content] with [image: there is no content], [image: there is no content] (see (1)). If [image: there is no content], clearly [image: there is no content] for [image: there is no content]. If [image: there is no content], it follows that [image: there is no content] for [image: there is no content], which is a contradiction with previous result [image: there is no content] derived for [image: there is no content]. Therefore, if [image: there is no content], then [image: there is no content]. ☐

Theorem 7.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Let [image: there is no content]. By Definition 9, let [image: there is no content]be the mix-neighborhood subdigraph of v. For computing [image: there is no content], suppose that [image: there is no content]already contains the first node [image: there is no content]with [image: there is no content], [image: there is no content]. If one of the following conditions holds, then [image: there is no content]for [image: there is no content].

	1.

	
[image: there is no content]for [image: there is no content].

	2.

	
[image: there is no content]hold for [image: there is no content]with [image: there is no content].

Proof.

(1) By Lemma 6, it follows that if condition [image: there is no content] holds, then [image: there is no content] for [image: there is no content]. By the conditions of Theorem 7, there is [image: there is no content]⋯[image: there is no content] with [image: there is no content], [image: there is no content], [image: there is no content] (see (1)).

Note that [image: there is no content]⋯[image: there is no content] with [image: there is no content] since [image: there is no content] and G is a simple digraph. For simplicity, let us assume that [image: there is no content]. If [image: there is no content], it can be seen that [image: there is no content], [image: there is no content] by properly arranging the nodes of [image: there is no content] (see (1)). Otherwise, if [image: there is no content] with [image: there is no content], no matter how the vertices in H are ordered such that there is, at least, one 0 among the r entries [image: there is no content], [image: there is no content] since [image: there is no content] for [image: there is no content] (see (1)). Therefore, the conclusion (1) of Theorem 7 holds.

(2) Observe that [image: there is no content]⋯[image: there is no content] with [image: there is no content] since [image: there is no content] and G is a simple digraph. For simplicity, let us assume that [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] with [image: there is no content]. Without loss of generality assume [image: there is no content] with [image: there is no content] and [image: there is no content]. If [image: there is no content], one can let [image: there is no content], [image: there is no content], [image: there is no content] by properly ordering the nodes of [image: there is no content] since [image: there is no content] (see (1)). Since [image: there is no content] hold for [image: there is no content] with [image: there is no content], it follows that [image: there is no content]. Further, one can let [image: there is no content], [image: there is no content], [image: there is no content] by properly sorting the nodes of [image: there is no content] since [image: there is no content] (see (1)). Otherwise, if [image: there is no content], no matter how the vertices of [image: there is no content] are ordered such that there is, at least, one 0 among the k entries [image: there is no content], [image: there is no content] since [image: there is no content] (see (1)). Therefore, the conclusion (2) of Theorem 7 holds. ☐

Theorem 8.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Let [image: there is no content]. For computing [image: there is no content], suppose that [image: there is no content]already contains the first node [image: there is no content]satisfying conditions [image: there is no content]with [image: there is no content], [image: there is no content](see Definition 9). If one of the following conditions holds, then [image: there is no content]for [image: there is no content].

	1.

	
[image: there is no content]for [image: there is no content].

	2.

	
[image: there is no content]hold for [image: there is no content]with [image: there is no content].

Proof.

By Lemma 8, it follows that if conditions [image: there is no content] hold, then [image: there is no content] for [image: there is no content]. By the conditions of Theorem 8, there is [image: there is no content] with [image: there is no content], [image: there is no content] (see (1)). Note that [image: there is no content] with [image: there is no content] since [image: there is no content] and G is a simple digraph.

(1) For simplicity, let us assume that [image: there is no content]. If [image: there is no content], it can be seen that [image: there is no content], [image: there is no content] by properly arranging the nodes [image: there is no content] of [image: there is no content] (see (1)). Conversely, if [image: there is no content] with [image: there is no content], no matter how the vertices in [image: there is no content] are ordered such that there is, at least, one 0 among the r entries [image: there is no content], [image: there is no content] since [image: there is no content] for [image: there is no content] (see (1)). Therefore, the conclusion (1) of Theorem 7 holds.

(2) For convenience, let us assume that [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] with [image: there is no content]. Without loss of generality assume [image: there is no content] with [image: there is no content] and [image: there is no content].

If [image: there is no content], one can let [image: there is no content], [image: there is no content], [image: there is no content] by properly ordering the nodes of [image: there is no content] since [image: there is no content] (see (1)). Since [image: there is no content] hold for [image: there is no content] with [image: there is no content], it follows that [image: there is no content]. Further, one can let [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] by properly sorting the nodes of [image: there is no content] since [image: there is no content] (see (1)).

Conversely, if [image: there is no content], no matter how the vertices of [image: there is no content] are ordered such that there is, at least, one 0 among the k entries [image: there is no content], [image: there is no content] since [image: there is no content] (see (1)). Therefore, the conclusion (2) of Theorem 8 holds. ☐

When our algorithm has computed the first i vertices [image: there is no content], [image: there is no content] of [image: there is no content], how does it determine the subsequent nodes [image: there is no content], [image: there is no content] for calculating [image: there is no content]? Similar to the above discussion for obtaining [image: there is no content], it can be shown that the selections of the successor vertices [image: there is no content], [image: there is no content] of [image: there is no content] are from [image: there is no content] with [image: there is no content].

Our algorithm assigns each node in G an attribute called [image: there is no content]. Once the ith node [image: there is no content] has been added into [image: there is no content], it writes the index information i of [image: there is no content] into the attribute domain [image: there is no content] of each node [image: there is no content], [image: there is no content], ⋯, [image: there is no content] with [image: there is no content]. If [image: there is no content], then let [image: there is no content] for each [image: there is no content] with [image: there is no content].

Lemma 9.

Let [image: there is no content], [image: there is no content]be a simple digraph with n nodes. Let [image: there is no content]. When computing [image: there is no content], if [image: there is no content]already contains the first node [image: there is no content]whose open mix-neighborhood subdigraph is [image: there is no content](see Definition 9), then [image: there is no content], [image: there is no content], ⋯, [image: there is no content], [image: there is no content][image: there is no content].

Proof.

Since the condition [image: there is no content] holds, it can be asserted that [image: there is no content] by Definition 9. Because G is a simple digraph with n nodes, it follows that [image: there is no content]⋯[image: there is no content] with [image: there is no content], [image: there is no content], [image: there is no content] for obtaining [image: there is no content](see (1)). To ensure [image: there is no content] to maximize [image: there is no content] (see (1)), the assertion [image: there is no content], [image: there is no content], ⋯, [image: there is no content], [image: there is no content][image: there is no content] is true. ☐

Theorem 9 (Diffusion Theorem of Digraphs).

Let [image: there is no content], [image: there is no content]be a simple connected digraph with n nodes. For computing [image: there is no content], suppose that [image: there is no content]already contains the first m vertices [image: there is no content]. Let [image: there is no content]whose open neighborhood subdigraph is [image: there is no content](see Definition 11). If [image: there is no content], then the following two conclusions hold.

	1.

	
By Definition 11, the selection of the [image: there is no content]th vertex of [image: there is no content]for computing [image: there is no content]is from the open neighborhood subdigraph [image: there is no content]of the nodes set Q.

	2.

	
the vertex-induced subdigraph of the first m vertices is connected.

