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Abstract: Analysis of nonlinear quantitative EEG (qEEG) markers describing complexity of signal
in relation to severity of Alzheimer’s disease (AD) was the focal point of this study. In this study,
79 patients diagnosed with probable AD were recruited from the multi-centric Prospective Dementia
Database Austria (PRODEM). EEG recordings were done with the subjects seated in an upright
position in a resting state with their eyes closed. Models of linear regressions explaining disease
severity, expressed in Mini Mental State Examination (MMSE) scores, were analyzed by the nonlinear
qEEG markers of auto mutual information (AMI), Shannon entropy (ShE), Tsallis entropy (TsE),
multiscale entropy (MsE), or spectral entropy (SpE), with age, duration of illness, and years of
education as co-predictors. Linear regression models with AMI were significant for all electrode sites
and clusters, where R2 is 0.46 at the electrode site C3, 0.43 at Cz, F3, and central region, and 0.42
at the left region. MsE also had significant models at C3 with R2 > 0.40 at scales τ = 5 and τ = 6.
ShE and TsE also have significant models at T7 and F7 with R2 > 0.30. Reductions in complexity,
calculated by AMI, SpE, and MsE, were observed as the MMSE score decreased.

Keywords: Shannon entropy; Tsallis entropy; multiscale entropy; spectral entropy; auto mutual
information; Alzheimer’s disease; Mini-Mental State Examination; EEG

1. Introduction

Alzheimer’s disease (AD) is the leading cause of dementia [1], with the World Alzheimer Report
of 2015 [2] estimating 9.9 million new dementia cases every year worldwide. AD is characterized by
loss of neuronal cells and development of neurofibrillary tangles and cortical amyloid plaques [3].
It continues to be difficult to diagnose as it shares symptoms with other dementia-related diseases.
Diagnosis of AD is either possible or probable [4]. Common routine diagnostic procedures and
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workout for AD patients include clinical interviews with neuropsychological tests that evaluate
possible cognitive deficits, imaging techniques such as structural and functional magnetic resonance
imaging (MRI), and PET scans. MRI is widely available, but can be costly and is not suitable for
patients who are claustrophobic, while PET scans are expensive, not easily available, and invasive,
with intravenous access and exposure to radiation [5]. Use of an electroencephalogram as an aid for
physicians for the diagnosis of AD is a viable option as it is widely available in neurological clinics,
relatively inexpensive, noninvasive, and has mobility potential [6].

Three major effects of cognitive decline have been observed in the EEGs of AD patients: slowing
of the EEG in terms of a shift in the power spectrum to lower frequencies, reduced complexity of
EEG signals, and reduced coherence of signals measured at different locations on the cortex [7,8].
Furthermore, [7] pointed out the loss of connectivity in cortex of AD patients and that EEG signals are
generated by nonlinear interactions between neurons. The loss of connectivity in the brain could mean
deficiency in the information processing of the cortex. As such, we expect a change in the nonlinear
qEEG markers describing complexity of a signal such as entropy and auto mutual information (AMI)
in AD patients. The behavior of entropy and AMI in AD patients has been assessed in the past.
A previous study by Jeong et al. on AMI found that the rate of decrease of AMI was correlated with
MMSE scores [9]. In their investigation of multiscale entropy (MsE), Yang et al. observed a decrease
in MsE complexity in short time scales in AD patients with increased severity and increased MsE
complexity in long time scales [10]. On the other hand, Escudero et al. found better MsE in deeper
scales of EEG in their study on AD patients and found less complexity in AD patients than in control
subjects [11]. Mizuno et al. observed less complexity in the AD groups at smaller scales in the frontal
area and higher complexity at larger scales was seen across the brain and was correlated with cognitive
decline [12]. In their investigation of spectral entropy (SpE), 79.2% accuracy in classifying amnestic
mild cognitive decline patients, AD patients and normal controls using regional SpE and complexity
features was achieved by McBride et al [13]. Garn et al observed association of AMI, Shannon entropy
(ShE) and Tsallis entropy (TsE) to MMSE [14,15].

