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Abstract: In our information age, information alone has become a driver of social growth. Information
is the fuel of “big data” companies, and the decision-making compass of policy makers. Can we
quantify how much information leads to how much social growth potential? Information theory is
used to show that information (in bits) is effectively a quantifiable ingredient of growth. The article
presents a single equation that allows both to describe hands-off natural selection of evolving
populations and to optimize population fitness in uncertain environments through intervention.
The setup analyzes the communication channel between the growing population and its uncertain
environment. The role of information in population growth can be thought of as the optimization of
information flow over this (more or less) noisy channel. Optimized growth implies that the population
absorbs all communicated environmental structure during evolutionary updating (measured by their
mutual information). This is achieved by endogenously adjusting the population structure to the
exogenous environmental pattern (through bet-hedging/portfolio management). The setup can be
applied to decompose the growth of any discrete population in stationary, stochastic environments
(economic, cultural, or biological). Two empirical examples from the information economy reveal
inherent trade-offs among the involved information quantities during growth optimization.

Keywords: information theory; natural selection; replicator dynamics; bet hedging; evolutionary
economics; portfolio theory; entropy; Kelly criterion

1. Introduction

Information by itself has become much discussed driver of growth in our so-called information
age [1–4]. More recently, the so-called “big data” paradigm has underlined the strategic importance
of turning data into information, and information to growth [5–8]. Private sector consultancy
companies emphasize the “need to recognize the potential of harnessing big data to unleash
the next wave of growth” [9]; international organizations call upon governments to exploit the
“data-driven economy” [10] by using “data as a new source of growth” [11]; and entrepreneurs
already hail information as “the new oil” [12]. While we can measure oil as growth input, can we
also quantify growth in terms of pure information? What can we say about the theoretical
connection between growth and formal notions of information that goes beyond metaphors, analogies,
and anecdotal evidence?

Answering these questions requires the meaningful measure of information. Only by measuring
information can we say that “this much information” leads to “that much growth”. The quantification
of information is the domain of information theory, which is a branch of mathematics that goes back to
Shannon’s seminal 1948 work [13]. Shannon conceptualized information as the opposite of uncertainty,
and communication as the process of uncertainty reduction (for a short introduction to information
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theory see Supplementary Section 1). Based upon this notion, information theory provides formal
metrics to deal with fundamental questions of information, such as the ultimate channel capacity
(measured in “mutual information”), and identification of the part of data that truly reduces uncertainty
(measured by the “entropy” of the source) [14,15]. This seems to be a useful quantity, as growth is
certainly not driven by a collection of redundantly meaningless 0s and 1s in a database, but only by
true information that represents a “difference which makes a difference” [16] (in our case, a detectable
difference in growth). The goal of this article is to both describe naturally occurring growth dynamics
in terms of information theoretic metrics, and to link it to the literature from portfolio theory that
shows how to optimize the growth of the evolving population.

An illustrative example will help us to concretize the different steps that follow. Figure 1 shows
the popularity of the Google search terms “chocolate” and “diet” between 2004 and 2015. This pattern
is of great value for a company that specializes in a portfolio of related products. Over the entire decade,
the population of both terms together has grown some 10.8%. This total growth can be explained
in terms of varying growth rates of each term, and therefore in terms of natural selection between
both types. Our first step consists in deriving a descriptive equation that decomposes this dynamic of
natural selection into information theoretic metrics.
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Figure 1. Google Trends data for the search engine terms ‘chocolate’ and ‘diet’ from May 2004 to
February 2015. Vertical shadings indicate different environmental states (see Results section).

If we assume that global interest in both search terms is correlated with economic demand for
related products, a data savvy entrepreneur should be able to exploit the pattern to maximize the
growth of its business. This is done by endogenously allocating resources to optimally “ride the wave”
depicted by this exogenously given pattern. If the entrepreneur has a crystal ball that perfectly gives
away the future, the answer is easy: sell the product which is most in demand at each time. If there
remains uncertainty about the pattern, the theory of bet-hedging tells us how to best manage the
portfolio. Our second step consists in deriving this longstanding result from our descriptive equation
of natural selection.

Our third goal in providing an intuitive explanation of this process in terms of a communication
channel between the uncertain environment and the evolving population. It turns out that the search
for optimal growth consists in the search for the mutual information (or unequivocal signals) between
the environment and the evolving pattern. This requires insights about the environment (at least about
the probabilities of its possible states). In today’s “big data” economy, the entrepreneur would employ
a data analyst to provide this intelligence about the environmental pattern. Information theory allows
us to quantify the gained information from such pattern and convert this information into a measurable
input for growth. Information is a measureable input for growth: “this much information” equals
“that much growth potential”.
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The following first section will review the contribution of the article in light of the existing
literature. It provides context, but skipping it will not affect the reader’s ability to follow the succeeding
sections. The subsequent method section presents the information theoretic decomposition, shows how
the setup allows to optimize growth, and shows its relation to several special cases that have been
treated in previous literature. The subsequent results section applies the decomposition to two practical
cases for illustrative purposes. One specifies the illustrative example from Figure 1 and the other one
refers to the division of labor in the extraction of resources in the global economy. The final discussion
section presents the limitations and discusses possible extensions of the model.

1.1. Relation to Previous Work

The following combines the results from three bodies of literature. Each one of them has strengths
and shortcomings. The first one is linked to Fisher’s fundamental theorem of natural selection and
uses information theoretic terms to describe growth, but assumes an unchanging environment. It has
not been generalized to varying environments (Section 1.1.1. Evolutionary Economics: Decomposing
Growth Descriptively The second one (Section 1.1.2. Portfolio Theory: Optimizing Growth) builds
on the literature of bet-hedging and portfolio theory. It works with varying environments, but in
order for the information theoretic metrics to appear in the equations it requires some kind of
proactive strategy that hold population frequencies constant at each time step. It therefore does
not describe natural selection, which changes population shares over time. The last one consists in
a meaningful interpretation of the role of information in society. This has traditionally been the domain
economic decision theory, which uses proxy metrics to quantify information, not information theory
(see Section 1.1.3. Economic Decision Theory: Interpreting Information. This article presents a single
approach that draws from and links these three approaches to information and growth.

1.1.1. Evolutionary Economics: Decomposing Growth Descriptively

Information theoretic metrics have recently been introduced to describe natural selection.
The basic spirit follows a longstanding tradition of both evolutionary economists [17–20] and
evolutionary population biologists [21–23] to decompose population growth into different metrics
of diversity, usually variance and covariance terms (such as done by the famous Price equation).
Our equations also decompose growth in a similar manner, but use diversity metrics like entropies and
mutual information instead. This expands recent work that has shown that natural selection expressed
through replicator dynamics can be reformulated in terms of relative Kullback-Leibler entropy
DKL [24–27]. Especially Frank [28,29] has worked out a clear link between relative entropy and Fisher’s
fundamental theorem of natural selection [30]. Instead of quantifying the strength of selection with the
variance of fitness in order to describe (as proposed by Fisher) it is measured with the divergence of
population frequencies before and after updating through selection: DKL(P+ ‖ P). Just like Fisher’s
fundamental theorem only applies to an unchanging environment [23,31], this literature assumes that
the fitness of types stays the same over the time of observation (an assumption known as the model
of “pure selection” in evolutionary economics [32]. Our decomposition includes this relative entropy
metric of the strength of selection as one of its four parts of our initial equation, but expands it to
a multivariate joint relative entropy in order to describe evolution over varying environments.