Proof.

(1) We prove by contradiction. If [image: there is no content], without loss of generality let us assume that [image: there is no content], [image: there is no content], [image: there is no content] is a permutation of [image: there is no content], satisfying conditions [image: there is no content] with [image: there is no content].

Further, we may assume that if condition [image: there is no content] holds, the [image: there is no content] corresponding to [image: there is no content] is the greatest. Assume that the node [image: there is no content] is the node whose index i in [image: there is no content] is the smallest index in [image: there is no content] than the indexes of other nodes belonging to [image: there is no content] in [image: there is no content]. This means that no node belonging to [image: there is no content] is between [image: there is no content] and [image: there is no content] of [image: there is no content] such that for every node [image: there is no content], [image: there is no content] follows (see Definition 11).

Let [image: there is no content] be the matrix corresponding to the permutation [image: there is no content]. Let [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] be the block submatrices of [image: there is no content] containing the first m rows and the [image: there is no content]th column, the [image: there is no content]th to [image: there is no content]th columns, the ith column, and the [image: there is no content]th to nth columns, respectively.

Since [image: there is no content], then [image: there is no content] holds. From the above result, for every node [image: there is no content], [image: there is no content], [image: there is no content] holds such that [image: there is no content]. For [image: there is no content], if [image: there is no content], then [image: there is no content]. Otherwise, if [image: there is no content], then [image: there is no content]. Therefore, [image: there is no content].

Similarly, let [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] be the block submatrices of [image: there is no content] formed by the first m columns and the [image: there is no content]th row, the [image: there is no content]th to [image: there is no content]th rows, the ith row, and the [image: there is no content]th to nth rows, respectively.

Since [image: there is no content], then [image: there is no content] holds. For every node [image: there is no content], since [image: there is no content] holds, then [image: there is no content]. For [image: there is no content], if [image: there is no content], then [image: there is no content] by Definition 11. Otherwise, if [image: there is no content], then [image: there is no content]. Therefore, [image: there is no content].

By merely swapping [image: there is no content] and [image: there is no content] of [image: there is no content], one can obtain another permutation [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] with [image: there is no content].

Similar to [image: there is no content], let [image: there is no content] be the matrix corresponding to the permutation [image: there is no content]. Let [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] be the block submatrices of [image: there is no content] containing the first m rows and the [image: there is no content]th column, the [image: there is no content]th to [image: there is no content]th columns, the ith column, and the [image: there is no content]th to nth columns, respectively.

For [image: there is no content], if [image: there is no content], then [image: there is no content]. Otherwise, if [image: there is no content], then [image: there is no content]. Therefore, [image: there is no content]. For every node [image: there is no content], [image: there is no content], since [image: there is no content] holds, then [image: there is no content]. Since [image: there is no content], then [image: there is no content] holds.

Simila, Let [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] be the block submatrices of [image: there is no content] formed by the first m columns and the [image: there is no content]th rows, the [image: there is no content]th to [image: there is no content]th rows, the ith row, and the [image: there is no content]th to nth rows, respectively.

For [image: there is no content], if [image: there is no content], then [image: there is no content] by Definition 11. Otherwise, if [image: there is no content], then [image: there is no content]. Therefore, [image: there is no content]. For every node [image: there is no content], since [image: there is no content] holds, then [image: there is no content]. Since [image: there is no content], then [image: there is no content] holds.

By Definition 10, observe that [image: there is no content] since [image: there is no content] and [image: there is no content] are both the [image: there is no content] block submatrices defined by the same nodes sequence [image: there is no content], and [image: there is no content] since [image: there is no content] and [image: there is no content] are both the [image: there is no content] block submatrices corresponding to the same nodes sequence [image: there is no content].

Furthermore, by Definition 10 note that [image: there is no content] since [image: there is no content] and [image: there is no content] are both the [image: there is no content] block submatrices generated by the same nodes sequence [image: there is no content], and [image: there is no content] since [image: there is no content] and [image: there is no content] are both the [image: there is no content] block submatrices corresponding to the same nodes sequence [image: there is no content].

By Definition 10, it follows from the results discussed above that [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].

Therefore, the new [image: there is no content] derived from [image: there is no content] is greater than the [image: there is no content] stemmed from [image: there is no content] such that brings a contradiction with the previous assumption that [image: there is no content]. This contradiction shows the statement (1) holds.

(2) The result immediately follows from the conclusion (1). ☐

Theorem 10 (Mix Diffusion Theorem of Digraphs).

Let [image: there is no content], [image: there is no content]be a simple connected digraph with n nodes. For computing [image: there is no content], suppose that [image: there is no content]already contains the first m vertices [image: there is no content]. Let [image: there is no content]whose open mix-neighborhood subdigraph is [image: there is no content]. If [image: there is no content], then the following two conclusions hold.

	1.

	
By Definition 11, the selection of the [image: there is no content]th vertex of [image: there is no content]for computing [image: there is no content]is from the open mix-neighborhood subdigraph [image: there is no content]of the nodes set Q.

	2.

	
the vertex-induced subdigraph of the first m vertices is connected.

Proof.

(1) We prove by contradiction. If [image: there is no content], without loss of generality let us assume that [image: there is no content], [image: there is no content], [image: there is no content] is a permutation of [image: there is no content], satisfying conditions [image: there is no content] with [image: there is no content].

Further, we may assume that if condition [image: there is no content] holds, the [image: there is no content] corresponding to [image: there is no content] is the greatest. Assume that the node [image: there is no content] is the node whose index i in [image: there is no content] is the smallest index in [image: there is no content] than the indexes of other nodes belonging to [image: there is no content] in [image: there is no content]. This means that no node belonging to [image: there is no content] is between [image: there is no content] and [image: there is no content] of [image: there is no content] such that for every node [image: there is no content], [image: there is no content] follows (see Definition 11).

Let [image: there is no content] be the matrix corresponding to the permutation [image: there is no content]. Let [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] be the block submatrices of [image: there is no content] containing the first m rows and the [image: there is no content]th column, the [image: there is no content]th to [image: there is no content]th columns, the ith column, and the [image: there is no content]th to nth columns, respectively.

Since [image: there is no content], then [image: there is no content]. If [image: there is no content], then [image: there is no content] by Definition 11. Otherwise, if [image: there is no content], then [image: there is no content]. Therefore, [image: there is no content] for [image: there is no content]. From the above result, for every node [image: there is no content], [image: there is no content], [image: there is no content] holds such that [image: there is no content]. If [image: there is no content], then [image: there is no content] by Definition 11. Otherwise, if [image: there is no content], then [image: there is no content]. Therefore, [image: there is no content]. Since [image: there is no content], then [image: there is no content].

By merely swapping [image: there is no content] and [image: there is no content] of [image: there is no content], one can obtain another permutation [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] with [image: there is no content].

Similar to [image: there is no content], let [image: there is no content] be the matrix corresponding to the permutation [image: there is no content]. Let [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] be the block submatrices of [image: there is no content] containing the first m rows and the [image: there is no content]th column, the [image: there is no content]th to [image: there is no content]th columns, the ith column, and the [image: there is no content]th to nth columns, respectively.

