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Abstract:



We summarize a recent reconstruction of the quantum theory of qubits from rules constraining an observer’s acquisition of information about physical systems. This review is accessible and fairly self-contained, focusing on the main ideas and results and not the technical details. The reconstruction offers an informational explanation for the architecture of the theory and specifically for its correlation structure. In particular, it explains entanglement, monogamy and non-locality compellingly from limited accessible information and complementarity. As a by-product, it also unravels new ‘conserved informational charges’ from complementarity relations that characterize the unitary group and the set of pure states.
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1. Introduction


Why is the physical world described by quantum theory? If we wish to sensibly address this question, we have to step beyond quantum theory and to consider it within a landscape of alternative theories. This, after all, permits us to ponder about how the world could have been different, possibly described by modifications of quantum theory. Such an endeavor forces us to leave the usual textbook formulation of quantum theory, and everything we take for granted about it, behind and to develop a more general language that also applies to alternative theories. Ideally, this language should be operational, encompassing the interactions of some observer with physical systems in a plethora of conceivable, physically-distinct worlds.



If we wish to also provide a possible answer to the above question, we then have to find physical properties of quantum theory that single it out, at least within the given landscape of alternatives. In particular, the goal should be to find an operational justification for the textbook axioms, i.e., ultimately for complex Hilbert spaces, unitary dynamics, tensor product structure for composite systems, Born rule, and so on. The result would be a reconstruction of quantum theory from operational axioms [1,2,3,4,5,6,7,8,9,10] and should ideally yield a better understanding of what quantum theory tells us about Nature; and why it is the way it is.



In this manuscript, we shall review and summarize how the quantum formalism for arbitrarily many qubits can be reconstructed from operational rules restricting an observer’s acquisition of information about a set of observed systems [1,2]. The goal of this summary is to provide a didactical and easily-accessible overview of this reconstruction. Its underlying framework is especially engineered for unraveling the architecture of quantum theory, and so many reconstruction steps are instructive for understanding the origin of quantum properties. As we shall see, this reconstruction provides a transparent, informational explanation for the structure of qubit quantum theory and especially also for its paradigmatic features, such as entanglement, monogamy and non-locality. The approach also produces novel ‘conserved informational charges’, indeed appearing in quantum theory, that turn out to characterize the unitary group and the set of pure states and which might find practical applications in quantum information.



The premise of the summarized approach is to only speak about information that the observer has access to. It is thus purely operational and survives without any ontological commitments. This approach is inspired, in part, by Rovelli’s relational quantum mechanics [11] and the Brukner–Zeilinger informational interpretation of quantum theory [12,13]; this successful reconstruction can be viewed as a completion of these ideas for qubit systems.



The rest of the manuscript is organized as follows. In Section 2, we review the landscape of alternative theories; in Section 3, we formulate the operational quantum axioms; in Section 4, we summarize the key steps of the reconstruction itself and, finally, conclude in Section 5.




2. Overview of a Landscape of Theories


We shall begin with an overview of a landscape of alternative theories, which has been developed in [1,2] to which we also refer for further details.



2.1. From Questions and Answers to Probabilities and States


Our first aim is to define a notion of a state both for a single system and an ensemble of systems.



Consider an observer O who interrogates an ensemble of (identically prepared [1]) systems [image: there is no content], coming out of a preparation device, with binary questions [image: there is no content] from some set [image: there is no content]. For example, in the case of quantum theory, such a question could read “is the spin of the electron up in x-direction?” This set [image: there is no content] shall only contain repeatable questions in the sense that O will receive [image: there is no content] times the same answer whenever asking any [image: there is no content]m times in immediate succession to a single system [image: there is no content]. We shall assume any [image: there is no content] to always give a definite answer if asked some [image: there is no content], which moreover is not independent of [image: there is no content]’s preparation. Accordingly, [image: there is no content] can only contain physically-implementable questions, which are ‘answerable’ by the [image: there is no content] and not arbitrary logically conceivable binary questions. Furthermore, since we assume definite answers, we do not address the measurement problem. The answers to the [image: there is no content] given by the [image: there is no content] shall follow a specific statistics for each way of preparing the [image: there is no content] (for n sufficiently large). The set of all the possible answer statistics for all [image: there is no content] for all preparations is denoted by Σ.



O, being a good experimenter, has developed, through his experiments, a theoretical model for [image: there is no content] and Σ which he employs to interpret the outcomes of his interrogations (and to decide whether a question is in [image: there is no content] or not). This permits O to assign, for the next [image: there is no content] to be interrogated, a prior probability [image: there is no content] that [image: there is no content]’s answer to [image: there is no content] will be ‘yes’. Namely, O determines [image: there is no content] through a belief updating—in a broadly Bayesian spirit—according to his model of Σ, any prior information on the way of preparation and possibly to the frequencies of ‘yes’ answers to questions from [image: there is no content], which he may have recorded in previous interrogation runs on systems identically prepared to [image: there is no content]. (We add “broadly” here as we also consider the typical laboratory situation of an ensemble of systems.) In particular, O may also not have carried out previous interrogations on systems identically prepared to [image: there is no content] (e.g., if the ensemble contains only the single [image: there is no content]) in which case, he will estimate the prior [image: there is no content] for the single [image: there is no content] solely according to his model of Σ and any prior information about the preparation (more on this and update rules will be discussed in Section 2.3 and Section 2.4).



While [image: there is no content] need not necessarily contain all binary measurements that O could, in principle, perform on the [image: there is no content], we shall assume that [image: there is no content] is ‘tomographically complete’ in the sense that the {yi}∀Qi∈Q are sufficient to compute the probabilities for all other physically realizable measurements possibly not contained in the [image: there is no content], as well. Hence, the [image: there is no content] encode everything O could possibly say about the future outcomes to arbitrary experiments on the [image: there is no content] in his laboratory. It will therefore be sufficient to henceforth restrict O to acquire information about the [image: there is no content] solely through the [image: there is no content]. It is also natural to identify O’s ‘catalog of knowledge’ about the given [image: there is no content], i.e., the collection of {yi}∀Qi∈Q, with the state of [image: there is no content] relative to O. This is a state of information and an element of Σ. Conversely, any element in Σ assigns a probability [image: there is no content] to all [image: there is no content]. Thus, we identify Σ with the state space of [image: there is no content].