1.1.2. Portfolio Theory: Optimizing Growth

Portfolio theory focuses on proactive strategies to optimize growth in varying environments.
As early as 1956, the information theorist John Kelly suggested to optimize long term growth
by endogenously adjusting the distribution of types in a population to an exogenously given
environmental pattern [33] (for a clear review see [14]). This idea has grown several branches [34],
and is known as portfolio theory [35–40], growth optimal investment [41–43], biological
bet-hedging [44], mixed optimal strategies [45], or stochastic (phenotype) switching [46,47]. While
Kelly originally worked with the limited case of a diagonal payoff matrix (one type per environmental
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state), his results have more recently been expanded to the general case of any kind of “mixed
fitness matrix” [47–50]. The main result of this literature holds that fitness can be increased with
information about the environment E through a signaling cue C. Such cues can for example consist of
a fine-tuned environmental pattern detected by a machine learning algorithm of a big data company
or an economic cycle detected by econometric analysis. The obtained information is quantified with
the mutual information between the two, which we will refer to as I(E; C) (for a short introduction to
the main metrics of information theory see Supplementary Section 1).

The related information theoretic reformulations require that population frequencies are held
constant, which leads to an omnipresent assumption that resources are actively redistributed by some
kind of portfolio manager (or stochastic switch on the genetic level). However, in many dynamics as
they occur in nature and society, there is no omnipotent portfolio manager who orchestrates population
change (e.g., see the example of Figure 1). There is just natural selection between types with different
growth rates. Our decomposition allows to describe evolution through natural selection.

1.1.3. Economic Decision Theory: Interpreting Information

Most existing work that interprets the role of information in growth dynamics follows in the
footsteps of economic decision theory [51,52], often with relation to game theory [53] and the creation of
prices in a market [54]. Broadly speaking, decision theory defines information as the difference in payoff
with and without information. For example, the value of information is equivalent to the economic
value provided by distinguishing between a high-quality car and a “lemon” [55]. This measures
information in US$, and therefore does not measure information, but its effects through some kind
of ad hoc cost function. The metrics of information theory allow to quantify the involved amount of
information directly in its natural metric: bits. Mathematically, both approaches are closely related and
essentially hinge on the effects of a newly introduced conditioning variable [25,31,32]. We will provide
a complementary interpretation of the role of information in evolving social populations. We interpret
‘fit-ness’ as the ‘informational fit’ between the evolving population and its environment. This occurs
over an (often noisy) communication channel.

1.2. Main Contributions

The main contribution of this article consists in combining the information theoretic description
of natural selection in varying environments with optimal population portfolios through bet-hedging.
The key consists in working with the average state of the population during typical updating,
a concept that has not been used in previous literature. This will then lead to a new metric, namely
the mutual information between the (average) updated population and its environment, I(G+; E).
It arises from the optimization of natural selection through bet-hedging. It also lends itself to the
intuitive explanations of growth as a communication process between the evolving population and
its environment, and the ‘informational fit’ between both, and naturally extends to cases with side
information, as previously explored by the bet-hedging literature.

1.2.1. Combining the Descriptive and the Optimal

As a first step, the article presents a generalization of pure selection models of natural selection in
unchanging environments to an information theoretic description of growth in a stationary, but varying
environments. It can be used as a descriptive tool. In terms of the following equations, our descriptive
decomposition of growth in Equation (2) includes a multivariate relative entropy term of DKL(P+ ‖ P)
that quantifies the strength of selection (an expansion of the results of [28,29]). When growth in
a stationary environment is optimized through bet-hedged log-optimal portfolios, this term turns into
the mutual information between the updated population and the environment I(G+; E) (Equations (5)
and (6)). If there are additional cues about the environment (Equation (11)), the result is the three
way mutual information between the updated population, the environment, and the signaling
cue: I(G+; E; C). Since optimal growth implies that the population absorbs all the information
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between the environment and the cue during updating, the result is the special case of a Markov
chain: I(G+; E; C) = I(E; C). This links our results back to the well-established result from the
literature of bet-hedging, which identified I(E; C) as the key variable in optimized growth (in line
with [47,48,50,56]).

1.2.2. Growth as a Communication Process

The newly introduced measure I(G+; E) also lends itself to the intuitive interpretation of
growth as a communication process between the updated population and its environment. Optimal
communication over the communication channel is equivalent to optimal growth. The extreme case
is a noiseless channel, which is Kelly’s original case [33] and sets the (often hypothetical) benchmark
of optimal fitness. With the presence of a noisy channel, growth can be optimized by converting the
natural selection’s relative entropy term of DKL(P+ ‖ P) into the mutual information between the
population and the environment: I(G+; E). The mutual information measures those signals that clearly
and unequivocally stem from the environment. This allows the population to absorb all environmental
structure during updating, resulting in what we detect as optimal growth.

The literature of bet-hedging then tells us that it is possible to increase growth by learning about
the information patterns of the environment. This is exactly what big data companies aim at when
analyzing patterns of shopping behavior to increase sales, investment banks when analyzing stock
market patterns to optimize stock portfolios, and macroeconomic policy makers when designing
industry subsidy schemes. Information becomes a quantifiable ingredient of growth optimization.
Information theory allows us to go beyond the distinction of growth effects with or without information
(as common in decision theory), but allows us to quantify how much information (in bits) leads to how
much growth potential by analyzing the communication channel between the evolving population
and its varying environment.

2. Method: Fitness as Informational Fit

The total population grows by reproducing in a varying environment. Different environmental
states are represented by random variable with distribution P(E). Our assumption of knowing P(E)
implies that we have access to the uncertainty in the environment, but that there remains risk as to
the specific realization of this random variable: in a Knightian sense [57] we do not know for sure
which environmental state will be next (Knightian risk), even so we know it occurs with a chance of
x% (Knightian uncertainty).

The population is subdivided into different groups of population types G, with each group g
consisting of a certain number of individual units. For simplicity, possible types and environmental
states are assumed to be discrete. The replicators could be genes and the groups g alleles; of US$
and different types of industry; or number of employees and restaurant chains; or online clicks
and videos, etc. The math is indifferent to the choice of the quantity that is changing over time.
In this descriptive setup, all offspring units inherit the type g from their parents. The growth factor
is represented with w = units at time t+1

units at time t . If some groups grow faster than others, natural selection
takes place.