Clearly [image: there is no content] holds for [image: there is no content]. For every node [image: there is no content], [image: there is no content], since [image: there is no content] holds, then [image: there is no content]. If [image: there is no content], then [image: there is no content] by Definition 11. Otherwise, if [image: there is no content], then [image: there is no content]. Therefore, [image: there is no content]. Since [image: there is no content], then [image: there is no content]. If [image: there is no content], then [image: there is no content] by Definition 11. Otherwise, if [image: there is no content], then [image: there is no content]. Therefore, [image: there is no content].

By Definition 10, observe that [image: there is no content] since [image: there is no content] and [image: there is no content] are both the [image: there is no content] block submatrices corresponding to the same nodes sequence [image: there is no content].

Furthermore, by Definition 10 note that [image: there is no content] since [image: there is no content] and [image: there is no content] are both the [image: there is no content] block submatrices corresponding to the same nodes sequence [image: there is no content], and [image: there is no content] since [image: there is no content] and [image: there is no content] are both the [image: there is no content] block submatrices corresponding to the same nodes sequence [image: there is no content].

It follows from the results discussed above that [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].

Therefore, the new [image: there is no content] derived from [image: there is no content] is greater than the [image: there is no content] stemmed from [image: there is no content] such that brings a contradiction with the previous assumption that [image: there is no content]. This contradiction shows the statement (1) holds.

(2) The result immediately follows from the conclusion (1). ☐

Corollary 1.

Let [image: there is no content], [image: there is no content]be a simple connected digraph with n nodes. Let [image: there is no content]. For computing [image: there is no content], suppose that [image: there is no content]already contains the first m vertices [image: there is no content]. By Definition 11, if [image: there is no content]satisfies conditions [image: there is no content], then [image: there is no content].

Proof.

By Neighborhood Diffusion Theorem 9, we have that [image: there is no content]. By Mix Diffusion Theorem 10, it follows that [image: there is no content]. Since conditions [image: there is no content] hold, the result of Corollary 1 is true. ☐

Corollary 2.

Let [image: there is no content], [image: there is no content]be a simple connected digraph with n nodes. For computing [image: there is no content], suppose that [image: there is no content]already contains the first m vertices [image: there is no content]. If [image: there is no content]has open neighborhood subdigraph [image: there is no content]satisfying conditions [image: there is no content]. If [image: there is no content], then [image: there is no content].

Proof.

It follows from Mix Diffusion Theorem 10. ☐

3.2. Compute [image: there is no content] for a Disconnected Digraph

Let [image: there is no content], [image: there is no content] be a simple disconnected digraph with n nodes and p connected components. Suppose that the p connected components are [image: there is no content], [image: there is no content], ⋯, [image: there is no content]. In this subsection, we study how to compute the maximum element [image: there is no content] of G.

If [image: there is no content], how does our algorithm work to compute the maximum element [image: there is no content] of G? Observe that to obtain [image: there is no content] one had to arrange all vertices of each connected component [image: there is no content] with [image: there is no content] together when constructing the adjacency matrix [image: there is no content]. The result also follows from the proof of Diffusion Theorem of Digraphs 9.

First, we analyze the features of the adjacency matrix [image: there is no content]. When constructing the adjacency matrix [image: there is no content], we arrange all vertices of each connected component [image: there is no content] with [image: there is no content] together. As a result, the adjacency matrix [image: there is no content] is a block matrix, each block of which corresponds to a connected component. Next, we study the relationship between [image: there is no content] and [image: there is no content]. Furthermore, we show how to solve the [image: there is no content] of the adjacency matrix [image: there is no content].

Lemma 10.

Let [image: there is no content], [image: there is no content]be a simple disconnected digraph that have two disjoint connected components [image: there is no content], [image: there is no content]and [image: there is no content], [image: there is no content]with k and l nodes respectively. Suppose that

[image: there is no content]

If [image: there is no content], then [image: there is no content]satisfies the following equality:

[image: there is no content]

(49)

where

Cmax1(G)=Cmax1(G1)00⋯0︷l,Cmax2(G)=Cmax2(G1)00⋯0︷l⋯⋯⋯⋯⋯⋯⋯⋯Cmaxk−1(G)=Cmaxk−1(G1)00⋯0︷l,Cmaxk(G)=00⋯0︷l,Cmaxk+1(G)=Cmax1(G2),Cmaxk+2(G)=Cmax2(G2),⋯⋯⋯⋯⋯⋯⋯,Cmaxk+l−1(G)=Cmaxl−1(G2).

Proof.

If [image: there is no content] holds, then [image: there is no content]. By Proposition 3, it follows that to obtain [image: there is no content], one must choose the vertex with the maximum outdegree from [image: there is no content] as the first vertex [image: there is no content] of [image: there is no content].

By Diffusion Theorem of Digraphs 9, the subsequent [image: there is no content] vertices added into [image: there is no content] must be taken from [image: there is no content]. Similarly, by Proposition 3, it follows that to obtain [image: there is no content], one must choose the [image: there is no content]th vertex from [image: there is no content] with the maximum outdegree as the [image: there is no content]th vertex [image: there is no content] of [image: there is no content]. By Diffusion Theorem of Digraphs 9, the next [image: there is no content] vertices added into [image: there is no content] must be from [image: there is no content]. Carefully examining (1), it is not difficult to find that (49) holds. ☐

Note that to ensure the maximization of [image: there is no content], one must add l 0 after [image: there is no content], [image: there is no content], ⋯, [image: there is no content] respectively so that let [image: there is no content] be equal l 0.

Theorem 11.

Let [image: there is no content], [image: there is no content]be a simple disconnected digraph with n nodes and p connected components. Suppose that the p connected components are [image: there is no content], [image: there is no content], ⋯, [image: there is no content]with [image: there is no content], [image: there is no content], ⋯, [image: there is no content]. If Cmax(G1)>Cmax(G2)>⋯>Cmax(Gp), then [image: there is no content]satisfies the following equality:

Cmax(G)=Cmax1(G1)0⋯0︷n−n1⋯Cmaxn1−1(G1)0⋯0︷n−n10⋯0︷n−n1Cmax1(G2)0⋯0︷n−n1−n2⋯Cmaxn2−1(G2)0⋯0︷n−n1−n20⋯0︷n−n1−n2[0.5]⋮Cmax1(Gp−1)0⋯0︷np⋯Cmaxnp−1−1(Gp−1)0⋯0︷np0⋯0︷npCmax1(Gp)⋯Cmaxnp−1(Gp).

(50)

Proof.

We prove (50) by induction on the number p of branches. By the preceding definition, we have [image: there is no content] for [image: there is no content]. Thus, (50) in Theorem 11 holds for [image: there is no content]. By Lemma 10, (50) holds for [image: there is no content].

By induction, suppose that (50) holds for [image: there is no content]. In the following, we prove that the equality (50) also holds for [image: there is no content]. We can now treat the front k branch digraphs as the digraph H. Therefore, (50) also holds for the digraph H.

