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Abstract: Recently p-adic (and, more generally, ultrametric) spaces representing tree-like networks of
percolation, and as a special case of capillary patterns in porous media, started to be used to model
the propagation of fluids (e.g., oil, water, oil-in-water, and water-in-oil emulsion). The aim of this
note is to derive p-adic dynamics described by fractional differential operators (Vladimirov operators)
starting with discrete dynamics based on hierarchically-structured interactions between the fluids’
volumes concentrated at different levels of the percolation tree and coming to the multiscale universal
topology of the percolating nets. Similar systems of discrete hierarchic equations were widely applied
to modeling of turbulence. However, in the present work this similarity is only formal since, in our
model, the trees are real physical patterns with a tree-like topology of capillaries (or fractures) in
random porous media (not cascade trees, as in the case of turbulence, which we will be discussed
elsewhere for the spinner flowmeter commonly used in the petroleum industry). By going to the
“continuous limit” (with respect to the p-adic topology) we represent the dynamics on the tree-like
configuration space as an evolutionary nonlinear p-adic fractional (pseudo-) differential equation,
the tree-like analog of the Navier–Stokes equation. We hope that our work helps to come closer to
a nonlinear equation solution, taking into account the scaling, hierarchies, and formal derivations,
imprinted from the similar properties of the real physical world. Once this coupling is resolved, the
more problematic question of information scaling in industrial applications will be achieved.

Keywords: capillary network in porous media; fluid flow; tree-like structure; utrametric space; p-adic
numbers; p-adic pseudo-differential operators; discrete dynamics with tree-like hierarchy; continuous
limit; the tree-like analog of Navier–Stokes equation

1. Introduction

Nowadays, one of the main problems in the oil industry is related with hydrocarbon reservoir
heterogeneity, variability, and anisotropy. All of these properties are very complicated from the point of
view of measuring, mathematical modeling, and computer simulation [1]. From the wild variability
of the data (especially the petrophysical ones) obtained for one rock sample produces unavoidable failure of the
extrapolation of results to another seemingly similar one. This problem of not only dramatically poor
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extrapolability of costly data banks, but also of results averaging, becomes especially dangerous
during the scaling of reservoir properties, especially of the “poroperm” (the relation between the rock
porosity and permeability). In the present research, we are looking for the simplified mathematical
assumptions to model the rock multiscale geometry with minimum uncertainty. One of the most
successful mathematical models is based on exploring the fractal concepts of similarity and scale
invariance, applied to establish the main power law among the pores’ geometrical descriptors, such as
the density of the fractures, or other types of pores, per rock volume unit (see, e.g., Oleschko et al. [2,3]).
The tree-like geometry of percolation networks was always of special interest of Mandelbrot, the father
of fractal geometry. In the set of our previous publications [4–6] we have discussed the advantages of
using the scaling, as well as hierarchical representations of several complex systems. Some simplified
models of oil, oil-in-water, and water-in-oil emulsion propagation in capillary networks in random
porous media based on their physically real tree-like geometry were proposed [4–6].

Mathematically, such tree-like fractals are represented as ultrametric spaces and there exist well
developed theories of fractional (pseudo-)differential equations on such spaces [7–15], which were
applied in [4–6] to represent the dynamics of fluids in these tree-like capillary networks. The class of
homogeneous trees with the constant number of vertices, p > 1, leaving each vertex, the so called p-adic
trees, is especially useful for theoretical modeling as representing a mathematically simple model
which, at the same time, represents the basic features of fluids’ propagation through capillary/fractures
networks. Notwithstanding, our recent experience has shown that the tree-like geometry is also common for
the preferential flow of fluids through fracture patterns on the macroscopic scale (Figure 1).
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best example came from images obtained by the Voyager spacecraft during the Galileo mission from 
1995 to 2003 revealing that the surface of Europa, one of the moons of Jupiter, is crossed by 
numerous tree-like intersecting ridges and dark bands (called lineae). These features seem to be very 
similar, at least in appearance, to the Earth fracture system (Figure 2, courtesy of Dr. P. Geissler). 
Note, these patterns across Europa´s surface assuggested by numerous scientists [16], indicate that 
the thin outer ice shell might be separated from the moon’s silicate interior by a liquid water layer, 

Figure 1. At the top of the oil productive layer (the black rectangle), the flow connectivity/tortuosity
can be measured and visualized by the Brownian motion model. The clear tree-like oil flow pattern is
observed on the well scale.