The state {yi}∀Qi∈Q is the prior state for the single [image: there is no content] to be interrogated next, but also coincides with the state O assigns to the ensemble [image: there is no content] (which may only contain a single member) given that its members are identically prepared [1].




2.2. Time Evolution of O’s “Catalog of Knowledge”


We permit O to subject the [image: there is no content] to interactions, which cause a state {yi(t0)}∀Qi∈Q at time [image: there is no content] to evolve in time to another legitimate state. Any permitted time evolution shall be temporally translation invariant, thus defining a one-parameter map TΔt({yi(t0)}∀Qi∈Q)={yi(t0+Δt)}∀Qi∈Q from Σ to itself, which only depends on the time interval [image: there is no content], but not on [image: there is no content]. We denote by [image: there is no content] the set of all time evolutions to which we allow O to expose the [image: there is no content].



Clearly, [image: there is no content] is a further crucial ingredient of O’s world model; his model for describing his interrogations with the [image: there is no content] is thus encoded in the triple [image: there is no content].




2.3. Convexity and State of No Information


It will be our challenge to unravel what O’s world model is. This requires us to subject the triple [image: there is no content] to a number of further operational conditions that are ‘natural’ in the context of information acquisition with a broadly Bayesian spirit. Upon imposing the quantum postulates, this will turn out to restrict [image: there is no content] and [image: there is no content] to incorporate only a ‘natural’ subset of all possible quantum measurements and time evolutions, namely projective binary measurements and unitaries, respectively (rather than arbitrary positive operator-valued measures (POVMs) and completely positive maps). However, this suffices for our purposes to reconstruct the textbook quantum formalism.



To account for the possibility of randomness in the method of preparation, we assume Σ to be convex. Consider a collection of identical systems (i.e., with identical [image: there is no content]) that are not necessarily in identical states and for which O uses a cascade of biased coin tosses to decide which system to interrogate. Then O is enabled to assign a single prior state to this collection, which is a convex combination of their individual states.



Next, we assume the existence of a special method of preparation, which generates even completely random answer statistics over all [image: there is no content]. This preparation is described by a special state in Σ, namely [image: there is no content], ∀Qi∈Q, and shall be called the state of no information. This distinguished state is a constraint on the pair [image: there is no content]. (E.g., in quantum theory, the pair ({binaryPOVMs},{densitymatrices}) does not satisfy this condition because there exist inherently biased POVMs, while ({projectivebinarymeasurements},{densitymatrices}) does.) It plays two crucial roles: it defines (1) the prior state of [image: there is no content] that O will start with in a Bayesian updating when he has no ‘prior information’ about the [image: there is no content] (except what his model [image: there is no content] is); and (2) an unambiguous notion of the (in-)dependence of questions (cf. Section 2.4), which otherwise would be state dependent. (E.g., in quantum theory, the questions [image: there is no content] “Is the spin of Qubit 1 up in x-direction?” and [image: there is no content] “Is the spin of Qubit 2 up in x-direction?” are independent relative to the completely mixed state, however not relative to a state with entanglement in x-direction.)




2.4. State Updating and (In)Dependence and Compatibility of Questions


There are two kinds of state update rules, one for the state of the ensemble [image: there is no content] (which coincides with the prior state assigned to the next [image: there is no content] to be interrogated) and one for the posterior state of a given ensemble member [image: there is no content]. In a single shot interrogation, O receives a single [image: there is no content], assigns a prior state to it according to his prior information (cf. Section 2.1), interrogates it with some questions from [image: there is no content] (without intermediate re-preparation) and, depending on the answers, updates the prior to a posterior state valid for this specific [image: there is no content] only. This requires a consistent posterior state update rule, which permits O to update the probabilities [image: there is no content] for all [image: there is no content] in a manner that respects the structure of Σ and the repeatability of questions (i.e., an answer [image: there is no content] ‘yes’ or ‘no’ must have a posterior [image: there is no content] or 0 as a consequence, respectively). This is also a belief updating, but about the single [image: there is no content], and is not the same as in Section 2.1 and Section 2.3. Specifically, the posterior state of [image: there is no content] may differ significantly from its prior state if O has experienced an information gain on at least some [image: there is no content] (this will necessarily happen when complementary questions are involved; see below). This is the ‘collapse’ of the state: it is merely O’s update of information about the specific [image: there is no content] [1].



By contrast, in a multiple shot interrogation, O carries out a single shot interrogation on each member of an entire (identically prepared [1]) ensemble [image: there is no content] to do ensemble state tomography and estimate the state of the ensemble from his/her prior information about the preparation and the collection of posterior states from the single shot interrogations. With every further interrogated [image: there is no content], O updates the ensemble state, which coincides with the prior state of the next system from the ensemble to be interrogated. Accordingly, this requires a prior state update rule. This is the belief updating alluded to in Section 2.1 and Section 2.3 about the ensemble [image: there is no content].



It will not be necessary to specify these two update rules in detail; we just assume O uses consistent ones. Specifically, given a posterior state update rule, we shall call [image: there is no content]



	(maximally) independent
	if, after having asked [image: there is no content] to S in the state of no information, the posterior probability [image: there is no content]. That is, if the answer to [image: there is no content] relative to the state of no information tells O ‘nothing’ about the answer to [image: there is no content].



	dependent
	if, after having asked [image: there is no content] to S in the state of no information, the posterior probability [image: there is no content] (if [image: there is no content] or 1, they are maximally dependent). That is, if the answer to [image: there is no content] relative to the state of no information gives O at least partial information about the answer to [image: there is no content].



	(maximally) compatible
	if O may know the answers to both [image: there is no content] simultaneously, i.e., if there exists a state in Σ such that [image: there is no content] can be simultaneously zero or one.



	(maximally) complementary
	if every state in Σ, which features [image: there is no content], necessarily implies [image: there is no content]. Notice that complementarity implies independence (but not vice versa).





(One can also define partial compatibility similarly [1].) These relations shall be symmetric; e.g., [image: there is no content] is independent of [image: there is no content] if and only if [image: there is no content] is independent of [image: there is no content], etc.



We impose a final condition on the posterior state update rule: if [image: there is no content] are maximally compatible and independent, then asking [image: there is no content] shall not change [image: there is no content], i.e., O’s information about [image: there is no content].