Cmax(H)=Cmax1(G1)0⋯0︷n−nk+1−n1⋯Cmaxn1−1(G1)0⋯0︷n−nk+1−n10⋯0︷n−nk+1−n1Cmax1(G2)0⋯0︷n−nk+1−n1−n2⋯Cmaxn2−1(G2)0⋯0︷n−nk+1−n1−n20⋯0︷n−nk+1−n1−n2[0.5]⋮Cmax1(Gk−1)0⋯0︷nk⋯Cmaxnk−1−1(Gk−1)0⋯0︷nk0⋯0︷nkCmax1(Gk)Cmax2(Gk)⋯Cmaxnk−1(Gk),

(51)

where

Cmax1(H)=Cmax1(G1)0⋯0︷n−nk+1−n1,[0.35]⋮Cmaxn1−1(H)=Cmaxn1−1(G1)0⋯0︷n−nk+1−n1,Cmaxn1(H)=0⋯0︷n−nk+1−n1,

Cmaxn1+1(H)=Cmax1(G2)0⋯0︷n−nk+1−n1−n2,[0.35]⋮Cmaxn1+n2−1(H)=Cmaxn2−1(G2)0⋯0︷n−nk+1−n1−n2,Cmaxn1+n2(H)=0⋯0︷n−nk+1−n1−n2,[0.35]⋮Cmaxn−nk+1−nk−nk−1+1(H)=Cmax1(Gk−1)0⋯0︷nk,[0.35]⋮Cmaxn−nk+1−nk−1(H)=Cmaxnk−1−1(Gk−1)0⋯0︷nk,

By Lemma 10, we have

Cmax(G)=Cmax1(H)0⋯0︷nk+1Cmax2(H)0⋯0︷nk+1⋯Cmaxn−nk+1−1(H)0⋯0︷nk+10⋯0︷nk+1Cmax1(Gk+1)Cmax2(Gk+1)⋯Cmaxnk+1−1(Gk+1).

(52)

By (51), substituting [image: there is no content] to [image: there is no content] into (52), we obtain

Cmax(G)=Cmax1(G1)0⋯0︷n−nk+1−n10⋯0︷nk+1Cmax2(G1)0⋯0︷n−nk+1−n10⋯0︷nk+1⋯Cmaxnk−1(Gk)0⋯0︷nk+10⋯0︷nk+1Cmax1(Gk+1)Cmax2(Gk+1)⋯Cmaxnk+1−1(Gk+1).

(53)

Thus, we have

Cmax(G)=Cmax1(G1)0⋯0︷n−n1⋯Cmaxn1−1(G1)0⋯0︷n−n10⋯0︷n−n1Cmax1(G2)0⋯0︷n−n1−n2⋯Cmaxn2−1(G2)0⋯0︷n−n1−n20⋯0︷n−n1−n2[0.35]⋮Cmax1(Gk)0⋯0︷nk+1⋯Cmaxnk−1(Gk)0⋯0︷nk+10⋯0︷nk+1Cmax1(Gk+1)⋯Cmaxnk+1−1(Gk+1).

(54)

Thus, the equality (50) holds for [image: there is no content]. ☐

By Theorem 11, it can be seen that one must first calculate [image: there is no content] of each branch for [image: there is no content] for obtaining [image: there is no content], respectively. Furthermore, one substitutes [image: there is no content] into (50) sequentially to obtain [image: there is no content] of a simple disconnected digraph G.

If the above conditions are not satisfied, how does one calculate [image: there is no content] of a disconnected undirected G? Based on an analysis of the preceding results, establish the following Theorem 12 that is more general than Lemma 10.

Theorem 12.

Let [image: there is no content], [image: there is no content]be a simple disconnected digraph that have two disjoint connected components [image: there is no content], [image: there is no content]and [image: there is no content], [image: there is no content]with k and l nodes respectively. Let [image: there is no content]and [image: there is no content]satisfying condition [image: there is no content]. Suppose that

[image: there is no content]

(55)

[image: there is no content]

(56)

If there exists a node [image: there is no content]satisfying condition [image: there is no content]for [image: there is no content], then [image: there is no content]satisfies the following equality:

[image: there is no content]

(57)

where

Cmax1(G)=Cmax1(G1)00⋯0︷l,Cmax2(G)=Cmax2(G1)00⋯0︷l⋯⋯⋯⋯⋯⋯⋯⋯Cmaxk−1(G)=Cmaxk−1(G1)00⋯0︷l,Cmaxk(G)=00⋯0︷l,Cmaxk+1(G)=Cmax1(G2),Cmaxk+2(G)=Cmax2(G2),⋯⋯⋯⋯⋯⋯⋯,Cmaxk+l−1(G)=Cmaxl−1(G2).

Proof.

By the condition of Theorem 12, [image: there is no content] since [image: there is no content] holds.

If there exists a node [image: there is no content] satisfying condition [image: there is no content] for [image: there is no content], by Theorem 3, one must choose the first vertex [image: there is no content] added into [image: there is no content] from [image: there is no content] so that obtain [image: there is no content].

By Diffusion Theorem of Digraphs 9, one must select [image: there is no content] into [image: there is no content] from [image: there is no content] to obtain [image: there is no content]. In addition, one must choose the subsequent l nodes into [image: there is no content] from [image: there is no content]. By (55) and (56), it follows that (58) holds.

[image: there is no content]

(58)

where

Cmax1(G)=Cmax1(G1)00⋯0︷l,Cmax2(G)=Cmax2(G1)00⋯0︷l,⋯⋯⋯⋯⋯⋯⋯⋯,Cmaxk−1(G)=Cmaxk−1(G1)00⋯0︷l,Cmaxk(G)=00⋯0︷l,Cmaxk+1(G)=Cmax1(G2),Cmaxk+2(G)=Cmax2(G2),⋯⋯⋯⋯⋯⋯⋯,Cmaxk+l−1(G)=Cmaxl−1(G2).

Note that to ensure the maximization of [image: there is no content], l 0 must be added after [image: there is no content], [image: there is no content], ⋯, [image: there is no content] respectively and let [image: there is no content] be equal l 0. ☐

4. Our Algorithms for Computing the Canonical Labelings of Digraphs

In the section, based on the results of the previous sections, we present our algorithms for computing canonical labelings of digraphs. We display the major steps required for calculating the maximum element [image: there is no content] of G. When our algorithm has calculated the node [image: there is no content] of [image: there is no content], then, it constructs the close mix-neighborhood subdigraph [image: there is no content] of the set [image: there is no content] (see Figure 1a), from which it picks a few vertices into [image: there is no content]. For clarity of presentation, we call this process [image: there is no content] 1. Then again, it builds the close mix-neighborhood subdigraph [image: there is no content] of the nodes set [image: there is no content] (see Figure 1b), from which it picks a few vertices into [image: there is no content]. We call this process [image: there is no content] 2. ⋯. Then again, it builds the close mix-neighborhood subdigraph [image: there is no content] of the nodes set [image: there is no content] (see Figure 1c,d), from which it picks a few vertices into [image: there is no content]. We call this process PROGRESS r⋯. This process continues until it puts all vertices in G into [image: there is no content] (see Figure 1e,f).

Figure 1. Each close mix-neighborhood subdigraph of different nodes sets of an 8 × 8 grid digraph [image: there is no content] consists of pink and green nodes and edges. (a) The close mix-neighborhood subdigraph [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; (d) [image: there is no content]; (e) [image: there is no content]; (f) [image: there is no content].

[image: Entropy 19 00079 g001]

For [image: there is no content] 1, after calculating [image: there is no content], by Lemma 2, our algorithm arranges all nodes of [image: there is no content] into a single chain [image: there is no content] (see Algorithm 1). For simplify, let [image: there is no content]. If there are two nodes [image: there is no content] satisfying condition [image: there is no content] with respect to [image: there is no content], then it continues to determine whether [image: there is no content] or [image: there is no content] with respect to G. If [image: there is no content], it rearranges [image: there is no content] in front of the [image: there is no content] in [image: there is no content]. Otherwise, it rearranges [image: there is no content] in back of the [image: there is no content] in [image: there is no content].