While most of the previous studies have looked into the comparison of qEEG markers between
AD to healthy controls or to mild cognitive impairment, the focus of this paper was to observe changes
in the qEEG markers in comparison to MMSE scores at mild and moderate stages of the disease.
Mini-mental state examination (MMSE) [16] is a method to evaluate the cognitive state of AD patients
and have been routinely used in clinical settings. We are interested in the behavior of the markers,
entropy, and AMI, at specific electrode sites or regions of the brain, as the cognitive decline of probable
AD patients becomes more severe. Garn et al. [14] have shown correlation between the MMSE scores
of AD patients to AMI, ShE, and TsE. Following up on the previous findings of their paper about the
correlation between AD severity, as expressed by the MMSE, and the EEG markers of AMI, ShE, and
TsE, the addition of other entropy definitions of SpE and MsE were examined in this paper. The same
subjects from [14] participated in this study. While 79 subjects were reported in the previous paper, the
eventual number of participants was effectively 64 subjects due to the automatic exclusion of data in
the statistical analysis as there was missing/unknown demographic information.

The objective of this study is to investigate whether disease severity, ranging from mild to
moderate, could be explained by nonlinear EEG markers, in the hope to find specific markers that
could aid in the diagnosis of AD patients. No healthy controls were used in this study as the focus is
on the severity of the disease in relation to the markers within probable AD patients.

2. Materials and Methods

2.1. Subjects

The 79 subjects participated in this study where all were diagnosed with probable Alzheimer’s
disease according to NINCDS-ADRDA criteria [4,17] (See Appendix A). All subjects were participants
in the Prospective Dementia Database Austria (PRODEM), a multi-cohort study of patients diagnosed
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with AD. Written consent forms were obtained from all participating subjects and their caregivers. The
responsible ethics commissions approved the study.

During assessment, MMSE tests and EEG recordings were performed on all patients. As seen in
Table 1, a median of 22 for MMSE was calculated. Ranging from 15 to 26 MMSE scores, all 79 probable
AD patients were in the mild to moderate case. The median age of the subjects was 75, median
education in years was 11, and the median duration of illness in months was 23. Distribution of age,
years of education, duration of illness, and MMSE scores were illustrated in Figure 1. Fifty of the
subjects were female and 29 were male. 57% percent of the patients had arterial hypertension while
almost 13% of patients were diagnosed with diabetes mellitus, 10% had coronary heart disease, and
29 patients had hypercholesterolemia (See Table 1).

Table 1. Demographic information and risk factors of 79 probable Alzheimer’s disease (AD) subjects.

Range Mean Median Median Absolute Deviation

Demographic information

Age (years) 52–88 73.5 75 6
Education (years) 7–20 11 11 2
Duration of illness

(months) 2–120 25.5 23 13

Sex (m/f) 29m/50f

Neuropsychological information

MMSE 15–26 22 22 2

Risk Factors Yes No Unknown

Arterial hypertension 45 32 2
Diabetes mellitus 10 68 1

Coronary heart disease 8 69 2
Atrial fibrillation 5 71 3

Hypercholesterolemia 29 46 4

Never Earlier Currently Unknown

Nicotine 60 14 2 3
Alcohol 52 6 18 3

2.2. Ethical Statement

The ethics committees of the Medical University of Graz (19-135 ex 07/08), Medical University of
Innsbruck (UN3259), Medical University of Vienna (176/2008) and Ethics Committee of the State of
Upper Austria have approved this study.

2.3. EEG Recordings

All patients underwent EEG recordings in an upright seated position in a resting state with
their eyes closed for approximately three minutes. A series of other positions and tests prescribed by
physicians were also recorded. However, these took place after the three minutes of rest and were not
included in this study.