The growth factor of a specific group w(g, e) depends both on the realization of its type g, and on
the state e of the environment e. This can be characterized by a traditional fitness matrix [58], such as
the one illustrated in Figure 2a.

The single overbar represents the expectation over all type g in a specific environment:
W(e) = Eg[w(g, e)]. We are interested in the long-term fitness over varying environmental states,
which is given by the weighted geometric mean of the population fitness over all environmental states:
W = ∏e W(e)p(e). For empirical data, this average can be calculated even for a short and nonstationary
time series, in which case p(e) would reflect the proportional frequency of an environmental state
during this period. Mathematically the following decompositions are still exact for this case. However,
its information theoretic meaning derives from the assumption that the environmental pattern is
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stationary and ergodic, which converts the count of frequencies into reliable probabilities. In other
words, in order to obtain information about the environment, there needs to be a reliable pattern in
the environmental distribution. For example, the environment can consist of the typical set of an i.i.d.
process, or be a deterministic periodic cycle such as day and night, or the four recurring seasons.
It could also consist of any Markov process that convergences quickly enough to result in a unique
stationary distribution. In this sense, the required time span of our evolutionary observation over
t = {0, 1, 2, . . . .T} depends on the reliability of the environmental pattern. In the asymptotic case
where T → ∞ , we know that a stationary and ergodic Markov process will always converge.

We end up with two kinds of variables that can be empirically detected: the environmental
distribution P(E); and growth factors w (overall population growth W(e), and type growth in
an environmental state w(g, e)). In practice the latter can be detected as the respective geometric
means conditioned on a certain environmental state. We can derive two additional variables:
the average population shares before updating (P) and after average updating (P+). In practice
we calculate them as the average share p(g|e) occupied by each type during a particular environmental
state e. They are provided by solving for the weights of the mean fitness per environmental
state W(e) = ∑g p(g|e) ∗ w(g, e). The so-called “replicator equation” [59] then defines the average
population shares after average updating over the selected period of evolutionary observation:
p+(g+|e) = p(g|e)w(g,e)

W(e)
. The superscript + indicates the average updated generation after

reproduction (while no superscript refers to the average distribution before updating).
The result are the conditional distributions P(G|E) and P+(G+|E) derived from our empirically

determined growth rates. They represent the average population distributions before and after
average updating during the chosen period of growth observation. While these average distributions
seem unfamiliar, they turn out to provide important insights. Through multiplication with
the empirically detected environmental distribution, we obtain the respective joint distributions,
e.g., p(g|e) ∗ p(e) = p(g, e) (note that P(E) = P+(E), as updating of the population does not change
the distribution of the environment). In the following we will work with the resulting joint distributions
between the environment and the population before and after average updating, P(G, E) and
P+(G+, E), with its conditionals, such as P(G|E) and P(E|G), and with its marginals, P(G), P+(G+)

and P(E).

2.1. Decomposing Growth into Bits

Without loss of generality, the complete decomposition of long-term fitness is best represented on
a logarithmic scale (which is customary in economics, for example). Logarithms of base 2 represent
growth in terms of the number of population doublings at each time step, which at the same time
quantifies the involved informational metrics in bits. The decomposition consists of four terms
(for its derivation see Supplementary Section 2). The following section reviews each of them in turn.

Before getting into these details, the pseudo Equation (1) aims at providing the conceptual
intuition. It says that the average growth of the population, is equal to the (usually hypothetical)
benchmark of a noiseless channel between the environment and the population (expressed with
a diagonal fitness matrix), minus the divergence between this hypothetical benchmark and reality
(expressed with a Kullback-Leibler divergence), minus the remaining environmental uncertainty
(conditional environmental entropy), minus the average strength of natural selection (a divergence
before and after average replication of the population). Equation (2) uses the more exact notation that
we will explore going forward.

Average
growth

=
noiseless

benchmark
− landscape

constraint
− remaining env.

uncertainty
− directed

selection{
W
}
=
[

diag ·W
]
− DKL(P+ ‖ diag ·W)− H(E|P+)− DKL(P+ ‖ P)

(1)

log W = Ee

[
logd W

]
− DKL(P+(e|g+) ‖ M(e|g))− H(E|G+)− DKL(P+(g+, e) ‖ P(g, e)) (2)
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2.1.1. Benchmark of the Noiseless Channel

The first term on the right hand side of Equation (2) refers to the benchmark of noiseless
communication channel between the environment and the updated population. It is the only positive
term of the decomposition, and therefore defines maximal growth. The remaining three terms are all
quantities that subtract from it (entropies are always nonnegative: H ≥ 0; DKL ≥ 0 [14]). In this sense,
growth is looked at in terms of a potential to achieve this (often hypothetical and illusive) benchmark
of optimal growth.

As shown in Figure 2b, a noiseless channel means that the only valid transition is a direct transition
(i.e., from state 1 to state 1, and from state 2 to state 2), while crossover noise (i.e., from state 1 to
state 2 and vice versa) does not occur. The corresponding fitness matrix is a diagonal matrix, with all
but one growth factor per environment being larger than 0. This is indicated by dW in Figure 2a.
Kelly’s original results were obtained for such special matrixes [33]. Figure 2b also visualizes the
insightful fact that in this case P(G+) is exactly reflective of P(E), which implies that the population
distribution adopts to the environmental distribution during average updating.

As with most communication channels, also evolution’s communication channel is noisy, which in
our case is due to the constraints of the existing fitness landscape. However, the noiseless channel
sets the benchmark. Therefore, in most real-world cases, this first term of the noiseless channel is
a hypothetical construct [45,47,49,50,56], which we note with d

hypW .
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Figure 2. The communication channel between the environment and the average updated population.
(a) Representation as a traditional fitness matrix for the binary case. The fitness values in brackets
show the case of the diagonal fitness matrix with type fitness dW. (b) Representation as a noiseless
communication channel with transition probabilities p+(g+|e) for the binary case. The diagonal
fitness matrix results in the noiseless channel, where only the identity transitions are non-zero:
p+(g+ = i|e = i) > 0, for all i.

2.1.2. Constraint of the Mixed Fitness Landscape

The quantity DKL(P+(e|g+) ‖ M(e|g)) measures the divergence between the actual fitness matrix
and the hypothetical diagonal fitness matrix of the noiseless channel. It is a constraint that arises
when the real-world fitness matrix is not diagonal and the communication channel between the
environment and the population is noisy. It is a relative entropy or Kullback-Leibler divergence [60],
an unsymmetrical and nonnegative measure of informational divergence between two distributions,
in this case P+(e|g+) and M(e|g). P+(e|g+) can be calculated from the empirical data and asks about
what the environmental distribution looks like from the perspective of the population after average
selection. M(e|g) arises from the proposal to use a hypothetical weighting matrix (here M(E|G)) to
represents any non-zero fitness value as a weighted average of fitness values from the hypothetical
diagonal fitness matrix d

hypW [45,47–50,56]. In other words, it assumes a hypothetical world with one
perfectly specialized type per environment (the noiseless channel) and proposes that any existing type
fitness is a combination of those specialized fitness values. Saying it the other way around, m(e|g)
represents the ratio between the real type fitness w(g, e) and its respective hypothetically optimal
fitness: d

hypW : w(g = i, e) = m(e|g = i) ∗ d
hypW(e), where ∑e m(e|g = i) = 1. The further the real fitness
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landscape from the noiseless channel (the further the real fitness matrix from the diagonal matrix),
the larger the corresponding Kullback-Leibler divergence. Roughly speaking, this implies that more
homogeneous fitness landscapes increase this divergence (and subtract from optimal fitness).