2.5. Informational Completeness


The fundamental building blocks of the theories in the landscape that we are constructing are to be sets of pairwise independent questions. This will help to render the convoluted parametrization of a state by {yi}∀Qi∈Q more economical. Consider a set of pairwise independent questions [image: there is no content]; it is called maximal if no question from [image: there is no content] can be added to [image: there is no content] without destroying the pairwise independence of its elements. We shall assume that any maximal [image: there is no content] is informationally complete in the sense that all {yi}∀Qi∈Q can be computed from the corresponding probabilities [image: there is no content] for all states in Σ. Any such [image: there is no content] features D elements [1] such that Σ becomes a D-dimensional convex set and states become vectors:


[image: there is no content]












2.6. Information Measure


Our focus is O’s acquisition of information, so we need to quantify O’s information about the systems. Since [image: there is no content] is binary, we quantify O’s information about [image: there is no content]’s answer to it by a function [image: there is no content] with [image: there is no content]bit and [image: there is no content]bit ⇔ [image: there is no content] and [image: there is no content]bit. O’s total information about a [image: there is no content] must be a function of the state; we make an additive ansatz:


I(y→):=∑i=1Dα(yi).



(1)




The quantum postulates will single out the specific function α.



Consider a set [image: there is no content] of mutually (maximally) complementary questions. It is clear that whenever O has maximal information [image: there is no content]bit about [image: there is no content] from this set, he must have zero bits of information about all other questions in the set. We require more generally that such a set cannot support more than one bit of information, regardless of the state:


α(y1)+⋯+α(yn)≤1bit



(2)




for otherwise O could, for some states, reduce his total information about such a set by asking another question from it. These complementarity inequalities represent informational uncertainty relations that describe how the information gain about one question enforces an information loss about questions complementary to it (see also the state ‘collapse’ in Section 2.4).




2.7. Composite Systems and (Classical) Rules of Inference


O must be able to tell a composite system apart into its constituents purely by means of the information accessible to him through interrogation and thus ultimately by means of the question sets. Let systems [image: there is no content] have question sets [image: there is no content]. It is then natural to say that they define a composite system [image: there is no content] if any [image: there is no content] is maximally compatible with any [image: there is no content] and if:


[image: there is no content]



(3)




where [image: there is no content] only contains composite questions, which are iterative compositions, Qa*1Qb,Qa*2(Qa′*3Qb),(Qa*4Qb)*5Qb′,(Qa*6Qb)*7(Qa′*8Qb′),…, via some logical connectives [image: there is no content], of individual questions [image: there is no content] about [image: there is no content] and [image: there is no content] about [image: there is no content]. This definition is extended recursively to composite systems with more than two subsystems.



Since O can never test the truthfulness of statements about the logical connectives of complementary questions through interrogations and since all propositions must have operational meaning, we shall permit O to logically connect two (possibly composite) questions directly with some * only if they are compatible. For the same reason, O is allowed to apply classical rules of inference (in terms of Boolean logic) exclusively to sets of mutually-compatible questions.



We stress that this definition of composite systems is distinct from the usual state tensor product rule in generalized probabilistic theories coming from local tomography [3,4,5]. In particular, this composition rule admits non-locally tomographic composites (see Section 4.3).




2.8. Computing Probabilities and Questions as Vectors


Thanks to informational completeness, the probability function [image: there is no content] that [image: there is no content] ‘yes’, given the state [image: there is no content], exists for all [image: there is no content] and [image: there is no content]. As shown in [2], the exhibited structure yields:


[image: there is no content]



(4)




where [image: there is no content] is a question vector encoding [image: there is no content] and [image: there is no content] is a vector with each coefficient equal to one in the basis corresponding to [image: there is no content]. This equation gives rise to (part of) the Born rule.



Suppose [image: there is no content] were both encoded by the same [image: there is no content]. Then, by (4), they would be probabilistically indistinguishable, and O must view them as logically equivalent. O is free to remove any such redundancy from his description of [image: there is no content] upon which every permissible question vector [image: there is no content] will encode a unique [image: there is no content]. Finally, for every [image: there is no content], there exists a state [image: there is no content], which is the updated posterior state of [image: there is no content] after O received a ‘yes’ answer to the single question Q from [image: there is no content] in the (prior) state of no information. O had zero bits of information before, and [image: there is no content] encodes a single independent question answer, so we naturally require that it encodes one independent bit. Hence, for every [image: there is no content], there exists [image: there is no content] with [image: there is no content]bit, such that [image: there is no content]. (In quantum theory, the [image: there is no content] will only turn out to be pure states for a single qubit; e.g., for two qubits and [image: there is no content] ‘Is the spin of Qubit 1 up in z-direction?’, represented by the rank-two projector [image: there is no content], [image: there is no content] corresponds to the mixed state [image: there is no content]. Clearly, [image: there is no content].)





3. The Quantum Principles as Rules Constraining O’s Information Acquisition


In the sequel, we consider the most elementary of information carriers. Within the introduced landscape of theories, we now establish rules on O’s acquisition of information that single out the quantum theory of a composite system [image: there is no content] of [image: there is no content] qubits, modeled in our language by a triple [image: there is no content]. Effectively, these rules constitute a set of ‘coordinates’ for quantum theory on this landscape. The rules are spelled out first colloquially, then mathematically and are motivated in more detail in [1,2].



Empirically, the information accessible to an experimenter about (characteristic properties of) elementary systems is limited. For example, an experimenter may know one binary proposition about an electron (e.g., its spin in x-direction), but nothing fully independent of it (and similarly for a classical bit). We shall characterize a composition of N elementary systems according to how much information is, in principle, simultaneously available to O.



Rule 1.

(Limited information) “The observer O can acquire maximally [image: there is no content] independent bits of information about the system [image: there is no content] at any moment of time.”



There exists a maximal set [image: there is no content], [image: there is no content], of N mutually maximally independent and compatible questions in [image: there is no content].





O can thereby distinguish maximally [image: there is no content] states of [image: there is no content] in a single shot interrogation.



However, empirically, elementary systems admit more independent propositions than what, due to the information limit, they are able to answer at a time. This is Bohr’s complementarity. The unanswered properties must be random (and so ‘in superposition’) because the information limit makes it impossible to ascribe definite outcomes to them. For example, an experimenter may also inquire about the spin of the electron in y-direction. Yet doing so is at the total expense of his information about its spin in the x- and z-directions, and subsequent such measurements have random outcomes. For the N elementary systems, we assert the existence of complementarity.