Nineteen monopolar electrode sites according to the International 10/20 System were used to
collect the following EEG data: Fp1, Fp2, Fz, F3, F4, F7, F8, T7, T8, Cz, C3, C4, Pz, P3, P4, P7, P8,
O1, and O2. Two electrodes placed at the outer corner of the right and left eye recorded data for
the horizontal electro-oculogram (HEOG). Vertical electro-oculogram (VEOG) electrodes were placed
above and below the left eye. A ground electrode was placed at FCz and connected mastoid electrodes
were used as references. Contact impedances were kept below 10 kΩ each. Data was collected using
the AlphaEEG amplifier with NeuroSpeed software (alpha trace medical systems, Vienna, Austria).
The EEG amplifier had a band pass of 0.3 to 70 Hz with a 50 Hz notch filter. Data were collected
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at 256 Hz with 16 bit resolution. ECG signals were also recorded via clamp electrodes around the
subjects’ wrists.
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Figure 1. Histograms of (a) age; (b) years of education; (c) duration of illness; and (d) MMSE scores of
the 79 subjects participating in this study.

2.4. EEG Preprocessing

All EEG recordings were preprocessed to remove any artefacts, movements, irregular segments
in the recording due to loosed or detached electrodes, and cardiac activity. The following steps
were taken:

1. Visual inspection by an expert to exclude segments in the recording with highly irregular signals
due to any patient movements, loose, or detached electrodes. An average of 168s from the total
three-minute recording of the EEG was selected.

2. A 2 Hz high-pass filter was applied to all remaining EEG, EOG, and ECG signals.
3. Any interference due to eye movements, including blinking, was filtered from the EEG signal by

linear regression using the HEOG and VEOG according to the Draper and Smith method [18].
4. Some EEG signals contained interference from heart signals appearing as small voltage peaks.

These were removed based on the ECG signals recorded; the procedure was carried out according
to a modified Pan-Tompkins algorithm and linear regression [19].
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2.5. EEG Epochs

In the 3-min EEG recordings, 168 s of recording was the averaged selected EEG recordings for
all 79 patients. 69 of the patients did not have segments in the EEG recordings that were excluded.
The EEG markers to be obtained from the EEG recordings rely on the stationarity of the segment
while the EEG signals are basically non-stationary [20]. To overcome this problem, a solution of using
“quasi-stationary” segments was used for EEG markers computation. The selected EEG signals were
divided into 4-s epochs with 2 s of overlap. The length of the segment was verified by the augmented
Dickey-Fuller test [21]. As each patient had different number of epochs to be used, a limit of 40 epochs
per patient, equivalent to 85 s, was imposed. For uniformity, only the first 40 epochs of each patient
were used to calculate the EEG markers. All epoch values are provided in the supplementary materials.

2.6. qEEG Markers and Computation

This study focused on the following nonlinear qEEG markers explaining complexity of the
brain signals: ShE, TsE, MsE, SpE, and AMI. Each marker was the average computed value on
“quasi-stationary” 4-second segments of EEG signal for all channels or clusters. All markers were
calculated in the frequency range of 2–30 Hz.

Entropy measures the predictability of a random variable, in this case, an EEG signal of channel i,
as a measure of the signal’s complexity. ShE of signal Xi = (Xi(0), . . . , Xi(t− 1)) of length T is

−∑
Xi

p(Xi) log2 [p(Xi)] (1)

while TsE is calculated by
1

q− 1

(
1−∑

Xi

pq(Xi)

)
(2)

where q ∈ R is the entropy index and is set at q = 0.5 for this study [14].
SpE measures the complexity of the signal not in the time domain but in the frequency domain.

The power spectral density (PSD) of the signal was estimated using the Welch method. Computation
of the probability density function (PDF) was carried out by the normalization of the PSD. SpE is then
calculated using the ShE equation on the PDF [22].

On the other hand, MsE measures the complexity of the signal by looking at the scale of the
signal. The concept of multiple scales was explained by Costa et al. [23]. The scaled signal is
achieved via resampling of the original signal where a scale of τ = 1 represents the original signal
and increasing the τ will give a coarse-grained version of a signal. A τ scaled version of a signal
X1

i = (Xi(0), . . . , Xi(t− 1)) is given by

xτ
i =

1
τ

iτ

∑
j=(i−1)τ+1

x1
j (3)

and the MsE is achieved by computing the sample entropy of the scaled signal. For this study,
t = 2, 3, . . . , 7 was tested. As the scale increases, the length of the scaled signal decreases, a modified
version of the MsE (further referred to as MsE modified) performed by Wu et al. [24]. Their method
involved replacing the scaled version of the signal by a template vector calculated by moving-average
and time delay to give better estimates of the MsE. MsE and MsE modified computations were
employed in this study. Computation of MsE modified in higher scales were carried out for
t = 9, 11, 13, . . . , 15.