2.1.3. Remaining Environmental Uncertainty

The next term in the equation quantifies the remaining uncertainty of the environment after
average updating through the conditional entropy H(E|G+). Entropy is a measure of uncertainty.
In essence it quantifies the uncertainty when the probabilities of states are known, but not the
particular sequence in which they occur. In our conditional form, it looks at the remaining uncertainty
after natural selection. The information gain with respect to the unconditional uncertainty of the
environment can be quantified in terms of the mutual information between the environment and
the average updated population: H(E|G+) = H(E)− I(G+; E) [13,14]. Inserting this expansion into
Equation (2) provides Equation (3), which shows that this gained information contributes positively
to population fitness. In general, the less uncertainty remaining after average updating (measured
in bits), the more population growth can be obtained:

log W = E
[
log dW

]
− DKL(P+ ‖ M)− H(E) + I(G+; E)− DKL(P+ ‖ P) (3)

2.1.4. Directed Selection

The last quantity DKL(P+(g+, e) ‖ P(g, e)) measures the force of selection between the
distribution of the original and the updated population in a varying environment. It quantifies
the divergence that occurs during updating (it is an expected value of the (log) relative fitness of
types: DKL(P+(g+, e) ‖ P(g, e)) = Eg+ ,e

[
log (w(g,e)

W(e)
)
]
). This agrees with the result of Frank [28,29],

who shows that DKL is related to the variance in the growth of types. However, first of all,
it includes the environment, and is therefore a multivariate joint entropy. Secondly, in contrary
to the variance in fitness, it has directionality, because DKL is an asymmetric divergence with
DKL(P+ ‖ P) 6= DKL(P ‖ P+) in general, with DKL = 0 only if P+ = P [14,61]. In information
theory, DKL is used to measure the inefficiency (in bits) of assuming one distribution, when using it to
encode another true distribution. In Equations (1)–(3) it measures the inefficiency of still assuming
the original distribution P(g, e) when evolutionary updating has already produced the true (updated)
distribution P+(g, e). Turning up as a negative term in Equations (1)–(3) this inefficiency constrains
population fitness.

Equation (2) can be used to describe any kind of evolutionary change of discrete replicators in
a varying environment. It does not require an intervening strategy, such as a portfolio manager. We will
now derive the well-known equations from the bet-hedging literature by optimizing Equation (2).
This is can be achieved by the evolving population though the (endogenous) adjustment of available
resources to (exogenously given) environmental patterns.

2.1.5. Fitness Optimization

When the next environmental state is known, the best strategy consists in allocating all resources
to the type with the highest (arithmetic) expected fitness, maxe

[
Eg[w(g, e)]

]
. A portfolio strategy

provides optimal population growth when the exact future is not known, but when a stationary
distribution of different possible environmental states is known, P(E), while there is uncertainty
with regard to which specific environmental states will turn up next [33,35–37]. This is achieved by
identifying a certain population distribution P(G) which is held constant despite alternating selective
pressure during different environmental states. This implies that there is a proactive strategy that
counteracts natural selection during updating. We will denote it with the subscript (. . .s). In biology
this strategy is often implemented by a genotype which maintains a so-called ‘stochastic switch’
that keeps stable population shares of phenotypes, counteracting selective pressure that changes
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the distribution of types [44,61]. This means that even if certain phenotypes increase their share in
a particular environmental state (and actually increase their share temporally), their offspring will
be genetically distributed according to the same distribution as they were at birth. In economic
evolution, a conscious portfolio manager can redistribute gains and losses in a way that keep stable
shares of types. This does not change the fact the share of some stocks increase and others decrease
their share temporally in a particular environmental state (the portfolio manager has real gains and
losses). However, bet-hedging implies that the new bets will be distributed according to the same
distribution as they were initially. In practice this is done through constant redistribution from winning
to loosing types.

As such, bet-hedging affects our metric of directed selection. In order to understand its role, it is
useful to reformulate it according to the chain rule of relative entropy [14]:

DKL(P+(g+, e) ‖ P(g, e)) = DKL(P+(g+) ‖ P(g)) + DKL(P+(e|g+) ‖ P(e|g)) (4)

The fact that a bet-hedging strategy maintains a stable population distribution Ps(G|e) for each
environment e, leads to the fact that Ps(E|g) = P(E) (see Supplementary Section 3). This replaces
the last term with DKL(P+

s (e|g+) ‖ P(e)). The classical interpretation of DKL is an inefficiency when
encoding one distribution (for former one in the parenthesis) with a code that is optimized for
another distribution (the latter one). This interpretation suggests that DKL(P+

s (e|g+) ‖ P(e)) is the
informational inefficiency that arises when the objective (unconditioned) environmental distribution is
used to encode the distribution of the environment as it arises from the perspective of the updated
population. Given the negative sign of the term (Equation (2)), this inefficiency limits the achievable
growth rate and it will only disappear if the updated population perceives the environment ‘as it is’
(P+

s (e|g+) = P(e)) (as for example possible with perfect foresight for the next environmental state).
There are many ways to hold a stable Ps(G|e) for each environment e. Optimized bet-hedging does

not simply look for any fixed type distribution but for a distribution that results in a fixed point in which
the distribution before updating in every environment Ps(G) is the same as the average distribution
over all environmental states after updating P+

s (G+). In other words, fitness optimization searches for
the fixed point at which the average population distribution is fixed in a varying environment despite
natural selection.

This effectively eliminates DKL(P+(g+) ‖ P(g)) in Equation (2) and contributes to an increase
in population fitness (due to the reduction of this negative term). This converts Equation (4)
into: DKL(P+

s (g+, e) ‖ P(g, e)) = DKL(P+
s (e|g+) ‖ P(e)). Expanding the latter term shows that it

is equivalent to Shannon’s mutual information [13,14], which leaves us with the following equality for
the case of optimal growth through bet-hedging:

DKL(P+
s (g+, e) ‖ Ps(g, e)) = I(G+

s ; E) (5)

This means that our metric for directed selection turns into the mutual information between the
environment and the average updated population. This then converts our original Equation (2),
into Equation (6), which is equivalent to Equation (7) (since H(E|G+

s ) + I(G+
s ; E) = H(E)).