For each [image: there is no content]r, [image: there is no content], when calculating [image: there is no content], our algorithm continues to calculate the close in-neighborhood subdigraph [image: there is no content] and let [image: there is no content] if condition [image: there is no content] holds for some r.

For each [image: there is no content]r, [image: there is no content], after calculating [image: there is no content], our algorithm in turn computes [image: there is no content] (see Figure 2d), [image: there is no content] (see Figure 2e), [image: there is no content] (see Figure 2f), and the outdegree sequences [image: there is no content], [image: there is no content], [image: there is no content] in decreasing order respectively, where [image: there is no content], [image: there is no content]. It can be shown that [image: there is no content] and [image: there is no content] for [image: there is no content]. By Lemma 2, it arranges all nodes of [image: there is no content] into a single chain [image: there is no content] (see Algorithm 1) with [image: there is no content], respectively.

Figure 2. A wheel graph G, two open mix-neighborhood subdigraphs [image: there is no content] and [image: there is no content], and the three relevant nodes sets generated by the boolean operations of [image: there is no content] and [image: there is no content]. (a) A wheel digraph G; (b) The open mix-neighborhood subdigraph [image: there is no content]; (c) The open mix-neighborhood subdigraph [image: there is no content]; (d) [image: there is no content]; (e) [image: there is no content]; (f) [image: there is no content].

[image: Entropy 19 00079 g002]

	Algorithm 1: Arrange all nodes of [image: there is no content] into a single chain [image: there is no content] for a close mix-neighborhood subdigraph [image: there is no content] with [image: there is no content], respectively where [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content].

	 [image: Entropy 19 00079 i001]

	Algorithm 2: Compare the entire mix diffusion outdegree sequences [image: there is no content], [image: there is no content], ⋯, [image: there is no content] and [image: there is no content], [image: there is no content], ⋯, [image: there is no content] of two nodes v and w in H.

	 [image: Entropy 19 00079 i002]

	Algorithm 3: Compare two mix diffusion outdegree sequences [image: there is no content] and [image: there is no content] of two nodes v and w in H.

	 [image: Entropy 19 00079 i003]

	Algorithm 4: Compare [image: there is no content] and [image: there is no content].

	 [image: Entropy 19 00079 i004]

Next, our algorithm sequentially performs the following steps for the nodes of [image: there is no content] with [image: there is no content]:

	
Starting from the head of [image: there is no content], our algorithm successively determines whether each node [image: there is no content] satisfies the outdegree multiplicity condition [image: there is no content]. If the number of vertices satisfying condition [image: there is no content] is less than 2 in [image: there is no content], it puts u into [image: there is no content]. If there are two nodes [image: there is no content] satisfying condition [image: there is no content] with respect to [image: there is no content], then it continues to determine whether [image: there is no content] or [image: there is no content] with respect to G. If [image: there is no content], it rearranges the [image: there is no content] in front of the [image: there is no content] in [image: there is no content] (see Algorithm 1). Otherwise, it rearranges the [image: there is no content] in back of the [image: there is no content] in [image: there is no content] (see Algorithm 1).

	
Except the nodes added into [image: there is no content], it uses a queue Q to store the intermediate nodes to be added to [image: there is no content]. After performing Step 1, it sequentially determines whether or not each node [image: there is no content] is in Q. If u is in Q and the number of nodes added into [image: there is no content] is less than 2 in the preceding procedures, it puts u into [image: there is no content] and simultaneously deletes u from Q. Otherwise, it inputs u into Q.

	
For [image: there is no content], if the number of vertices of [image: there is no content] added into [image: there is no content] is 0 and the number of vertices satisfying condition [image: there is no content] with [image: there is no content] is less than 2, it puts u into [image: there is no content]. The remaining processing steps are the same as for [image: there is no content].

	
For [image: there is no content], if the number of vertices of [image: there is no content] and [image: there is no content] added into [image: there is no content] is 0 and the number of vertices satisfying the condition [image: there is no content] with [image: there is no content] is less than 2, it puts u into [image: there is no content]. The remaining processing steps are the same as for [image: there is no content].

Our algorithm uses an array [image: there is no content] to store the nodes of [image: there is no content] and an array Q to keep the nodes to be added to [image: there is no content] temporarily.

Experiments demonstrate that our approach is a novel way by which one can accurately calculate MaxEm digraphs (defined in Section 2) for many types of digraphs. Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, Figure 20 and Figure 21 produced by our software show the correctness of our software for calculating MaxEm digraphs of these digraph classes aforementioned.

Figure 3. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) The [image: there is no content] grid digraph [image: there is no content] with 27 nodes and 54 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) The [image: there is no content] grid digraph [image: there is no content] with 64 nodes and 144 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) A digraph [image: there is no content] with 77 nodes and 196 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g003]

Figure 4. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) A [image: there is no content] king digraph [image: there is no content] with 100 vertices and 342 directed edges ; (b) The MaxEm digraph of [image: there is no content]; (c) A [image: there is no content] grid digraph [image: there is no content] with 144 nodes and 264 edges; (d) The MaxEm digraph of [image: there is no content]; (e) A wheel digraph [image: there is no content] with 51 nodes and 100 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g004]

Figure 5. The MaxEm digraphs of [image: there is no content], [image: there is no content], and [image: there is no content]. (a) A digraph [image: there is no content] with 50 nodes and 90 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) A directed tree [image: there is no content] with 39 nodes and 38 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) A directed tree [image: there is no content] with 42 nodes and 41 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g005]

Figure 6. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) A digraph [image: there is no content] with 22 nodes and 37 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) A digraph [image: there is no content] with 53 nodes and 80 directed edges; (d) The MaxEm digraph of [image: there is no content] ; (e) A graph [image: there is no content] with 49 nodes and 78 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g006]

Figure 7. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) The Doyle digraph [image: there is no content] with 27 nodes and 54 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) The Clebsch digraph [image: there is no content] with 16 nodes and 40 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) The 4-hypercube digraph [image: there is no content] with 16 nodes and 32 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g007]

Figure 8. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) The coxeter digraph [image: there is no content] with 28 nodes and 42 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) The Dyck digraph [image: there is no content] with 32 vertices and 48 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) A Shrikhande digraph [image: there is no content] with 16 vertices and 48 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g008]

Figure 9. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) The 6th order cube-connected cycle digraph [image: there is no content] with 24 vertices and 36 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) A triangle-replaced digraph [image: there is no content] with 30 nodes and 45 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) The Thomassen digraph [image: there is no content] with 34 vertices and 52 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g009]

Figure 10. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) The musical digraph [image: there is no content] with 24 nodes and 60 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) The 12-crossed prism digraph [image: there is no content] with 24 nodes and 36 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) The Icosidodecahedral digraph [image: there is no content] with 30 nodes and 60 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g010]

Figure 11. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) The 7-antiprism digraph [image: there is no content] with 14 vertices and 28 edges; (b) The MaxEm digraph of [image: there is no content]; (c) A fullerene digraph [image: there is no content] with 24 vertices and 36 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) The great rhombicuboctahedron digraph [image: there is no content] with 48 vertices and 72 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g011]