Mutual information (MI) is a measure of the dependence between two signals of two random
variables, where a value of 0 means that two variables are independent of each other [25]. In the case of
this study, the MI is measured between an EEG signal from channel i and its time time-shifted version,
hence it is called AMI. It is different from cross MI where it measures the dependence between two
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signals [9]. AMI is the EEG marker that was investigated here. It measures the predictability of the
signal, or how the original signal can predict its time-shifted version. Given that an EEG signal of
channel i is Xi = (Xi(0), . . . , Xi(t− 1)) and its time-shifted version Y; = (Y1, . . . , Yi(t− 1 + s)), both
with length of T, the AMI is then defined as

∑
Yi

∑
Xi

p(Xi, Yi) log
[

p(Xi, Yi)

p(Xi)p(Xi)

]
(4)

where p(Xi), p(Yi), and p(Xi, Yi) are the estimated probability functions. A signal with higher values
denotes better predictability. The AMI was calculated on individual electrode sites and on clusters
defined by the regions of the brain: anterior, anterior/temporal, central, posterior, posterior/temporal,
temporal-left, temporal-right, left, right, and all (See Appendix B).

2.7. Statistical Analysis

Multiple regression models were used to analyze disease severity quantified by MMSE in relation
to each EEG markers per electrode site or cluster. The dependent variable was the MMSE score and
the main independent variable was the specific qEEG marker, with age, duration of illness, and years
of education as other predictors. The qEEG marker was added to the model as linear or in linear
and squared terms. Inclusion of the other predictors was necessary as MMSE scores are affected
by age and education [26]. The significance of the regression models was assessed by the Fisher’s
f -test. The coefficients of determination, R2, were compared to analyze the goodness of fit of the
model. Holm-Bonferroni method [27] was used to control the familywise error rate. Given a total
of 875 total statistical tests, all statistical results were ranked and sequentially tested for significance
following the said method. Stability of the markers was assessed by the calculated variance of the
markers per patient, given that the markers are the mean values of the calculated marker from the
40 epochs. Assessment of the individual variables of the model was based on the t-stat test, p < 0.05.
Standardized regression coefficients were also computed to compare the coefficients of variables given
the differences in the variables’ units.

3. Results

Multiple regression models with significant results are shown in Tables 2 and 3. MMSE served
as the dependent variable while the predictors are the qEEG markers, age, duration of illness,
and years of education. The regression models with qEEG markers were expressed in linear and
squared terms. All following models mentioned with significant results were tested according to the
Holm-Bonferroni method. Two electrode sites resulted in significant linear regression models with
ShE as the independent variable at electrodes T7 and F7 where the regression models achieved R2 as
high as 0.32 (See Figure 2) and 0.30 respectively. With a low variance for the marker ShE, where the
highest is at 0.0042, it is evident that the marker remained stable across the calculation for 40 epochs
per patient. The marker TsE also has a low variance (highest at 0.0075), indicating stability across
the recording. Models with TsE resulted in significant results at two electrode sites, T7 and F7. The
regression model performed at electrode T7 achieved R2 = 0.37 (See Figure 2) while at electrode F7 the
model had R2 of 0.33. The regression models with SpE as independent variable were significant at
electrodes located in the frontal, central, and temporal regions. While regression models at C3, T7, and
F3 have R2 > 0.30, the variance of SpE is higher (reaching up to 0.15) than that of ShE and TsE.
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Table 2. Significant linear regression models results. qEEG markers expressed in linear terms only.