Rule 2.

(Complementarity) “The observer O can always get up to N new independent bits of information about the system [image: there is no content]. However, whenever O asks [image: there is no content] a new question, he experiences no net loss in his total amount of information about [image: there is no content].”



There exists another maximal set [image: there is no content], [image: there is no content], of N mutually maximally independent and compatible questions in [image: there is no content], such that [image: there is no content] are maximally complementary and [image: there is no content] are maximally compatible.





The peculiar mathematical form of Rule 2 becomes intuitive upon recalling that [image: there is no content] is a composite system, such that complementarity should exist per elementary system [1].



Rules 1 and 2 are conceptually inspired by (non-technical) proposals made by Rovelli [11] and Zeilinger and Brukner [12,13]. These rules say nothing about what happens in-between interrogations. Naturally, we demand O not to gain or lose information without asking questions.



Rule 3.

(Information preservation) “The total amount of information O has about (an otherwise non-interacting) [image: there is no content] is preserved in-between interrogations.”



[image: there is no content] is constant in time in-between interrogations for (an otherwise non-interacting) [image: there is no content].





Hence, O’s total information [image: there is no content] is a ‘conserved charge’ of any time evolution [image: there is no content].



The more interactions to which O may subject [image: there is no content] are available, the more ways in which any state may, in principle, change in time and, thus, the more ‘interesting’ O’s world. We therefore demand that any time evolution is physically realizable as long as it is consistent with the other rules (since [image: there is no content] are interdependent, this is distinct from ‘maximizing the number’ of states).



Rule 4.

(Time evolution) “O’s ‘catalog of knowledge’ about [image: there is no content] evolves continuously in time in-between interrogations, and every consistent such evolution is physically realizable.”



[image: there is no content] is the maximal set of transformations [image: there is no content] on states such that, for any fixed state [image: there is no content], [image: there is no content] is continuous in [image: there is no content] and compatible with Principles 1–3 (and the structure of the theory landscape).





(If we did not require this ‘maximality’ of [image: there is no content], we would still ultimately obtain a linear, unitary evolution, but not necessarily the full unitary group. This is the sole reason for demanding ‘maximality’. Note that Principles 3 and 4 are not equivalent to the axiom of ‘continuous reversibility’ of generalized probabilistic theories [3,4,5].)



We shall also allow O to ask any question to [image: there is no content] which ‘makes (probabilistic) sense’.



Rule 5.

(Question unrestrictedness) “Every question that yields legitimate probabilities for every way of preparing [image: there is no content] is physically realizable by O.”



Every question vector [image: there is no content] that satisfies [image: there is no content]∀y→∈ΣN and for which there exists [image: there is no content] with [image: there is no content]bit, such that [image: there is no content] corresponds to a [image: there is no content].





(Without Principle 5, we would still obtain the structure of an informationally complete set [image: there is no content], finding that it encodes a basis of projective Pauli operator measurements [2]; Principle 5 legalizes all such measurements.)



These five rules turn out to leave two solutions for the triple [image: there is no content]. Remarkably, they cannot distinguish between complex and real numbers. Namely, the two solutions are qubit and rebit quantum theory, i.e., two-level systems over real Hilbert spaces [1,2]. Since the latter is both mathematically and physically a subcase of the former, these five rules can be regarded as sufficient. However, if one also wishes to discriminate rebits operationally, then an extra rule, adapted from [3,4,5] and imposed solely for this purpose (it is partially redundant), succeeds.



Rule 6.

(Tomographic locality) “O can determine the state of the composite system [image: there is no content] by interrogating only its subsystems.”





As shown in [1,2], Rules 1–6 are equivalent to the textbook axioms. More precisely:

Claim. 

The only solution to Rules 1–6 is qubit quantum theory where:

	
ΣN≃convexhullofCP2N−1 is the space of [image: there is no content] density matrices over [image: there is no content],



	
states evolve unitarily according to [image: there is no content] and the equation describing the state dynamics is (equivalent to) the von Neumann evolution equation,



	
[image: there is no content] is (isomorphic to) the set of projective measurements onto the [image: there is no content] eigenspaces of N-qubit Pauli operators (a Hermitian operator on [image: there is no content] is a Pauli operator iff it has two eigenvalues [image: there is no content] of equal multiplicity), and the probability for [image: there is no content] to be answered with ‘yes’ in some state is given by the Born rule for projective measurements.













4. Synopsis of the Reconstruction Steps and Key Results


Since this gives rise to a constructive derivation of the explicit architecture of qubit quantum theory, it involves a large number of individual steps compared to the rather abstract reconstructions [3,4,5,6,7,8,9,10]. However, this is also rewarding as it offers novel informational explanations for typical features of quantum theory, and so many reconstruction steps are actually quite instructive. We now provide a summary of key results and reconstruction steps from [1,2] (to which we refer for technical details) needed for proving the claim of the previous section.



4.1. Logical Connectives for Building Informationally Complete Sets


The first task is to build informationally complete sets [image: there is no content] [1]. The conjunction of Rules 1 and 2 implies that [image: there is no content] for a single elementary system must be a maximal mutually complementary set with [image: there is no content]. We changed notation slightly compared to rules 1 and 2, labeling complementary questions by numbers, not primes. Of course, in quantum theory, [image: there is no content]; the more involved [image: there is no content] case will entail this. The structure (3) of a composite system implies that [image: there is no content] should contain individual questions about its subsystems. Continuing with a slight change of notation, we denote [image: there is no content] for System 1 by [image: there is no content] and for System 2 with a prime by [image: there is no content]. Apart from these individual questions, [image: there is no content] should contain composite questions [image: there is no content] for some connective *. Pairwise independence of [image: there is no content] enforces that * must satisfy the following truth table, where ‘yes’ [image: there is no content] and ‘no’ [image: there is no content] ([image: there is no content] are compatible) [1]:


[image: there is no content]



(5)




Hence, * is either the XNOR ↔ (for [image: there is no content], [image: there is no content]) or its negation, the XOR ⊕ (for [image: there is no content], [image: there is no content]). Up to an overall negation ¬, the two connectives are logically equivalent, and so, we henceforth make the convention to only build up composite questions (for informationally complete sets) using the XNOR. The composite question [image: there is no content] is a ‘correlation question’, representing “are the answers to [image: there is no content] the same?.” Ultimately, in quantum theory, ↔ will turn out to correspond to the tensor product ⊗ in [image: there is no content] where [image: there is no content] is a Pauli matrix; [image: there is no content] will then correspond to “are the spins of Qubit 1 in the i- and of Qubit 2 in the j-direction correlated?.”