Supplementary Section 4. shows that optimal growth always implies the equivalence relation of
Equation (5). However, the revers requires that types are defined in a way that they are linearly
independent in the fitness matrix (in a sense of linear algebra) and that environmental states are
defined in a way that makes them linearly independent (among each other, in a sense of linear
algebra) (Supplementary Section 4). This seems to be a reasonable demand, as redundant types can
be merged, as well as redundant environmental states. Such independence is assured for Kelly’s
original case, for which there is only one type that is perfectly adopted to one specific environment
(a diagonal matrix).

logW = Ee

[
logdW

]
− H(E|G+

s )− I(G+
s ; E) (6)
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logW = Ee

[
logdW

]
− H(E) (7)

This result lends itself naturally to an interesting interpretation. The mutual information I(G+; E)
quantifies the amount of structure in the updated population G+ that is assured to come from
the environment E. This can be understood when interpreting mutual information in terms of
a non-confusable input signals (see Figure 3). In information theory this is often explained with
help of an analogy to a noisy typewriter (see the information theory primer of the Supplementary
Section 1). The technical reasons is the nature of joint typicality of both sets (for a formal proof see any
standard textbook on information theory [14,15]). The intuitive interpretation is that optimal growth
implies that the population absorbs all useful structure obtainable from the environment.
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Figure 3. The typical sets of the environmental states E and the average updated future generation G+,
both over a large number of periods t. The transmission over the channel between the environment
and the average updated population induces uncertainty to the identification of each environmental
state during reception by the population. The uncertainty that the environmental state (e = 1) is
sent over the channel is the conditional entropy of G+: H(G+|(e = 1)). According to the asymptotic
equipartition property, there are approximately 2H(G+ |(e=1)) of those. The total number of typical
G+ sequences is ≈ 2tH(G+). Restricting ourselves to the subset of channel input such that the
corresponding typical output sets do not overlap (see also Supplementary Section 1), we can bound
the number of non-confusable inputs by dividing the size of the typical output set by the size of each
typical-output-given-typical-input set: 2tH(G+ |E). The total number of disjoint and non-confusable sets
is less than or equal to: 2t(H(G+)−H(G+ |E)) = 2t I(G+ ;E).

2.2. Special Cases

The decomposition of Equation (2) is a generalization of several special cases that are well-known
in the literature. They are listed in Table 1.

2.2.1. Kelly’s Setup

The most well-known special case refers to Kelly’s interpretation of information rate [14,33].
Kelly’s criteria has also been the main lead in the search for the presented decomposition, as it shows
the long-term superiority of bet-hedging strategies in the special case of a diagonal fitness matrix dW.
In this case Equation (2) simplifies to Kelly’s well-known result:

log W = Ee

[
log dW

]
− H(E)− DKL(P(e) ‖ P(g)) (8)

Kelly used this result to show that with a diagonal fitness matrix, population growth can
be optimized through a proportional bet-hedging strategy that assures that the distribution
of the population exactly matches the environmental distribution P(E) = Ps(G), which sets
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DKL(P(e)||Ps(g)) = 0 (see Table 1). In reference to the channel optimization (Equation (6)), this implies
that the mutual information is equal to the plain entropy of the environment, which maximizes the
mutual information: maxI(G+; E) = H(E). This brings us back to the previously derived Equation (7).
Shannon referred to the maximum of the mutual information I as the “channel capacity”, the upper
bound on the rate at which information can be reliably transmitted over a communication channel [13].
Naturally, in the best case, this maximum is achieved with a noiseless channel. So if additionally the
dynamic of the future environment is known entirely and there is no environmental uncertainty,
H(E) = 0, the achievable growth rate consists of the benchmark case of the noiseless channel:
log W = Ee

[
log dW

]
(compare with Equation (7)).

Table 1. Comparison of the descriptive decomposition (Equation (2)) and its special cases
(Equations (6)–(10).

Log of
Population Growth

Noiseless
Channel

Fitness Landscape
Constraint

Remaining Environmental
Uncertainty Directed Selection

log W = Ee

[
log d

hypW
]

− DKL(P+(e|g) ‖ M(e|g)) −H(E|G+) − DKL(P+(g, e) ‖ P(g, e)) Equation (2)

Kelly’s case no
bet-hedging = Ee

[
log dW

]
+ 0 −H(E) −DKL(P(e)||P(g)) Equation (8)

Kelly’s case with
bet-hedging = Ee

[
log dW

]
+ 0 −H(E) +0 Equation (7)

optimal inside
bet-hedging region

= Ee

[
log d

hypW
]

+ 0 −H(E|G+
s ) − I(G+

s ; E) Equation (6)

= Ee

[
log dW

]
+ 0 + 0 −H(E) Equation (7)

stable shares outside
bet-hedging region = Ee

[
log dW

]
− DKL(P+

s (e|g) ‖ M(e|g)) −H(E) + 0 Equation (9)

optimal with perfect cue = Ee

[
log dW

]
− DKL(P+

s (e|g) ‖ M(e|g)) + 0 + 0 Equation (10)

2.2.2. Non-Diagonal Fitness Matrices

Kelly’s winner-takes-it-all fitness matrix has been generalized to non-diagonal fitness
matrixes [45,48]. In this case the benchmark of the noiseless channel refers to a hypothetical fitness
matrix d

hypW [47,49,50]. Proportional bet-hedging also achieves optimality, but the proportionality
between the environmental distribution and the optimal population distribution is distorted by the
shape of the fitness landscape.

As illustrated clearly in [48,50], this distorted bet-hedging works only within a certain range
of population constellations, which has been termed the “region of bet-hedging”. Inside the region
of bet-hedging it is possible to adjust the bet-hedging strategy to the distortion of the non-diagonal
fitness landscape, setting the fitness landscape constraint to zero (see Equations (6) and (7) in Table 1).
Our decomposition reveals that this is done by equating the hypothesized weighting matrix M(E|G)

with the stochastic matrix P+(E|G+). Outside the region of bet-hedging, optimization might suggest
a negative value for p(g). Negative investment (betting against a type) might make sense for selected
applications to the stock market or gambling but does not straightforwardly generalize to any kind
of bet-hedging strategy (such as product portfolios of a company, or biological evolution). Here we
have to compute optimal bets subject to constraints that no bet is negative, which usually leads to the
exclusion of certain types in the strategy.

Outside the region of bet-hedging, the achievement of full channel capacity is compromised by
both the mismatch with the optimal diagonal fitness matrix and the uncertainty about the environment
H(E). This results in Equation (9).

log W = Ee

[
log dW

]
− DKL(P+

s (e|g) ‖ M(e|g))− H(E) (9)

2.2.3. End Result of Selection in Stationary Environments

Without an intervening portfolio strategy, the asymptotic end result of an endless time series
T → ∞ would assure that the type with the highest average fitness over all different environmental
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states dominates the population. This implies p+s (e, g = f ittest) = 1. Betting all resources on one
type is also often the result of optimization outside the region of bet-hedging. It is insightful to note
that in this case the uncertainty of the environment increases H(E|G+)→ H(E) (see Equation (9) in
Table 1), which implies independence between the resulting population and the environmental patters,
I(G+; E) = 0.