qEEG Markers Electrode Sites/Clusters Where Model Is Significant
According to Holm-Bonferroni Method Highest R2 Max Variance a

ShE T7 and F7 T7: 0.32
F7: 0.30

0.0042
0.0075

TsE T7 and F7 T7: 0.37
F7: 0.33

0.0075
0.0102

SpE C3, T7, F3, Cz, Fz, C4, Fp1, F7, F4
C3: 0.33
T7: 0.32
F3: 0.31

0.1162
0.1531
0.1023

MsE

τ = 3 Cz, C3, Fz, F3, F4, F7, C4, T7, Pz, Fp1, F8 Cz: 0.38 0.0466

τ = 5 All except P8, P7, P3, Fp2, F8, O2, T8, & O1 C3: 0.39 0.1654

MsE modified

τ = 3 C3, Cz, Fz, F3, F4, C4, F7, Pz, T7, Fp1, F8, P3 C3: 0.37 0.0490

τ = 5 All except Fp2, T8, O2, & O1 C3: 0.42 0.0325

τ = 7 All except T8, Fp2, O2, & O1 C3: 0.40 0.0364

τ = 9 All except O1 T7: 0.37
C3: 0.36

0.0374
0.0393

τ = 10 All C3: 0.39 0.0323

τ = 11 All C3: 0.39 0.0274

τ = 13 All except Fp2 & O1 C3: 0.37 0.0220

τ = 15 All except Fp2 C3: 0.38 0.0234

AMI All electrode sites except T7 & T8 C3: 0.46 0.0029

All clusters
central: 0.43

left: 0.42
all: 0.42

0.0028
0.0024
0.0020

a Maximum calculated variances of the calculated qEEG marker from all patients. (Maximum from the set of
variances calculated from the 40 epochs calculated per patient).

Table 3. Best regression models results based on p and R2 at specific electrode sites or clusters.

qEEG Markers Electrode
Sites R2 p

(×10−4)
qEEG Marker a t-Stat

p (×10−2)
Significant

Co-Predictors b

ShE T7 0.32 0.079 0.007 A, D, E
F7 0.30 0.215 0.021 A, D, E

TsE T7 0.37 0.005 0.000 A, D, E
F7 0.33 0.043 0.004 A, D, E

SpE T7 0.32 0.082 0.007 A, D, E
MsE mod. τ = 5 C3 0.42 0.000 0.000 A, D, E
MsE mod. τ = 6 C3 0.41 0.000 0.000 A, D, E

AMI C3 0.46 0.000 0.000 A, D, E
Cz 0.43 0.000 0.000 E
F3 0.43 0.000 0.000 A, E

central 0.43 0.000 0.000 E
left 0.42 0.000 0.000 A, E

a qEEG marker as the main predictor of interest. p < 0.05 denotes significance; b Predictors other than the qEEG
marker with tstat p < 0.05 A: age; D: duration of illness (months); E: years of education.

Age, duration of illness and years of education were significant variables for the models in Table 3
for ShE and TsE. Comparing standardized regression coefficients verified that ShE and TsE for models
specified in Table 3 were the most significant variables. Adding the squared terms of the EEG markers
produced quadratic regression models. ShE at T7 with linear and squared terms present in the model
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does not provide a better model than having only the linear term of ShE in the model. The same was
evident for TsE and SpE.Entropy 2017, 19, 130 7 of 13 
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Figure 2. qEEG markers at electrode site T7 or C3. The regression lines are represented by setting
co-predictors (age, duration of illness, and years of education) at mean, tabulated in Table 1. (a) ShE at
T7, (b) TsE at T7, (c) MsE modified at τ = 5, & (d) SpE at T7.