4.2. Question Graphs, Independence and Compatibility for [image: there is no content] and Entanglement


It is convenient to represent questions graphically: individual questions are represented as vertices and bipartite correlation questions as edges between them. For instance, we may have: [image: Entropy 19 00098 i001] Since O is only allowed to connect compatible questions logically, there can be no edge between individual questions of the same system.



Using only Rules 1 and 2 and logical arguments, the following result is proven in [1]:

Lemma 1.

[image: there is no content] are pairwise independent for all [image: there is no content] and will thus be part of an informationally complete set [image: there is no content]. Furthermore:

	(i) 

	
[image: there is no content] is compatible with [image: there is no content], ∀j=1,…,D1 and complementary to [image: there is no content], ∀k≠i and ∀j=1,…,D1. That is, graphically, an individual question [image: there is no content] is compatible with a correlation question [image: there is no content] if and only if its corresponding vertex is a vertex of the edge corresponding to [image: there is no content]. By symmetry, the analogous result holds for [image: there is no content].




	(ii) 

	
[image: there is no content] and [image: there is no content] are compatible if and only if [image: there is no content] and [image: there is no content]. That is, graphically, [image: there is no content] and [image: there is no content] are compatible if their corresponding edges do not intersect in a vertex and complementary if they intersect in one vertex.













For example, [image: there is no content] in the third question graph above is compatible with [image: there is no content] and complementary to [image: there is no content], while [image: there is no content] and [image: there is no content] are compatible and [image: there is no content] and [image: there is no content] are complementary.



This lemma has a striking consequence: it implies entanglement. Indeed, since, e.g., [image: there is no content] and [image: there is no content] are independent and compatible, O may spend his maximally accessible amount of [image: there is no content]independent bits of information (Rule 1) over correlation questions only. Since non-intersecting edges do not share a common vertex, the lemma implies that no individual question is simultaneously compatible with two correlation questions that are compatible. Hence, when knowing the answers to [image: there is no content], O will be entirely ignorant about the individual questions; O has then maximal information about [image: there is no content], but purely composite information. This is entanglement in the very sense of Schrödinger (“...the best possible knowledge of a whole does not necessarily include the best possible knowledge of all its parts...” [14]). For example, in quantum theory, a state with [image: there is no content] ‘yes’ will coincide with a Bell state having the spins of Qubits 1 and 2 correlated in x- and y-direction (and anti-correlated in z-direction). Of course, there is nothing special about [image: there is no content], and the argument works similarly for other composite question pairs and can be extended also to states with non-maximal entanglement (see [1] for details).



For systems with limited information content, entanglement is therefore a direct consequence of complementarity; without it there would be no independent and compatible composite questions sufficient to saturate the information limit [1]. For instance, two classical bits satisfy Rule 1, as well, but admit no complementarity so that [image: there is no content] and the maximum amount of [image: there is no content]independent bits cannot be spent on composite questions only. [image: Entropy 19 00098 i002]



We also note that Rules 1 and 2 offer a simple, intuitive explanation for monogamy of entanglement. Consider, for a moment, [image: there is no content] elementary systems [image: there is no content], and suppose [image: there is no content] and [image: there is no content] are maximally entangled (say, because O received the answer [image: there is no content] ‘yes’ from [image: there is no content]). Noting that [image: there is no content] is a composite bipartite system inside the tripartite [image: there is no content], O has then already spent his maximal amount of information of [image: there is no content] independent bits, which he may know about [image: there is no content] and can therefore not know anything else that is independent, including non-trivial correlations with [image: there is no content], about the pair. To saturate the [image: there is no content]independent bit limit for the tripartite system [image: there is no content], he may then only inquire about individual information about [image: there is no content]. This is monogamy in its extreme form: the maximally entangled pair [image: there is no content] cannot be entangled with any other system [image: there is no content]. This heuristic argument can be made rigorous in terms of the compatibility and independence structure of questions for [image: there is no content] and can be extended to the non-extremal case using informational monogamy inequalities [1].




4.3. A Logical Explanation for the Three-Dimensionality of the Bloch Ball


A key result of the reconstruction, proven in [1] is the following. Since its proof is instructive and representative for this approach, we shall rephrase it here.



Theorem 1.

[image: there is no content] or 3.





Proof. 

Consider the [image: there is no content] case. Lemma 1 implies that any maximal set of pairwise compatible correlation questions has [image: there is no content] elements. Indeed, there are maximally [image: there is no content] non-intersecting edges between the [image: there is no content] vertices of System 1 and the [image: there is no content] vertices of System 2; e.g., the [image: there is no content] ‘diagonal’ [image: there is no content]: [image: Entropy 19 00098 i003] are pairwise independent and compatible. The constraints on the posterior state update rule in Section 2.4 entail that they are also mutually compatible (Specker’s principle) [1] such that O may simultaneously know the answers to all [image: there is no content][image: there is no content]. Since O may not know more than [image: there is no content] independent bits (Rule 1), the [image: there is no content][image: there is no content] cannot be mutually independent if [image: there is no content]. Thus, assuming the [image: there is no content] are of equivalent status, the answers to any pair of them, say [image: there is no content], must imply the answers to all others, say [image: there is no content], [image: there is no content]. Hence, [image: there is no content], [image: there is no content], for a connective * that preserves pairwise independence of [image: there is no content]. Reasoning as in (5) implies that either:


Qjj=Q11↔Q22,orQjj=¬(Q11↔Q22),j=3,…,D1



(6)




so that for [image: there is no content][image: there is no content], [image: there is no content] could not be pairwise independent. Arguing identically for all other sets of [image: there is no content] pairwise independent and compatible [image: there is no content], we conclude that [image: there is no content]. ☐





This theorem has several crucial repercussions. We may already suggestively call [image: there is no content] and [image: there is no content] the ‘rebit’ (two-level systems over real Hilbert spaces) and ‘qubit’ case, respectively. Reasoning as in (6) shows that the [image: there is no content] are logically closed under ↔; as demonstrated in [1]:



Theorem 2.

If [image: there is no content], then [image: there is no content] is logically closed under ↔ and, thus, constitutes an informationally complete set for [image: there is no content] with [image: there is no content].