Figure 12. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) A Hamiltonian digraph [image: there is no content] with 20 nodes and 30 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) The Folkman digraph [image: there is no content] with 20 nodes and 40 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) The snark digraph [image: there is no content] with 20 vertices and 30 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g012]

Figure 13. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) The complete bipartite digraph [image: there is no content] with 10 nodes and 25 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) The triangular digraph [image: there is no content] with 10 nodes and 30 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) A generalized quadrangle digraph [image: there is no content] with 15 nodes and 45 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g013]

Figure 14. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) The 6-Andrásfai digraph [image: there is no content] with 17 nodes and 51 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) The 4-dimensional Keller digraph [image: there is no content] with 16 nodes and 46 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) The [image: there is no content] knight digraph [image: there is no content] with 36 vertices and 80 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g014]

Figure 15. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) The Loupekine snarks digraph [image: there is no content] with 22 nodes and 33 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) The Errera digraph [image: there is no content] with 17 nodes and 45 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) The Sierpinski sieve digraph [image: there is no content] with 42 nodes and 72 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g015]

Figure 16. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) The Grinberg digraph [image: there is no content] with 44 nodes and 67 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) A digraph [image: there is no content] with 38 nodes and 57 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) The Grinberg digraph [image: there is no content] with 42 vertices and 63 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g016]

Figure 17. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) A pentagonal icositetrahedral digraph [image: there is no content] with 38 nodes and 60 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) The Faulkner-Younger digraph [image: there is no content] with 42 vertices and 62 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) The Faulkner-Younger digraph [image: there is no content] with 44 nodes and 65 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g017]

Figure 18. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) The Celmins Swart snarks digraph [image: there is no content] with 26 vertices and 39 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) The truncated octahedron digraph [image: there is no content] with 24 nodes and 36 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) The Nauru digraph [image: there is no content] with 24 nodes and 36 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g018]

Figure 19. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) The Wiener-Araya digraph [image: there is no content] with 42 nodes and 67 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) The Zamfirescu digraph [image: there is no content] with 48 nodes and 76 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) The Folkman digraph [image: there is no content] with 20 nodes and 40 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g019]

Figure 20. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) The 24-cell digraph [image: there is no content] with 24 nodes and 94 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) A disconnected graph [image: there is no content] with 12 nodes and 12 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) A disconnected digraph [image: there is no content] that has four connected components and a total of 100 nodes and 160 directed edges; (f) The MaxEm> digraph of [image: there is no content].

[image: Entropy 19 00079 g020]

Figure 21. The MaxEm digraphs of three digraphs [image: there is no content], [image: there is no content], and [image: there is no content]. (a) The projective plane digraph [image: there is no content] with 26 nodes and 52 directed edges; (b) The MaxEm digraph of [image: there is no content]; (c) The Miyazaki digraph [image: there is no content] with 40 nodes and 60 directed edges; (d) The MaxEm digraph of [image: there is no content]; (e) The Cubic Hypohamiltonian digraph [image: there is no content] with 44 nodes and 75 directed edges; (f) The MaxEm digraph of [image: there is no content].

[image: Entropy 19 00079 g021]

5. Software Implementation

Applying the principles described in the preceding sections, we have developed a set of software tools called GraphLabel 1.0 for computing canonical labelings of Digraphs. Our development environment includes an Intel(R) Core(TM)2 Quad CPU Q6600 @2.40GHz with 4.00 GB of RAM. The operating system is Microsoft Windows 8.1 Professional Edition. The graphics card is an NVIDIA GeForce 9800 GT. The display resolution is 1024 × 768 × 32 bits (RGB). The internal hard drive is 500 GB. The programming environment is the Microsoft Visual C++ 2012.

The software adopts object-oriented technology to design several relevant classes including the classes CNode, CNodeNeighbor, CEdge, CEdgeNeighbor, CGraph, and so on. A detailed description of the software functions is outside the scope of this article. We will explain it in another paper. All the figures presented in this paper are produced by using our software system.

We selected a digraph set to test the accuracy of our algorithms. Using our own software platform, we randomly produced a large number of digraphs as the test cases, including Figure 3e, Figure 5c,e and Figure 6. To increase the breadth and depth of our testing, we also select many test cases from the library of benchmarks [29] and online library [30] includings Figure 3a,c, Figure 4, Figure 5a and Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, Figure 20 and Figure 21.

We apply our algorithms to as many types of digraphs as possible. These digraphs shown in the article are just a small part of tested digraphs due to the limited length of the article. Each digraph displayed in the paper includes both the original digraph and the resulting digraph to compare entirely.

6. Conclusions and Future Work

In summary, we obtain the following conclusions: By Theorems 2–12, the paper has established a relatively complete theoretical system for calculating the MaxEm digraphs of digraphs. Algorithms 1–4 are novel and can accurately calculate MaxEm digraphs for many types of digraphs (see Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, Figure 20 and Figure 21). Algorithms 1–4 are also available for simple disconnected digraphs. For each node in a digraph G, the introduction of the attribute m_NearestNode improves the accuracy of calculating canonical labeling. Through software testing, the correctness of our algorithms is preliminarily verified. Our method can be utilized to mine the frequent subdigraph. Besides, it offers Conjecture 1.

Of course, there are still many places we need to improve, including to prove the conjectures proposed by us, enhance our software system, and use more test cases to test our procedures. In particular, we need to strengthen our algorithms so that it can calculate the canonical labeling for more types of digraphs. In future studies, we will extend our approach to mine the frequent subdigraphs and calculate the canonical labelings of weighted graphs and digraphs.

Acknowledgments

The work described in this paper was supported by Key Project of the National Natural Science Foundation of China (No. 91318301), National Natural Science Foundation of China (No. 61202080), China Postdoctoral Science Foundation (No. 2015M581032).

Author Contributions

Jianqiang Hao and Yunzhan Gong wrote the paper; Jianqiang Hao, Yawen Wang, Li Tan and Jianzhi Sun developed the software; All authors conceived and designed the experiments; Jianqiang Hao, Li Tan, and Jianzhi Sun performed the experiments; Jianqiang Hao, Yawen Wang, and Li Tan analyzed the data. All authors have read and approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

	1.
McKay, B. Computing automorphisms and canonical labellings of graphs. In Combinatorial Mathematics; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1978; Volume 686, pp. 223–232. [Google Scholar]

	2.
Piperno, A. Search space contraction in canonical labeling of graphs. arXiv 2008. [Google Scholar]

	3.
Junttila, T.; Kaski, P. Engineering an Efficient Canonical Labeling Tool for Large and Sparse Graphs. In Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and the Fourth Workshop on Analytic Algorithmics and Combinatorics, New Orleans, LA, USA, 6 January 2007; SIAM: Philadelphia, PA, USA, 2007; pp. 135–149. [Google Scholar]

	4.
Babai, L.; Luks, E.M. Canonical Labeling of Graphs. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing; ACM: New York, NY, USA, 1983; pp. 171–183. [Google Scholar]

	5.
Ivanciuc, O. Canonical Numbering and Constitutional Symmetry. In Handbook of Chemoinformatics; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008; pp. 139–160. [Google Scholar]