Across the region of the brain, all electrode sites, except T7 and T8, and clusters achieved
significant regression models with AMI as the main predictor achieving R2 as high as 0.46 at electrode
C3 (Illustrated in Figure 3). Next to C3, electrode Cz and F3 achieved R2 of 0.43 for both. Comparisons
of standard regression coefficients showed AMI as the main significant predictor of the models.
As expected, adding another term to the regression models increased R2, in this case the squared term
of the qEEG markers. However, adding the squared term of the qEEG markers did not automatically
constitute a better model. So was the case for AMI. As seen in Figure 4, electrodes by the perimeter
resulted to lower R2 than the electrodes situated more centrally.
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The drawback in computing MsE at higher scales was evident in Table 2 where the variance
increased dramatically at scale τ = 5. The MsE modified proved to be better for all scales used in this
study thus MsE modified was the only one to be discussed further. At lower scales, only 12 electrode
sites resulted to significant regression models. By τ = 10, all electrode sites resulted to significant
regression models (Figure 4). There are electrode sites that did not exhibit significant models at lower
scales, particularly at electrode O2 where significant results were only observed starting at scale τ = 8,
electrode Fp2 at scale τ = 9, and electrode O1 at τ = 10. Increasing R2 was observed in models starting
at scale τ = 2 at electrode C3 and T7 reaching the maximum R2 at τ = 6 and τ = 9 respectively. R2

at other electrode sites also increased with increasing scale with varying scale where it reached the
maximum (Figure 5).Entropy 2017, 19, 130 10 of 13 
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main predictor.

In general, adding the squared term of the EEG marker did not produce a better model. Thus, the
results of quadratic models were not specified in Tables 2 and 3. The scatterplot figures and regression
line shown in Figures 3 and 4 describing the relationship of qEEG markers to the MMSE scores based
on the regression model. Age, duration of illness, and years of education were set at their mean value
shown in Table 1.

4. Discussion

There were 79 subjects diagnosed with probable AD who participated in this study. EEG
recordings were taken while the subjects were sitting in an upright position in a resting state with
their eyes closed. MMSE scores and demographic information such as age, duration of illness, and
years of education were taken during assessment. The EEG recordings were visually selected before
computation of the qEEG markers to remove irregular segments due to detached or loose electrodes.
Cardiac and eye activities were automatically removed from the EEG. Forty 4-s epochs were selected
from each patient. Calculation of the qEEG marker was derived from the mean value of 40 epochs
per patient. The variance over the 40 epochs was computed for each marker to check stability. Linear
regression models were calculated with MMSE as the dependent variable and the qEEG marker
as the main independent variable. Age, duration of illness, and years of education served as the
other independent variables to consider their effect on the MMSE scores. Regression models were
computed at every electrode site for all qEEG markers. The significance of model was assessed by the
Holm-Bonferroni method.
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The results showed that the disease severity of probable AD, quantified by the MMSE scores of
mild to moderate, was associated with the nonlinear qEEG markers of entropy and AMI. Regression
models predicting MMSE with TsE or ShE as the main predictor variable achieved the highest R2 at
the electrodes T7 and F7, both positioned at the left side of the brain. This can be related to the study
done by Ferreira et al. [28], where temporal lobe entropy was found to be a biomarker for conversion
of mild cognitive impairment to AD due to atrophy of the left hippocampus and parahippocampal
campus. For models with SpE as the main predictor, significant results were observed at C3 and T7.
While a previous study on SpE of EEG signals between AD patients and normal controls did not
produce significant differences [29], our results, however, showed an association with SpE to greater
severity in probable AD patients. It’s important to note, however, that the variance for the SpE markers
were considerably higher than the other markers considered in this study. A reduction in complexity
was seen with higher disease severity in SpE, MsE, and AMI. This loss of complexity was previously
investigated in [9,10]. Our results showed increased ShE and TsE to greater disease severity. However,
this does not automatically refute the common findings of reduced complexity in AD compared to
normal controls. Since there were no normal controls in this study, no direct comparison between the
AD and normal group was made. MsE modified returned significant regression models at almost all
electrode sites of the brain from τ = 2 where R2 of 0.42 peaked at τ = 5 for C3, and at scale τ = 10
significant regression models across all electrodes were observed.