If [image: there is no content], then [image: there is no content] is logically closed under ↔ and, thus, constitutes an informationally complete set for [image: there is no content] with [image: there is no content]. Furthermore, [image: there is no content] is complementary to the individual questions [image: there is no content], [image: there is no content].





Indeed, [image: there is no content] are the correct numbers of degrees of freedom for [image: there is no content] rebits and qubits, respectively. However, since the composite question [image: there is no content] is complementary to all individual questions in the rebit case (this is not true in the qubit case!), it is impossible for O to do ensemble state tomography by asking only individual questions [image: there is no content], thereby violating Rule 6. We are left with the qubit case and shall henceforth ignore rebits (for rebits see [1]).




4.4. Ruling out Local Hidden Variables and the Correlation Structure for [image: there is no content]


Using (6) and repeating the argument leading to it for ‘non-diagonal’ [image: there is no content] show that either:


Q11↔Q22=Q12↔Q21,orQ11↔Q22=¬(Q12↔Q21).



(7)




The first case (without relative negation) is the case of classical logic and compatible with local hidden variables for the individual questions [image: there is no content]. Namely, note that [image: there is no content] can be rewritten in terms of the individuals as:


[image: there is no content]



(8)




Suppose for a moment that [image: there is no content] had simultaneous definite values (although not accessible to O). It is easy to convince oneself that any distribution of simultaneous truth values over the [image: there is no content] satisfies (8) [1]. In fact, (8) is a classical logical identity and can be argued to follow from classical rules of inference [1]. However, it involves complementary individual questions, thereby violating our premise from Section 2.7 that O may apply classical rules of inference exclusively to mutually compatible questions. This classical case is thus ruled out.



One can check that the second case, [image: there is no content], does not admit a local hidden variable interpretation, but is consistent with the structure of the theory landscape and rules [1]. Since one of the two cases (7) must be true, we conclude that this second case holds. In fact, for any complementary pairs [image: there is no content] and [image: there is no content] such that both Q and [image: there is no content] are compatible with both [image: there is no content], one finds similarly [1]:


[image: there is no content]



(9)




This precludes to reason classically about the distribution of truth values over O’s questions.



Equation (9) permits us to unravel the complete correlation structure for [image: there is no content]. In fact, it turns out that there are two distinct representations of this correlation structure: one corresponding to quantum theory in its standard representation, the other to its ‘mirror’ representation, related by a passive (not a physical) transformation, reassigning [image: there is no content] (in quantum theory tantamount to a partial transpose on qubit 1) [1]. The two distinct representations turn out to be physically equivalent, and so, a convention has to be made. Choosing the ‘standard’ case and using (9), one finds that the compatibility and correlation structure of [image: there is no content] can be represented graphically as in Figure 1. For [image: there is no content] compatible, we shall henceforth distinguish between:



	even correlation:
	if [image: there is no content] and



	odd correlation:
	if [image: there is no content].







Figure 1. The compatibility and correlation structure of the informationally complete set [image: there is no content] for the [image: there is no content] qubit case. Two questions are compatible if connected by a triangle edge and complementary otherwise. Red and green triangles denote odd and even correlation, respectively; e.g., [image: there is no content]. (Taken from [1].)



[image: Entropy 19 00098 g001]






One can easily check that quantum theory satisfies this correlation structure for projective spin measurements if one replaces [image: there is no content] by [image: there is no content]. For instance, [image: there is no content] ‘yes’ implies, by Figure 1, the dependent [image: there is no content] ‘no’. In quantum theory, this corresponds to the (unnormalized) Bell state with spin correlation in the x- and y-direction and anti-correlated spins in the z-direction:


[image: there is no content]












4.5. Compatibility, Independence and Informational Completeness for Arbitrary N


Consider N elementary systems in the ‘qubit’ ([image: there is no content]) case and the XNOR conjunction:


[image: there is no content]



(10)




of individual questions, where [image: there is no content] and [image: there is no content] ‘yes’. The conjunction yields ‘yes’ and ‘no’ if an even and odd number of [image: there is no content] ‘no’, respectively, and thus, does not represent “are the answers to all [image: there is no content] the same?.” As shown in [1], these conjunctions are informationally complete:



Theorem 3.

(Qubits) The [image: there is no content] questions [image: there is no content], [image: there is no content] (we deduct the trivial question [image: there is no content]), are pairwise independent and logically closed under ↔ and, thus, form an informationally complete set [image: there is no content] with [image: there is no content]. Moreover, [image: there is no content] and [image: there is no content] are compatible if they differ by an even number (including zero) of non-zero indices and complementary otherwise.





We note that an N-qubit density matrix has precisely [image: there is no content] degrees of freedom.




4.6. Linear, Reversible Time Evolution and a Quadratic Information Measure


Thus far, the summarized results invoked only Rules 1 and 2 (and in one instance, Rule 6). Rules 3 and 4, on the other hand, can be demonstrated to entail a linear and reversible evolution of the generalized Bloch vector R4N−1∋r→=2y→−1→ that already appeared in (4),


r→(Δt+t0)=T(Δt)r→(t0),



(11)




where [image: there is no content] defines a one-parameter matrix group [1]. Suppose [image: there is no content] correspond to two distinct interactions to which O may subject [image: there is no content]. By Rule 4, [image: there is no content] must likewise be contained in [image: there is no content], and since both [image: there is no content] are invertible, also the entire set [image: there is no content] must be a group. We shall henceforth often represent states with Bloch vectors [image: there is no content].



Rules 3 and 4, together with elementary operational conditions on the information measure, enforce it to be quadratic α(yi)=(2yi−1)2 so that O’s total information (1):


IN(y→)=∑i=14N−1(2yi−1)2=|r→|2



(12)




is simply the square norm of the Bloch vector [1]. Interestingly, this derivation would not work without the continuity of time evolution (Rule 4). Crucially, (12) is not the Shannon entropy (see [1] for a discussion about why the Shannon entropy is also conceptually not suitable for quantifying O’s information). This reconstruction thereby corroborates an earlier proposal for a quadratic information measure for quantum theory by Brukner and Zeilinger [13,15,16].



This quadratic information measure becomes key for the remaining steps of the reconstruction. Given that (12) is a ‘conserved charge’ of time evolution (rule 3), we can already infer that [image: there is no content] (4N −1) because time evolution must be connected to the identity.




