The Gibbs Paradox, the Landauer Principle and the Irreversibility Associated with Tilted Observers
Abstract
:1. Introduction
2. Comoving and Tilted Observers
3. The Gibbs Paradox, the Landauer Principle and the Definition of Entropy
- The main issue discussed in this work, namely: the presence or not of dissipative processes, depending on the congruence of observers, that carry out the analysis of the system, will remain for any theory of gravity. However, specific details of the dissipative processes observed by the tilted observers, will depend on the theory of gravity under consideration.
- The discussion about the entropy budget of the universe is of the utmost relevance (see [46] and references therein), because its increase is associated with all possible irreversible processes, on all scales. However, in that reference, as well as in the references therein, the issue under consideration is the estimate of entropy as observed by one given congruence of observers. The main point of our work is to stress how (and why) any of these estimates, changes when it is evaluated by different congruences of observers.
- It goes without saying that, in the context of a covariant theory of gravity (such as General Relativity), a covariant definition of entropy should be invoked. Such a definition can be found in the context of different relativistic dissipative theories (see for example [30,31,32,33,34,35]). However, we have not made use of them in the text, which explains why we did not refer to this particular issue.
4. Conclusions
- Uncertainty (entropy) is highly dependent on the observer.
- Comoving and tilted observers store different amounts of information.
- According to the Landauer principle, erasure of information is always accompanied by dissipation (there is a price for forgetting).
- The detection of dissipative processes by tilted observers in physical systems which are described by comoving observers, such as perfect fluids, becomes intelligible in the light of the three previous comments.
Acknowledgments
Conflicts of Interest
References
- King, A.R.; Ellis, G.F.R. Tilted homogeneous cosmological models. Commun. Math. Phys. 1973, 31, 209–242. [Google Scholar] [CrossRef]
- Tupper, B.O.J. The equivalence of electromagnetic fields and viscous fluids in general relativity. J. Math. Phys. 1981, 22, 2666–2673. [Google Scholar] [CrossRef]
- Raychaudhuri, A.K.; Saha, S.K. Viscous fluid interpretation of electromagnetic fields. J. Math. Phys. 1981, 22, 2237–2239. [Google Scholar] [CrossRef]
- Coley, A.A.; Tupper, B.O.J. Zero-curvature Friedmann-Robertson-Walker models as exact viscous magnetohydrodynamic. Astrophys. J. 1983, 271, 1–8. [Google Scholar] [CrossRef]
- Coley, A.A.; Tupper, B.O.J. A new look at FRW cosmologies. Gen. Relativ. Gravit. 1983, 15, 977–983. [Google Scholar] [CrossRef]
- Tupper, B.O.J. The equivalence of perfect fluid space-times and viscous magnetohydrodynamic space-times in general relativity. Gen. Relativ. Gravit. 1983, 15, 849–873. [Google Scholar] [CrossRef]
- Coley, A.A.; Tupper, B.O.J. Exact viscous fluid FRW cosmologies: The case of general k. Phy. Lett. A 1984, 100, 495–498. [Google Scholar] [CrossRef]
- Carot, J.; Ibáñez, J. On the viscous fluid interpretation of some exact solutions. J. Math. Phys. 1985, 26, 2282–2285. [Google Scholar] [CrossRef]
- Coley, A.A. Observations and nonstandard FRW models. Astrophys. J. 1987, 318, 487–506. [Google Scholar] [CrossRef]
- Calvao, M.; Salim, J.M. Extended thermodynamics of Friedmann-Robertson-Walker models in the Landau-Lifshitz frame. Class. Quantum Gravit. 1992, 9, 127. [Google Scholar] [CrossRef]
- Ellis, G.F.R.; Matravers, D.R.; Treciokas, R. An exact anisotropic solution of the Einstein-Liouville equations. Gen. Relativ. Gravit. 1983, 15, 931–944. [Google Scholar] [CrossRef]
- Maharaj, S.D.; Maartens, R. Exact inhomogeneous Einstein-Liouville solutions in Robertson-Walker space-times. Gen. Relativ. Gravit. 1987, 19, 499–509. [Google Scholar] [CrossRef]
- Lemaître, G. The Expanding Universe. Gen. Relativ. Gravit. 1997, 29, 641–680. [Google Scholar] [CrossRef]
- Tolman, R.C. Effect of Inhomogeneity on Cosmological Models. Gen. Relativ. Gravit. 1997, 29, 935–943. [Google Scholar] [CrossRef]
- Bondi, H. Spherically Symmetrical Models in General Relativity. Gen. Relativ. Gravit. 1999, 31, 1783–1805. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ibáñez, J. Tilted Lemaitre-Tolman-Bondi spacetimes: Hydrodynamic and thermodynamic properties. Phys. Rev. D 2011, 84, 064036. [Google Scholar] [CrossRef]
- Szekeres, P. Quasispherical gravitational collapse. Phys. Rev. D 1975, 12, 2941–2948. [Google Scholar] [CrossRef]