With AMI as the main predictor variable, though all electrode sites (except for T7 and T8) and
clusters in the brain returned significant models, the electrode sites C3, Cz, and F3, as well as the
central and left regions of the brain achieved the highest R2 values (see Figure 4d). Jeong et al. [9] saw
a correlation with the rate of decrease of AMI in the frontal and temporal regions while our results
of models with AMI achieved the highest R2 in the left and central region particularly at the sites C3,
F3, and Cz (Figure 4d). Furthermore, MMSE also describes the ‘global cognition’ of a patient and
as seen in the result, the AMI results across the all regions returned significant regression models.
In comparison to the entropy markers where good results are concentrated at only certain electrode
sites, AMI appeared to be able to describe the decline in global cognition of probable AD patients as
seen in Table 2 and Figure 4. In comparison to the study of [14] where data from 64 patients were
included, AMI R2 remained high even with the addition of 15 patients. The same trend of increasing
AMI with decreasing MMSE was also observed implying better predictability or reduced complexity
as the disease worsens. With the new results, this paper strengthens the claim for AMI as a potential
qEEG marker in the study of AD.

Studies linking disease severity of AD to other markers instead of qEEG markers were carried out
such as [30] where (1) H-NMR spectroscopy resonances in the cerebrospinal fluid were found to be
correlated with MMSE scores in AD patients. Benedictus et al. [31] found that lower cerebral blood
flow (CBF) in the posterior brain region could be a marker for the rate of cognitive decline in AD where
the decline was measured by the MMSE.

The strong points of our paper are the following: 79 patients with probable AD is the largest study
compared to other similar papers [9,11–15] that dealt with complexity markers and AD. Furthermore,
previous papers [9,11–13] that studied qEEG markers and AD patients involved comparing AD patients
with normal controls or other dementia-related diseases such as MCI while this study focused on
qEEG markers and AD patients with varying disease severity. While previous studies investigated SpE
and dementia, this is the first time that SpE was analyzed together with disease severity of dementia
patients with probable AD diagnosis.

The aim of this study was to investigate the potential of EEG entropy features in the diagnostic
support of Alzheimer’s diseases. The regression models with the most significant results based on R2

were concentrated at the T7 and C3 electrode sites, and it would be interesting to carry out further
investigations on this area. The effects of age and education on MMSE were verified by our results as
they, as well as the duration of illness, were significant co-predictors in the regression models. AMI
proved to be most closely related to disease severity, ranging from mild to moderate MMSE scores
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based on the 79 patients, explaining up to 46% of the variation in the data. As seen in Figure 3, AMI
increases with the decreasing MMSE. Given that higher AMI denotes better predictably, this suggests
that less information processing and content is available in the EEG signal as the cognitive level of and
probable AD patient declines. Next to AMI, MsE modified proved to be related to disease severity,
explaining up to 42% of the variation in the data at scale τ = 5 at C3. Therefore, we conclude that these
quantitative EEG markers, AMI and MsE modified, should be investigated further in longitudinal
studies to determine whether it can also aid in predicting AD progression.

Supplementary Materials: The following are available online at https://www.dropbox.com/s/1ht2sez7u4lhafu/
Supplementary.zip?dl=0.
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Appendix A

The 79 patients in this study were all part of the prospective longitudinal studies of the Austrian
Alzheimer Society (PRODEM). Written consent was given by the patients or their caregivers or family
members. The patients were all diagnosed with AD probable according to the NINCDS-ADRDA
criteria [4,17]. The NINCDS-ADRDA criteria require exclusion of other physical or neurological
diseases that could have been responsible for the cognitive symptoms of a patient. MRI testing were
considered in the diagnosis and probable AD was only diagnosed in the absence of infarctions in the
territory of large vessels.

Appendix B

Cluster Name Electrodes

anterior Fp1, Fp2, Fp3, F4
anterior/temporal Fp1, Fp2, F7, F3, F4, F8

central Fz, C3, C4, Cz, Pz
posterior P3, P4, O1, O2

posterior/temporal P7, P3, P4, P8, O1, O2
temporal left F7, T7, P7

temporal right F8, T8, P8
left Fp1, F3, F7, C3, T7, P3, P7, O1

right Fp2, F4, F8, C4, T8, P4, P8, O2
all Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2
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