2.2.4. Perfect Foresight

The last case in Table 1 shows that the environmental uncertainty can be eliminated with a perfect
signaling cue that completely describes the dynamic of the unfolding environment (Equation (10)).
A perfect cue absorbs all environmental uncertainty. The consequent strategy simply places all weight
on the type with the highest fitness. However, it is still constraint by the existing fitness landscape.
Our empirical analysis shows that this can turn out to be an important impediment.

log W = Ee

[
log dW

]
− DKL(P+

s (e|g) ‖ M(e|g)) (10)

2.3. The More Populations Know, the More They Can Grow

The former results are naturally extended to the situation that populations can use environmental
signals by actively sensing the environment. These results also go back to Kelly [33]. Additional
side information can be obtained either through observations of the past that influence current and
future dynamics (‘memory’) or observations of third events that correlate with current and future
dynamics (‘cues’) (for a systematic treatment between the differences of both, see [47,62]). In general,
this introduces a new conditioning variable C. Conditioned on the realization of this side information,
the joined distributions can change and we end up with fine-tuned strategies for each conditioned case.

It is a fundamental theorem in information theory that “conditioning reduces entropy” [14],
and therefore communicates information. In Kelly’s setup it reduces environmental uncertainty
through H(E) ≥ H(E|C), and therefore increases the achievable fitness in Equation (2). The increase
is equal to the mutual information between the cue and the environment: H(E)− H(E|C) = I(E; C),
which has been termed the “fitness value of information” [47,48,50]. It is an upper bound for the
potential increase in growth that can be obtained from the cue. Note that the value of information is
independent from the fitness values w(g, e).

The following reveals how this relates to our descriptive approach of Equation (2). The argument
requires a bit of information theory, but essentially links the mutual information between the
environment and the signaling cue, I(E; C), with the mutual information between the updated
population and the environment, I(G+

s ; E) from Equation (5). A quite intuitive interpretation of
this link follows the visual representation of mutual information as the overlapping intersection in
the form of the Venn diagram, such as shown in Figure 4a (also called I-diagrams [14,15,63,64]. In this
representation the circles are entropies H, and the intersections mutual information I.

In Kelly’s case of a diagonal fitness matrix, the distribution of the environment and the average
updated population are a perfect match, with H(E) = H(G+) (see Figure 4a). This hides the
importance of the variable G+ that emerged as a crucial variable in our descriptive decomposition.
It turns out that in the case of optimal growth in non-diagonal fitness landscapes the three variables
form a Markov chain E↔ G+

s ↔ C , where the cue and the environment are conditionally independent
given the average updated population (see Figure 4b). In information theoretic terms this means that
there is no mutual information between the cue and the environment given the updated population:
I(E; C |G+

s ) = 0. In other words, optimal growth implies that all structure is absorbed by average
updating during optimal growth. This leads to a conditional version of Equation (6):

log Ws|c = Ee

[
log d

hypW
]
− H(E|G+

s ) − I(G+
s ; E |C) (11)
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The fitness value of the cue is obtained by the difference between the fitness without cue
(Equation (6)) and with cue (Equation (11)). Both the expected value term and the entropy
term cancel and we obtain the three-way mutual information between all three variables:
log Ws|c − log Ws = − I(G+

s ; E |C) + I(G+
s ; E) = I(G+

s ; E; C) (Figure 4b). It is important to notice that
in principle three-way information can be negative [14,15,63,64], which would imply that additional
information could decrease growth potential. However, since in our case I(G+

s ; E; C) = I(E; C) and
since two-way mutual information is always nonnegative, Markovity assures non-negativity (this is
visualized by Figure 4 and can formally be shown with the data processing inequality [14]).

The mutual information between the environment and the cue I(E; C) is the main result for the
fitness value of information [47,48,50,56]. From the perspective of our derivation, it turns out that this
is a special case of the multivariate mutual information I(G+

s ; E; C).
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Figure 4. Venn diagram/I-diagram representation of mutual information. (a) Optimal bet-hedging
in Kelly’s case of the diagonal fitness matrix. Mutual information can be calculated as the difference
between uncertainties: H(E) − H(E|C) = I(E; C). It is always nonnegative in the two-variable
case, as conditioning reduces uncertainty. (b) Optimal bet-hedging with mixed non-diagonal
fitness matrix, inside the region of bet-hedging. Also in the three variable case the circles are
entropies and the intersections mutual information. One way to calculate the joint intersection of
all three variables is: I(G+; E; C) = H(E) − H(E|G+) − I(G+; E |C). In the case of bet-hedging
inside the bet-hedging region the three involved variables form a Markov chain E↔ G+ ↔ C .
This implies that E and C do not have any mutual information outside of G+ (G+ absorbs
all common structure through optimal growth); or I(E; C |G+) = 0. This can be shown by
the reformulation I(E; C |G+) = H(E|G+)− H(E |C, G+) (which holds in general). It shows that
H(E|G+) = H(E |C, G+). This means that from the perspective of the updated population, additional
cues do not affect the perceived distribution of the environment (in the case of bet-hedging inside
the bet-hedging region, compare with values in Table 2). A perfect cue in terms of a Venn diagram
representation would imply a picture in Figure 4b similar to the complete overlap shown in Figure 4a,
with the difference that C and G+ are switched. From Markovity it follows that in this case the
uncertainty of the updated population cannot be smaller than the entropy of the cue, as it is completely
absorbed through updating: H(G+) ≥ H(E) = H(C). This follows from the data processing
inequality [14]: H(G+) ≥ I(G+; E) ≥ I(G+; C) = H(E) = H(C).

3. Results: Empirical Applications

One of the main benefits of our descriptive decomposition is that it can readily be applied to
analyze empirical time series. We do this now for two cases to obtain a feeling for the orders of
magnitude of the different components and their trade-offs. It is important to emphasize that the
idea of the following applications is not to study or learn anything new about the two chosen cases.
The idea is not to study the behavior of the case’s subjects, but rather the behavior of our equations
when applied to data. Some economically rather implausible aspects of the following cases will also
clearly expose the limitations of underlying assumptions and point to a future research agenda.
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The practical application of the presented decomposition is straightforward for the binary case
with two types, as this allows to unambiguously identify the time average population shares from
the empirically detected growth rates (multivariate cases require nonlinear constrained optimization).
With all growth rates w known, the binary case can be solved for p(g1|e) through:

W(e) = p(g1|e) ∗ w(e, g1) + [1− p(g1|e)] ∗ w(e, g2) (12)

3.1. Global Resources: Informing Division of Labor

One possible application refers to the division of labor between different economic agents. We take
“the global use of materials since the beginning of the 20th century” according to the publicly available
dataset [65,66]. This provides the evolution of global resource extraction for the 99 years between 1900
and 1998. Population growth W tracks the growth of global resource extraction in tons, including all
biomass, fossil fuels, ores and minerals. Our two types G of this global social organism distinguish
between United States and the rest of the world. The more resource extraction, the more growth of
the type, the fitter the type. We ask: how much could a bet-hedging strategy between the US and
the rest of the world have increased the global growth of resources simply by exploiting stationary
informational patterns of the environment?