- Szekeres, P. A class of inhomogeneous cosmological models. Commun. Math. Phys. 1975, 41, 55–64. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ibáñez, J.; Carot, J. Vorticity and entropy production in tilted Szekeres spacetimes. Phys. Rev. D 2012, 86, 044003. [Google Scholar] [CrossRef]
- Tsagas, C.G.; Kadiltzoglou, M.I. Peculiar Raychaudhuri equation. Phys. Rev. D 2013, 88, 083501. [Google Scholar] [CrossRef]
- Kumar, R.; Srivastava, S. Bianchi type-V cosmological model with purely magnetic solution. Astrophys. Space Sci. 2013, 346, 567–572. [Google Scholar] [CrossRef]
- Sharif, M.; Tahir, H. Dynamics of tilted spherical star and stability of non-tilted congruence. Astrophys. Space Sci. 2014, 351, 619–624. [Google Scholar] [CrossRef]
- Fernandez, J.J.; Pascual-Sanchez, J.-F. Tilted Lemaître model and the dark flow. Proc. Math. Stat. 2014, 60, 361–364. [Google Scholar]
- Sharif, M.; Zaeem Ul Haq Bhatti, M. Structure scalars and super-Poynting vector of tilted Szekeres geometry. Int. J. Mod. Phys. D 2015, 24, 1550014. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bamba, K.; Zaeem Ul Haq Bhatti, M. Role of tilted congruence and f(R) gravity on regular compact objects. Phys. Rev. D 2017, 95, 024024. [Google Scholar] [CrossRef]
- Stephani, H. Introduction to General Relativity; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Bedran, M.L.; Calvao, M.O. Reversibility and spacetime symmetries. Class. Quantum Gravit. 1993, 10, 767. [Google Scholar] [CrossRef]
- Triginer, J.; Pavón, D. On the thermodynamics of tilted and collisionless gases in Friedmann-Robertson-Walker spacetimes. Class. Quantum Gravit. 1995, 12, 199. [Google Scholar] [CrossRef]
- Eckart, C. The Thermodynamics of Irreversible Processes. III. Relativistic Theory of the Simple Fluid. Phys. Rev. 1940, 58, 919. [Google Scholar] [CrossRef]
- Müller, I. Zum Paradoxon der Warmeleitungstheorie. Z. Phys. 1967, 198, 329–344. [Google Scholar] [CrossRef]
- Israel, W. Nonstationary irreversible thermodynamics: A causal relativistic theory. Ann. Phys. 1976, 100, 310–331. [Google Scholar] [CrossRef]
- Israel, W.; Stewart, J. Thermodynamics of nonstationary and transient effects in a relativistic gas. Phys. Lett. A 1976, 58, 213–215. [Google Scholar] [CrossRef]
- Israel, W.; Stewart, J. Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 1979, 118, 341–372. [Google Scholar] [CrossRef]
- Jou, D.; Casas-Vázquez, J.; Lebon, G. Extended irreversible thermodynamics. Rep. Prog. Phys. 1988, 51, 1105. [Google Scholar] [CrossRef]
- Jou, D.; Casas-Vázquez, J.; Lebon, G. Extended Irreversible Thermodynamics; Springer: Berlin, Geramny, 1993. [Google Scholar]
- Herrera, L.; Di Prisco, A.; Ibáñez, J. Reversible dissipative processes, conformal motions and Landau damping. Phys. Lett. A 2012, 376, 899–900. [Google Scholar] [CrossRef]
- Adami, C. What is Information? Philos. Trans. R. Soc. A 2016, 374, 20150230. [Google Scholar] [CrossRef] [PubMed]
- Bais, F.A.; Farmer, J.D. The Physics of Information. arXiv, 2007; arXiv:0708.2837v2. [Google Scholar]
- Jaynes, E.T. Gibbs vs Boltzmann Entropies. Am. J. Phys. 1965, 33, 391–398. [Google Scholar] [CrossRef]
- Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM Res. Dev. 1961, 5, 183–191. [Google Scholar]
- Brillouin, L. The Negentropy Principle of Information. J. Appl. Phys. 1953, 24, 1152. [Google Scholar] [CrossRef]
- Brillouin, L. Scientific Uncertainty and Information; Academic: New York, NY, USA, 1964. [Google Scholar]
- Brillouin, L. Science and Information Theory; Academic: New York, NY, USA, 1962. [Google Scholar]
- Kish, L.B.; Granqvist, C.G. Energy Requirement of Control: Comments on Szilard’s Engine and Maxwell’s Demon. arXiv, 2012; arXiv:1110.0197v7. [Google Scholar]
- Kish, L.B. Moore’s law and the energy requirement of computing versus performance. Proc. IEEE 2004, 151, 190–194. [Google Scholar] [CrossRef]
- Egan, C.A.; Lineweaver, C.H. A Larger Estimate of the Entropy of the Universe. Astrophys. J. 2010, 710, 1825–1834. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, L. The Gibbs Paradox, the Landauer Principle and the Irreversibility Associated with Tilted Observers. Entropy 2017, 19, 110. https://doi.org/10.3390/e19030110
Herrera L. The Gibbs Paradox, the Landauer Principle and the Irreversibility Associated with Tilted Observers. Entropy. 2017; 19(3):110. https://doi.org/10.3390/e19030110
Chicago/Turabian StyleHerrera, Luis. 2017. "The Gibbs Paradox, the Landauer Principle and the Irreversibility Associated with Tilted Observers" Entropy 19, no. 3: 110. https://doi.org/10.3390/e19030110
APA StyleHerrera, L. (2017). The Gibbs Paradox, the Landauer Principle and the Irreversibility Associated with Tilted Observers. Entropy, 19(3), 110. https://doi.org/10.3390/e19030110