4.7. Pure and Mixed States


Suppose O knows [image: there is no content]’s answers to N mutually compatible questions from [image: there is no content], thereby saturating the information limit of N independent bits (Rule 1). He will then also know the answers to each of their bipartite, tripartite, ..., and N-partite XNOR conjunctions which, by Theorem 3, are also in [image: there is no content] (and compatible). In total, he then knows the answers to:


N1+N2+⋯NN=∑i=1NNi=2N−1








questions from [image: there is no content]. Thus, O’s total information (12) is [image: there is no content]bits in this case. It contains dependent bits of information because the questions in [image: there is no content] are pairwise, but not all mutually independent. Thanks to Rule 3, this is invariant under time evolution.



This allows us to distinguish two kinds of states [1]; [image: there is no content] is called a:

	pure state:

	
if it is a state of maximal information and, hence, of maximal length:


IN(y→)=∑i=14N−1(2yi−1)2=(2N−1)bits,



(13)








	mixed state:

	
if it is a state of non-maximal information,


0bit≤IN(y→)=∑i=14N−1(2yi−1)2<(2N−1)bits.



(14)










The square length of the Bloch vector thus corresponds to the number of answered questions. The state of no information y→=121→ has length zero bits.



As can be easily checked, quantum theory satisfies this characterization. In particular, an N-qubit density matrix, corresponding to a pure state, has a Bloch vector with square norm equal to [image: there is no content]. This peculiar mathematical fact now has a clear informational interpretation.




4.8. The Bloch Ball and Unitary Group for a Single Qubit from a Conserved Informational Charge


Since [image: there is no content] (cf. Section 4.3), we have that [image: there is no content] is a maximal set of mutually complementary questions, i.e., no further [image: there is no content] can be added to [image: there is no content] without destroying mutual complementarity in the set (cf. Section 4.1). According to (13), a pure state satisfies:


IN=1(y→)=r12+r22+r32=(2y1−1)2+(2y2−1)2+(2y3−1)2=1bit.



(15)




For later, we thus observe: for pure states, the maximal mutually complementary set carries exactly 1 bit of information, and this is a conserved charge of time evolution (Rule 3).



Rule 1 implies that, e.g., the pure state [image: there is no content] exists in [image: there is no content], and we know [image: there is no content]. However, it is clear that applying any [image: there is no content] to [image: there is no content], according to (11), yields only states that are also compatible with all Rules 1–3 (and the landscape). Hence, by Rule 4, we must actually have [image: there is no content]. Clearly, [image: there is no content] then generates all quantum pure states from [image: there is no content], i.e., it yields the entire Bloch sphere (the image of any legal state under a legal time evolution is also a legal state). Recalling that [image: there is no content] is convex, we obtain that Σ1=B3≃convexhullofCP1 is the entire unit Bloch ball with mixed states (14) lying inside; the completely mixed state equals the state of no information at the center. [image: there is no content] coincide exactly with the set of density matrices [image: there is no content] and the set of unitary transformations ρ↦UρU†, [image: there is no content], respectively, for a single qubit in its adjoint (i.e., Bloch vector) representation, where [image: there is no content] is the vector of Pauli matrices. Finally, from the assumptions in Section 2.8 and Rule 5, it is also clear that Q1={q→∈R3||q→|2=1bit}≃CP1. This coincides with the set of projectors [image: there is no content] onto the [image: there is no content] eigenspaces of the Pauli operators [image: there is no content]. Noting that:


Tr(ρPq→)=12(1+r→·q→)≡Y(Q|y→)



(16)




we also recover that (4) yields the Born rule for projective measurements. We thus have the claim of Section 3 for [image: there is no content] (for details see [1,2]).




4.9. Unitary Group and Density Matrices for Two Qubits from Conserved Informational Charges


Also for [image: there is no content], it is rewarding to consider maximal mutually complementary sets within [image: there is no content]. Using Lemma 1, one can check that there are exactly six maximal complementarity sets containing five questions and twenty containing three [2]; e.g., two graphical representatives are: [image: Entropy 19 00098 i004] The six maximal complementarity sets of five elements can be represented as a lattice of pentagons; see Figure 2 (which also contains four green triangles, each representing one of the twenty maximal complementarity sets of three questions) [2].


Figure 2. The six maximal complementarity sets represented as pentagons. Two questions are complementary if they share a pentagon or are connected by an edge and compatible otherwise. Every pentagon is connected to all of the other five because any [image: there is no content] is contained in precisely two pentagons. The red arrows represent the information swap (21) between Pentagons 1 and 2 that preserves all pentagon equalities (18) and defines the time evolution generator (22). (Figure adapted from [2]. Reprinted with permission from [P. Höhn and C. Wever, Phys. Rev. A95, 012102 2017.] Copyright (2017) by the American Physical Society.)



[image: Entropy 19 00098 g002]






Each of these sets has to satisfy the complementarity inequalities (2); specifically 0bits≤I(Penta):=∑i∈Pentari2≤1bit for the information carried by the five questions in pentagon a. Since any [image: there is no content] is contained in precisely two pentagons (cf. Figure 2), we find:


∑a=16I(Penta)=2∑i=1,2,3(ri12+ri22)+∑i,j=1,2,3rij2=2IN=2(r→).



(17)




Noting that for pure states [image: there is no content]bits thus produces the pentagon equalities [2]:


purestates:I(Penta)≡1bit,a=1,…,6.



(18)




Any pure state must satisfy (18), and [image: there is no content] evolves pure states to pure states (Rule 3). Hence, in analogy to [image: there is no content]: for pure states, these six maximal mutually complementary sets carry exactly one bit of information, and these are six conserved charges of time evolution. There are further interesting constraints on the distribution of O’s information over [image: there is no content] [2].



It can be straightforwardly checked that quantum theory actually satisfies (18). Indeed, in the case of quantum theory, the identity for [image: there is no content] reads in more familiar language (pure states):


[image: there is no content]








etc. Remarkably, these identities of quantum theory seem not to have been reported before in the literature. These novel conserved informational charges are a prediction of our reconstruction, underscoring the benefits of taking this informational approach. Additionally, these informational charges are indispensable for deriving the unitary group and the state space, as we shall now see.