	6.
Shah, Y.J.; Davida, G.I.; McCarthy, M.K. Optimum Featurs and Graph Isomorphism. IEEE Trans. Syst. Man Cybern. 1974, 3, 313–319. [Google Scholar]

	7.
Arvind, V.; Das, B.; Köbler, J. A Logspace Algorithm for Partial 2-Tree Canonization. In Computer Science—Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5010, pp. 40–51. [Google Scholar]

	8.
Huan, J.; Wang, W.; Prins, J. Efficient Mining of Frequent Subgraphs in the Presence of Isomorphism; IEEE Computer Society: Washington, DC, USA, 2003; pp. 549–552. [Google Scholar]

	9.
Kuramochi, M.; Karypis, G. Finding Frequent Patterns in a Large Sparse Graph. Data Min. Knowl. Discov. 2005, 11, 243–271. [Google Scholar]

	10.
Kuramochi, M.; Karypis, G. An efficient algorithm for discovering frequent subgraphs. IEEE Trans. Knowl. Data Eng. 2004, 16, 1038–1051. [Google Scholar]

	11.
He, P.R.; Zhang, W.J.; Li, Q. Some further development on the eigensystem approach for graph isomorphism detection. J. Frankl. Inst. Eng. Appl. Math. 2005, 342, 657–673. [Google Scholar]

	12.
Kashani, Z.; Ahrabian, H.; Elahi, E.; Nowzari-Dalini, A.; Ansari, E.; Asadi, S.; Mohammadi, S.; Schreiber, F.; Masoudi-Nejad, A. Kavosh: A new algorithm for finding network motifs. BMC Bioinform. 2009, 10, 318. [Google Scholar]

	13.
Babai, L.; Kucera, L. Canonical labelling of graphs in linear average time. In Proceedings of the 20th Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 29–31 October 1979; pp. 39–46.

	14.
Arnborg, S.; Proskurowski, A. Canonical Representations of Partial 2- and 3-Trees. In Proceedings of the 2nd Scandinavian Workshop on Algorithm Theory; Springer: Berlin/Heidelberg, Germany, 1990; Volume 477, pp. 197–214. [Google Scholar]

	15.
Hao, J.; Gong, Y.; Tan, L.; Duan, D. Apply Partition Tree to Compute Canonical Labelings of Graphs. Int. J. Grid Distrib. Comput. 2016, 9, 241–263. [Google Scholar]

	16.
McKay, B.D. Practical Graph Isomorphism. Congr. Numer. 1981, 30, 45–87. [Google Scholar]

	17.
McKay, B.D. Isomorph-Free Exhaustive Generation. J. Algorithms 1998, 26, 306–324. [Google Scholar]

	18.
McKay, B.D.; Piperno, A. Practical graph isomorphism, II. J. Symb. Comput. 2014, 60, 94–112. [Google Scholar]

	19.
Ullmann, J.R. An Algorithm for Subgraph Isomorphism. J. ACM 1976, 23, 31–42. [Google Scholar]

	20.
Yan, X.; Han, J. gSpan: Graph-based substructure pattern mining. In Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM 2003), Maebashi City, Japan, 9–12 December 2002; pp. 721–724.

	21.
Miyazaki, T. The complexity of McKay’s canonical labeling algorithm. In Groups and Computation II; American Mathematical Society: Providence, RI, USA, 1997; Volume 28, pp. 239–256. [Google Scholar]

	22.
Tener, G.; Deo, N. Efficient isomorphism of miyazaki graphs. Algorithms 2008, 5, 7. [Google Scholar]

	23.
Junttila, T.; Kaski, P. Conflict Propagation and Component Recursion for Canonical Labeling. In Theory and Practice of Algorithms in (Computer) Systems; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6595, pp. 151–162. [Google Scholar]

	24.
López-Presa, J.L.; Anta, A.F.; Chiroque, L.N. Conauto-2.0: Fast Isomorphism Testing and Automorphism Group Computation. arXiv 2011. [Google Scholar]

	25.
Katebi, H.; Sakallah, K.; Markov, I. Graph Symmetry Detection and Canonical Labeling: Differences and Synergies. In Proceedings Turing-100; EPIC: Manchester, UK, 2012; Volume 10, pp. 181–195. [Google Scholar]

	26.
Bang-Jensen, J.; Gutin, G.Z. Digraphs: Theory, Algorithms and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]

	27.
Bollobás, B. Modern Graph Theory; Springer: Berlin/Heidelberg, Germany, 2013; Volume 184. [Google Scholar]

	28.
Chartrand, G.; Tian, S. Distance in digraphs. Comput. Math. Appl. 1997, 34, 15–23. [Google Scholar]

	29.
ALENEX 2007 Submission: Source Code, Benchmark Instances, and Summary Results. Available online: http://www.tcs.hut.fi/Software/benchmarks/ALENEX-2007/ (accessed on 17 February 2017).

	30.
Weisstein, E.W. Simple Directed Graph. From MathWorld—A Wolfram Web Resource. Available online: http://mathworld.wolfram.com/SimpleDirectedGraph.html (accessed on 18 February 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

media/file8.jpg
@

Parad
%

media/file27.png

media/file43.png
RIS

X
A

DO

60— 69— O)—@——0) ¢
bbb bbb
L L4 LI 1

RN
KA

(6)
A\
R

\'
N7

Vi >

S00®
@3 636145496665
DR DD
b & bbb b e
b bbb bbb

(f)

media/file12.jpg

media/file14.jpg

media/file35.png
)

(d

)

(

49
2
36 32
18
(15 1e—17) (12
(17

3036

3934

10

2
J,

(f)

(e)

media/file20.jpg

media/file5.png

media/file19.png
)

(e

media/file45.png
SN
@/@@
frs)
e I
KRR MK

, \«w@

\ wa.v
(ol 1S

R T

4 ®—I
@“/@
UK

\ \]
)
WU
,ﬂ,@&@ s

&
:
Al

A’l/‘~
| 4
’@,. @Q

'S
N

nav.xhtml

 entropy-19-00079

 		
 entropy-19-00079

media/file11.png
00030
4;&@”&@’“@&@&@’%&@
000050
ROL0T0%¢

67

(b)

00—97

4)

(a)

19

RO

)) %) B
VTN VIV
OLZ0NR0Z0N

-0 -@-O-E-&
@.@.@.@.@.@.@.@.@.@.@.@
@.@.@.@.@.@.@.@.@.@.@.@
@.@.@ @.@.@.@.@.ﬂ.@.ﬂ.@
@.@ @.@.@.@.@.@.@.@.@.@
@.@.@.@.@.@.@.@.@.@.@.@
99999999¢

-0 S

g o0

Q& @D H-@- LB
00000008006

1990909099999 96:!
99999999990
.@.@.@.@ @.@.@.@.@.@.@
9666606660

DO O--B@-O®
@ @.@.@.@.@.@.@.@.@.@ 5
999999000090
@ O-B-Q-QD--O-O-C-B-®
0.@.@.@.@.@.@.@.@.@.@.@
990909000099096

Q- O-O- OO

-
999999

(d)
()

)

e

(

media/file41.png
(a) (b)

(e) (f)

media/file2.png
1 v0id Compare_Two_Mix_Diffusion_OutDegree_Sequences(Digraph H, Digraph N/ *[v],
Digraph N;* [w], QueueArray df (Hy), QueueArray ¥ (Ji), int &flag)