Figure 5 shows that the type ‘United States’ extracted between 14% and 29% of total
resources over the century. Global resource extraction grew with an empirical population
fitness of W = 20.02803 = 1.962% per year (Table 2). We now ask for an environmental patterns.
One straightforward pattern identifies during which periods the relative fitness of one type is higher
than in the other. In this case, the U.S. growth factor is superior in 51 of the 99 periods, resulting in
p(e = US f avorable) = 0.52. We can now obtain the average fitness values for each environmental
state from our time series (calculating the respective geometric mean during each occurrence of the
state), and calculate the average population shares of both types before and after updating (solving
Equation (12) and using the replicator equation).
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Assuming that the identified environmental pattern and type fitness are stationary,
this information can be used to optimize population fitness by converting our directional selection term
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DKL(P+(g, e) ‖ P(g, e)) into the mutual information I(G+
s ; E) (drawing on Equation (5)). For practical

purposes it is useful to remember that optimization implies the following conditions: ps(g) = p+s (g)
and ps(e|g) = p(e). As shown in Supplementary Section 4, this implies a time-average of relative
fitness equal to 1: Ee

[
w(g,e)
W(e)

]
= 1. In practice it is useful to solve for this condition.

Solving for this suggests that growth in this case can be optimized through bet-hedging,
which offers a fitness value of Ws = 20.02822 per year, or a compound annual growth rate of about
1.975% (Table 2). The corresponding increase in fitness of Ws −W = 0.014% is the “fitness value of
the information” contained in the identification of the environmental distribution. This optimized
population fitness is obtained if the share of the United States is held constant at 10% throughout
the century (through constantly bet-hedged resource redistribution between the U.S. and the rest of
the world).

We now ask how side information about environmental patterns could have been used to improve
the effectiveness of resource extraction in the global economy. Keeping things simple, we can test
what will happen if we recognize that the century could reasonably be divided into two broad periods:
pre- and post the end of World War II in 1945. It might not require a big data deep learning algorithm
to hypothesize a meaningful distinction between these two conditions, but conditioning on these two
periods already provides information (“conditioning reduces uncertainty” [14]). We optimize the
channel throughput for each of these periods.

The left-hand side of the last two rows in Table 2 shows that conditioning increases fitness
to Ws|c = 20.02823 = 1.976% per year. In other words, the fitness value of recognizing
the simple informational cue of the end of World War II provides the potential to obtain
Ws|c −Ws = 20.02823 − 20.02822 = 0.001% of additional fitness. This optimization is achieved by holding
the share of the U.S. stable at 20% before 1945, and at a stable 1% afterward.

The right hand side of the last two rows in Table 2 reveals that this is achieved by obtaining a very
small amount of information, namely: −I(G+

s ; E |C)− (−I(G+
s ; E)) = − 0.000111 + 0.000123 ≈ 0.000012

bits (compare Figure 4b for a visualization of this calculation; notice that DKL(P+(e|g) ‖ M(e|g)) = 0,
as the results lie within the area of bet-hedging for all periods). While this fitness gain does not seem
like much at first sight, it is equivalent to some 700 million additional tons of resources during the
period compared to the empirical trajectory. The detected information bits are what enables this
increase in growth potential in a stationary fitness landscape. Informational bits (right-hand side of
our equation) converts to growth (left-hand side).

Table 2. Decomposition of global resource extraction between 1900 and 1998 into different cases.
H, DKL and I measured in bits.

log W = Ee

[
log d

hypW
]

−DKL(P+(e|g) ‖ M(e|g)) −H(E|G+) −DKL(P+(g, e) ‖ P(g, e))

Equation (2) descriptive 0.02803 = 1.02702 − 0.00005 − 0.99873 − 0.00021

Equation (6) optimal inside
bet-hedging region 0.02822 = 1.02702 + 0 − 0.99867 − I(G+

s ; E)
− 0.000123

Equation (11) bet-hedging
with cue WW2 in b-h region 0.02823 = 1.02702 + 0 − 0.99867 − I(G+

s ; E |C)
− 0.000111

3.2. Big Data: Informing Business Growth Strategies

The second example return to the examples with which we motivated our exploration in Figure 1.
It refers to a typical big data application in the economy, where growth is obtained by adjusting to
detected environmental patterns. Figure 1 shows the Google Trends data for the search engine terms
“chocolate” and “diet” from May 2004 to February 2015. The search behavior shows a clear pattern.
Similar Google Trends patterns have proven to have significant correlations with a large variety of
aspects in commerce, including stock market movements [67], trading behavior [68], automobile
sales [69], company evaluations [70], and private consumption [71].
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An entrepreneur selling both chocolate and diet products can exploit a natural complementarity
of both trends over time. For reasons of tractability, we simply assume a one-to-one relationship
between the normalized Google search trends and possible sales of chocolate and diet products by
a big data savvy entrepreneur. This suggests that it is possible to sell an average of 106 products per
week. The time series does not show a growth tendency (average weekly growth factor of exactly 1.0
over the 560 weeks, resulting in log (W = 1.0) = 0, Table 3). We ask: how much can this entrepreneur
potentially increase sales by simply exploiting a certain environmental pattern?

A straightforward environmental pattern P(E) can again be detected by simply counting
during which periods chocolate products sales grow faster than diet product sales (323 out of
559 weeks): p(e = choc) ≈ 0.58. This informational pattern can already be used to optimize fitness.
In environmental periods that favor the growth of chocolate products, chocolate products grow
with a compound weekly growth factor of w(gchoc, echoc) ≈ 1.05, while diet products decrease with
weekly ≈ 0.96. In environments that favor diet products, those grow with ≈ 1.06, while chocolate
products decrease with about ≈ 0.94.

Converting our directional selection term DKL(P+(g, e) ‖ P(g, e)) into the mutual information
I(G+

s ; E) suggests that growth can be optimized by keeping a stable average share of chocolate products
of roughly 66.8% throughout the entire period of 559 weeks. As shown in the second row of Table 3,
adopting this strategy increases growth by a value of 20.00229 ≈ 0.16% of additionally obtainable
compounded weekly growth. The corresponding strategy allows the entrepreneur to increase sales to
an average of 177 products per week (Figure 6).
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Figure 6. Empirical growth of Google Trends data for the search engine terms “chocolate”
and “diet” from May 2004 to February 2015, and optimized growth when following different
bet-hedging strategies.