Using that [image: there is no content] is conserved under [image: there is no content] entails (with new index [image: there is no content]):


∑i∈Penta,1≤j≤15riGijrj=0,a=1,…6,



(19)




where [image: there is no content] for [image: there is no content] [2]. The correlation structure of Figure 1 enforces [2]:


Gij=0,wheneverQi,Qjarecompatible.



(20)




Each of the 15 [image: there is no content] is complementary to eight others, and since [image: there is no content], there could be maximally 60 linearly independent [image: there is no content] of [image: there is no content].



These are constructed as follows. For every pair of pentagons, there is a unique information swap transformation that preserves (18). For instance, the red arrows in Figure 2 represent the complete information swap between pentagons [image: there is no content] and [image: there is no content] (⟷ is not the XNOR):


r22⟷r312(Pent5),r32⟷r212(Pent3),r122⟷r3′2(Pent4),r132⟷r2′2(Pent6)



(21)




that keeps all other components fixed. (18) are preserved because every swap in (21) occurs within a pentagon. The correlation structure of Figure 1 fixes the corresponding generator to [2]:


[image: there is no content]



(22)




One can repeat the argument for all 15 pentagon pairs, producing 15 linearly independent generators [2]. Remarkably, they turn out to coincide exactly with the adjoint representation of the 15 fundamental generators of [image: there is no content] [2]. In particular, (22) is the generator of entangling unitaries leaving [image: there is no content] invariant. The other 45 independent generators satisfying (20) are ruled out by the correlation structure so that [image: there is no content] cannot be generated by anything else than these 15 pentagon swaps [2]. One can show that the exponentiation of (linear combinations of) these 15 pentagon swaps generates [image: there is no content] and that this group abides by all rules and forms a maximal subgroup of [image: there is no content] [2]. Rule 4 then implies [image: there is no content], which is the correct set of unitary transformations ρ↦UρU†, [image: there is no content], for two qubits.



It turns out that the set of Bloch vectors satisfying all six pentagon equalities (18) and the conservation equations (19) for the 15 pentagon swaps splits into two sets on each of which [image: there is no content] acts transitively [2]. These two sets correspond precisely to the two possible conventions of building up composite questions either using the XNOR or XOR (cf. Section 4.1) and are therefore physically equivalent. Adhering to the XNOR convention, we conclude that the surviving set of Bloch vectors solving (18) and (19) is the set of [image: there is no content] states admitted by the rules. Indeed, it coincides exactly with the set of quantum pure states, which forms a [image: there is no content] of which [image: there is no content] is the isometry group [2]. Employing convexity of [image: there is no content], one finally finds:


Σ2=closedconvexhullofCP3,








which is exactly the set of normalized [image: there is no content] density matrices over [image: there is no content].



Concluding, the new conserved informational charges (18), in analogy to (15) for [image: there is no content], define both the unitary group and the set of states for two qubits (for neglected details, see [2]).




4.10. Unitaries and States for [image: there is no content] Elementary Systems


According to Theorem 3, [image: there is no content] is (4N −1)-dimensional and [image: there is no content] (4N −1) (cf. Section 4.6). The reconstruction of the unitary group uses a universality result from quantum computation: two-qubit unitaries [image: there is no content] (between any pair) and single-qubit unitaries [image: there is no content] generate the full projective unitary group [image: there is no content] (2N) for N qubits [17,18]. Given that [image: there is no content] is a composite system, all of these bipartite and local unitaries must be in [image: there is no content]. One can check that [image: there is no content] (2N) again abides by all rules and constitutes a maximal subgroup of [image: there is no content] (4N − 1) [2]. Thanks to Rule 4, this yields [image: there is no content] (2N), which coincides with the set of unitary transformations on N-qubit density matrices. In analogy to the previous case, one obtains as the state space:


ΣN=closedconvexhullofCP2N−1,








which agrees with the set of normalized N-qubit density matrices (for details, see [2]).




4.11. Questions as Projective Measurements and the Born Rule


The assumptions in Section 2.8 and Rule 5 yield the following question set characterization [2]:


QN≃{q→∈R4N−1|Y(q→|r→)∈[0,1]∀r→∈ΣNandq→isa1bitquantumstate}.



(23)




As shown in [2], this set is isomorphic to the set of projectors [image: there is no content] onto the [image: there is no content] eigenspaces of the Pauli operators q→·σ→=∑μ1⋯μNqμ1⋯μNσμ1⋯μN, where [image: there is no content] and [image: there is no content]. Noting that [image: there is no content] corresponds to (10) reveals that the XNOR at the question level corresponds to the tensor product ⊗ at the operator level. One also finds that (16) again holds, such that (4) yields the Born rule for projective measurements for arbitrary N (for the neglected details and many further interesting properties of [image: there is no content], we refer to [2]).




4.12. The von Neumann Evolution Equation


We thus obtain qubit quantum theory in its adjoint (i.e., Bloch vector) representation. Lastly, we note that r→(t)=T(t)r→(0) with T(t)=etG∈PSU (2N) is equivalent to the adjoint action:


ρ(t)=U(t)ρ(0)U†(t),



(24)




of U(t)=e−iHt∈SU(2N) for some Hermitian operator H on [image: there is no content], where [image: there is no content] [2]. (24), in turn, is equivalent to [image: there is no content] solving the von Neumann evolution equation:


i∂ρ∂t=[H,ρ].



(25)




We have therefore also recovered the correct time evolution equation for quantum states.





5. Conclusions


We have reviewed and summarized the key steps from [1,2] necessary to prove the claim of Section 3. This yields a reconstruction of the explicit formalism of qubit quantum theory from rules constraining an observer’s acquisition of information about a system [1,2]. The derivation corroborates the consistency of interpreting the state as the observer’s ‘catalog of knowledge’ and shows that it is sufficient to speak only about the information accessible to him for reproducing quantum theory. In fact, for qubits, this derivation accomplishes an informational reconstruction of the type proposed in Rovelli’s relational quantum mechanics [11] and in the Brukner-Zeilinger informational interpretation of quantum theory [12,13].



As a key benefit, this reconstruction also provides a novel informational explanation for the architecture of qubit quantum theory. In particular, it explains the logical structure of a basis of spin measurements, the dimensionality and structure of quantum state spaces, the correlation structure and the unitarity of time evolution from the perspective of information acquisition. This unravels previously unknown structural properties: conserved ‘informational charges’ from complementarity relations define and explain the unitary group and the set of pure states.
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