2

3 d e Od e Gme 0l

Let mix dif fusion outdegree sequence df (Hy) = (11, (Vo), dfe s (V1) et

// Have VoV Vi V-V Vs = V(Hy) and V;NV; © tor i£]ij=01, 5

s Letmixdif fusion ﬂuldegrfc sequence d (J) = (A3, (Lo), i, 'm(”‘)" B U));

at.,

E

// Have Uy V Uy V- =V(Jy) and U;NU; = for i#jij= t
. whlle(m<—4andm<—l)l//m<—;and m<=t
7 Let the outdegree sequence dy, i (Vi) = (dy; (@), dy, 1 (@2), -+, d, (@), -,
5,19(a)) in descending order;// Have Vi = (am, ,aA)
f Let the outdegree sequence 45, (L) = (45,) (b1) 45,y (b2), -+, @, (B), -+,

9 while (| <= Aand! <
10 dy +df,

5

a3, (bw)) in descending order;// Have Uy = {by, by, - b,l),

+
oo (@) 2 “dN)
// Compare d] and d; (see Algonlhm 4);

2 Compare_dy_and_dy (m, dy, dy, flag);

if (fla or flag == 1)then
| return; // d(Hy) # () with regard to H;
Tel+1;
if (1 <= Aand ! > p)then
L/zwgo return; // di(Hy) > d(J;) with regard to H;
elseif (I > Aand | <= jithen
flag < 1; return; // d (Hy) < d% (J;) with regard to H;
mem+l; 11
if (m <=sand m > t)then
| flag < 0; retumn; // d (Hy) > df (J) with regard to
else if (m > s and m <= Hthen
flag « 1; return; // df (Hy) < di (Ji) with regard to H;
else
| flag - 2; return; // d (Hy) == df (Jy) with regard to H;

—

H;

—

media/file37.png
-3 PAd F 99
2—=)3 ‘e (D4
58 5063 25 19—~
8 r—16—1 25 0 34r—3 16 22 2
©; (9 4 a7 42 ®
(a) (b)

media/file10.jpg
[eT8Cs”
00%0;
o

media/file40.jpg

media/file16.jpg

media/file3.png
1 void Compare_dy_and_dy (int

2 {

3

flag «0;
if im == O)then

if (d1 < dy)then

| flag «0; return;
else if (d; >d,)m
flag

—8

else

if (dy > d;)e en
| fiag

else if (d; < dy)then
L flag «1; return;

m, int dy, int dy, int &flag)

media/file22.jpg

media/file25.png

media/file26.jpg

media/file34.jpg

media/file13.png

media/file31.png
G\LVW'%W’ :
ST

A

XIS
SSENAID,
KB

U %S,
X/

PP NP
ﬂw‘b.avwww‘n A\ AP
V.‘ P2\ , ',\ KT W /s\\
= \«&«\/I,V« > 0&\ X

CRIRRN
S

\\\»@O "9
<K V‘\ (\
»&QM/M‘

5
v

(d)
(f)

\/

£ wv

«’ ’«

S
@

e)

(

media/file39.png
(b)

(a)

(d)

19

14

o

12)-

16

)

e

(

media/file18.jpg

media/file9.png
1/ : : 1 9 3)
{ { </ /?(FV//A T g A 1 ’
2?{87 5 52//; A
I 1 * T :
Bzl - - 2%
AT =
Y.y i 1 e Ve
7 A = 5~ P
1 59 A~ T e 1 *
11 fb\\(WKZ 41 3 \‘y// -r/
u;'// 3 4 J por= f1§(:1 /"
1
1 9 5 1
1
(c)
(d)

media/file42.jpg
©

media/file23.png

media/file36.jpg

media/file15.png

media/file28.jpg

media/file32.jpg

media/file6.jpg

media/file24.jpg

media/file29.png
)

(b

)

(a

(d)

(©)

media/file1.png
2 {

if(r<

void Compare_Two_Nodes (Graph H, CNode v, CNode w, int &flag)

0; flag < 0;
while (y< p**[o]and r <= p** [w])l /.
P+ [w]
rer+l kel
Compute the close

mix-neighborhood subdigraph N;*[o] of o in H;
the p connected components Hy, Hy, -+, Hy of N++
Calculate the entire mix dif fusion outdegree wqumced’ [N** [l = d+ (Hy

Compute

mix dif fusion radius p**[v] and

), di (Ha),
df (Hp)), satisfying conditions d; (H) > d (Hp) > -+ > di (Hp);
Compute the close r mix-neighborhood subdigraph N;**[w] of w in H;
Compute the [connected components [y, Ja, - -+, J; of N; ¥ [w];
c lculate the entire mix dif fusion outdegree sequenced§y[N;*] = (df (1), d (

(), satisfying conditions & () > (J2) > --- > d (J));
while (k< pandk <=

flag

// Compare two mix dif fusion outdegree sequences (see Algorithm 3)
Compare_Two_Mix_Dif fusion_OutDegree_Sequences (H, N+
4 ()), flag);
if (flag == 0 or flag =
L return;

Jthen // v or v < w with regard to
kek+1;

if (k< pzndk Dthen

| flag - 0; return; // v w with regard to

else if (k> pand k <=)then

Lﬂug 1; return; // © < w with regard to H;

“+[o] and r > p** [w])then
I\ﬂagﬁo return; // v - w with regard to H;

elseif (r >p++[u] and r <= p**[w])then

| flag < m; // © < w with regard to H;
else

| flag & 2; return; // v = w with regar to H;

H

0], N+ [w], df (Hy),

media/file7.png

media/file33.png

media/file44.jpg

media/file38.jpg
©

media/file0.png
Input : 1. Ansimple connected digraph G with 7 nodes and the close mix-neighborhood
subdigraph N**[5,] =< V(N**[5,]), EQN**[S,]) > of a nodes set S, C V/(G).
2. Anodes set V; = {01, 02, -+ -, 0/} stored in an array NodeArray.
Outpul Alist L used to store and rank all nodes of the chain L;.
1; flag - 0;

Imrmlrzu local variables NodeMax, Node ;
Compute the outdegree sequence d; s (Vi) =
descending order;

4 for (I Otot—2)(

s

Q
e
Y

v

N5 @D A5, (@) s (0

=

NodeMax < NodeArray[l];

6 | for(jeI+1tor—1)

7 Node + NodeArray[jl;

s flag +0;

5 Compare. Tivo_NodesCN'+
if (flag

10

/], NodeMax, Node, flag); see Algorithm 2;
= O)then // NodeMax > Node with regard to N**[s,

By

[s:]
n || g0 back to the beginning of the for-loop;
2 else if (flag == 1)then // NodeMax < Node with regard to N**[5,]
1 | NodeMax ¢ Node;
1 else if wng —=2)then // NodeMax = Node with regard to N**[S]
15 flag
16 Compa n'_Twu Nodes (G, NodeMax, Node, flag); see Algorithm 2;
17 i (flag

Oor2)then // NodeMax = Node with regard to G
| g0 back to the beginning of the for-loop;

m else if (flag == 1)then // NodeMax < Node with regard to G
» | NodeMax « Node;

‘Add the NodeMax to the end of the list L;

media/file17.png

media/file4.jpg
&
2460109
S8

$3
treii

media/file30.jpg

media/file21.png
)

b

(

)

(a

(d)

(©)

()

)

(e