A closer look at the patterns in Figure 1 reveals the intuitively pleasing insight that chocolate leads
over diet during the months of September to December (again, no artificial intelligence might be needed
here). This suggests to fine-tune the strategy by introducing a conditional case that distinguishes
between these different seasons. One strategy aims at the period from September to December, the
other one from January to August (implementing Equation (11)). Table 3 shows that the growth value
of this side cue information is equal to 0.38% (average 202 products per week). The optimization for
this case turns to be outside the region of bet-hedging for the environmental state of “Sept.–Dec.”,
but inside for “Jan.–Aug.”. As a result, the respective version of our decomposition in Table 3 contains
both DKL(P+(e|g) ‖ M(e|g)) and DKL(P+(g, e) ‖ P(g, e)).

An even closer look at the data pattern reveals that diet products peak in January, right after
the peak of chocolate products in December. This insight can be exploited by the entrepreneur by
setting up a separate strategy for January. The optimization of the resulting three way partition of
the year allows to obtain a weekly growth factor of 0.69% above the empirical growth rate, selling
some 261 products per week. The last case in Table 3 refers to perfect information, which eliminates



Entropy 2017, 19, 82 17 of 21

environmental uncertainty (per definition, with H(E|G+) = 0). In this case the entrepreneurs know at
each week with certainty which product will sell better and will simply focus on the better selling one.

Comparing the constituents of these last two cases in Table 3 reveals that any attempt to get closer
to the unattainable benchmark of the noiseless channel confronts a trade-off between environmental
uncertainty and the constraints of the non-diagonal fitness matrix. Optimization with ever better
environmental signals reduces the remaining environmental uncertainty H(E|G+

s ), but also puts more
weight on the fitness landscape constraint DKL(P+

s (e|g) ‖ M(e|g)). The reduction of environmental
uncertainty comes at the cost of dealing with the constraints of the existing fitness matrix, which poses
a limitation that cannot be overcome with more information about the environmental pattern alone.

Table 3. Exploration of different cases of the growth of Google Trends data for the search engine terms
“chocolate” and “diet” from May 2004 to February 2015.

log W = Ee

[
log d

hypW
]

− DKL(P+(e|g) ‖ M(e|g)) −H(E|G+) − DKL(P+(g, e) ‖ P(g, e))

Equation (2) descriptive 0 =

0.98474

− 0.00074 −0.98207 − 0.00193
Equation (6) optimal in
bet-hedging region 0.00229 = + 0 − 0.98073 − I(G+

s ; E)
− 0.00173

With cue Sept-Dec. 0.00554 = − 0.00154 − 0.97718 − 0.00048
With cues Sept-Dec. & Jan. 0.00987 = − 0.00783 − 0.96703 + 0
Equation (10) optimal with
perfect cue 0.07421 = − 0.91053 + 0 + 0

4. Discussion

The presented decompositions come with several (sometimes subtle) assumptions. First and
foremost, most currently existing information theory is based on the notions of stationarity and
ergodicity. It assures that the involved typical sets of probabilities emerge. The distinction between
mere proportional frequencies and true probabilities is in some cases less delicate than in other cases.
Equation (2) could still be applied to a non-stationary dataset, with the limitation that p would refer to
empirically detected proportions (frequencies) not true probabilities. The resulting metrics would not
truly be entropies, but merely metrics of diversity and evolutionary selection. While this rather seems
like semantics, however, fitness optimization in Equations (5)–(11) requires the stationary continuance
of the fitness matrix. Only if the environmental patterns are unchanged and only if the geometric means
of type fitness stay unchanged can we exploit them through optimization [72]. Big data driven pattern
recognition can only provide useful insights if the environmental patterns stay the same. If the patterns
change, the model based on previous data (and therefore the resulting strategy recommendation)
cannot explain the new pattern [73]. No stable patterns, no straightforward exploitation of the pattern.

In reality, economic agents often influence and change environmental patterns as they evolve,
destroying stationarity [74]. For example, the last equation in Table 3 suggests that a perfect cue
would allow the big data entrepreneur to sell over 300 trillion products in the week after the
observed 560 periods (instead of the empirically detected 106). Today the world only consumes
around 125 trillion grams of chocolate per week. So there would certainly be no demand for as
much chocolate. The existing environmental patterns and geometric mean fitness values would be
changed endogenously, because density dependence would quickly reach the carrying capacity of the
environment [72].

The idea of density dependence is well explored in the traditional theories of evolutionary
economics and growth, but yet lacks a formal equivalent in terms of information theory. This does
not mean that information theory does not provide the tools for exploring it. Actually, information
theory can be used to identify change points in endogenous and exogenous dynamics [75]. It can
also be used to model a truly bidirectional communication between the growing population and
its environment. Cherkashin, Farmer and Lloyd showed that in the case of feedback between the
environment and the population, the optimal bet-hedging strategy depends on the particularities of
their mutual influence [76].
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Another rather quite subtle assumption consists in the fact that we need a meaningful way to
partition the evolving population to create the types of variable G. The chosen partition influences the
calculated informational quantities. This leads to the fundamental question of how to best structure
a growing population. What it is that evolves? This requires to identify a meaningful taxonomy of levels
of types [77]. In the evolution of social system this is often not as obvious as in biological evolution.

There are several additional assumptions that have already been explored in the literature for
the special case of fitness optimization through bet-hedging. Since our descriptive Equation (2)
naturally link to the Kelly’s bet-hedging ansatz (Equations (8)–(11)), it is straightforward to relate
the here presented descriptive decomposition to these extensions, including the consideration of the
cost of information [61], multiple sources and series of frequent cues [62], decentralized and noisy
signals [47,78], and the extraction of physical energy [79].

Summing up, recasting the dynamics of evolutionary population dynamics in terms of information
theory has two ends. First, the arising communication channel between the growing population and
its environment leads to straightforward, intuitive and meaningful interpretations. Information theory
provides formal metrics for uncertainty (H), uncertainty reduction (H(.|.)) and the fit between the
economic and environmental patterns (like DKL and I). This allows for a straightforward interpretation
of the role of information in our information age. The more information is obtainable by economic
agents about environmental patterns, the better can they assure that there is an “informational fit”
between the environment and the growing population, which implies higher “fit-ness” or growth.
Information itself becomes a quantifiable ingredient to exploit growth potential.

Second, it allows to create a formal link between the role of information in the dynamics of
natural selection and in fields like engineering, computer science, statistical mechanics, and physics.
Linking our descriptive decomposition of natural selection to the established results from portfolio
theory, we can see that the role information plays in growth is similar to the role it plays in the
physical relation between information and energy [79–82]. A longstanding body of literature in physics
going back to the late 19th century has shown that information can be seen as the equivalent to the
potential to do work. The workhorse for this relation in physics is Maxwell’s demon [83], who uses
information about its environment to extract energy from it [84–86]. Much like the demon converts
information into the potential to do physical work, economic agents can use informational patterns to
increase their potential to grow (for an analogy between bet-hedging and Maxwell’s demon see [79]).
This provides ample potential for cross-fertilization among complementary interpretations of the
formal conceptualization of information and its role in growth.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/19/2/82/s1,
Figure S1: Venn-diagrams of mutual information (intersection) and entropies (circles), Figure S2: Noisy typewriter
and its noiseless subset.
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