The very similar tree-like geometrical/topological patterns are observed on the mega-scale.
The best example came from images obtained by the Voyager spacecraft during the Galileo mission
from 1995 to 2003 revealing that the surface of Europa, one of the moons of Jupiter, is crossed by
numerous tree-like intersecting ridges and dark bands (called lineae). These features seem to be very
similar, at least in appearance, to the Earth fracture system (Figure 2, courtesy of Dr. P. Geissler). Note,
these patterns across Europa´s surface assuggested by numerous scientists [16], indicate that the thin
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outer ice shell might be separated from the moon’s silicate interior by a liquid water layer, delayed or
prevented from freezing by tidal heating. They were related by Selvans [17]. with the plate tectonics
on ice. By our opinion, and after the recent discovery of geysers on Europa, the water flow network
can be related with the tree-like geometry of the surface roughness, observed in Figure 2.
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Figure 2. The tree-like features on the surface of Europa could be explained by repetitive tidal deformation
of the outer ice shell (see [18] for detailed study of this problem). Studies have suggested that the
detailed morphology of the terrain strongly supports the presence of liquid water at shallow depths
below the surface, either today or at some time in the past. Nowadays, after the Hubble Space Telescope
had spotted geysers of water vapor shooting from Europa’s surface [19,20], most likely originating
from a liquid water ocean thought to exist under the moon’s icy surface (see “Hubble spots water
spurting from Europa”), the mentioned similarity seems more likely than pure scientific intuition.

We point out that, although the ultrametric pseudo-differential equations studied in [4–6] describe
some distinguishing features of propagation of fluids in capillary networks, they did not explicitly
reflect coupling with the physical parameters of such networks. Roughly speaking, they were designed
on the basis of abstract reasoning about the natural mathematical form of fluid dynamics on the
tree-like configuration space. In this paper we start with dynamical equations matching the tree-like
structure to the real physical complex, scaling, and hierarchical systems. The “spatial part” of these
equations is given by discrete difference operators (in general nonlinear) representing the hierarchy of
interactions at the different levels of a tree. Citing Mandelbrot’s pioneering work, we try to document
that the “randomness is controlled by the geometry of the space” [21]. We can only add “is controlled by the
multiscale geometry of the space and time”.

Similar equations have been used in modeling the hierarchic structure of turbulence flows
(see, e.g., [22–28]). However, for a moment we can speak only about the mathematical similarity
because, in our geo-physical model, the hierarchic structure is given by the geometry of the physical
structure, the hierarchic tree-like network of capillaries or fractures (and not by the structure of
the process, as in the case of turbulence). The discrete (hierarchic difference operator) structure
of the dynamical equations leads to straightforward identification of the physical parameters in
their coefficients.

Starting with hierarchic difference equations on capillary trees, we proceed to their “space-continuous”
image, where continuity is with respect to the ultrametric topology on a tree. In such an ultrametric
continuous limit we obtain the evolutionary equation of which “spatial part” is given by nonlinear
p-adic fractional differential operators. This equation can be treated as the p-adic analog of the
Navier–Stokes equation. In this paper we consider only the simplest binary trees, 2-adic numbers.
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The reason is very simple: in the very common example of porous media with alternative volumetric
expansion and contraction, each fracture is going away from the point of departure in two directions
(Figure 3).Entropy 2017, 19, 161  4 of 14 
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Figure 3. The example of fractures geometry/topology observed with electronic microscope (SEM).
This pore set formation was documented during the drying of an amorphous clay sample—deposits of
Texcoco Lake, Mexico (see [29] for detailed analysis of this collection of samples).

In the case of cracking soil, with high shrink-swell activity associated with the fracture formation
(for instance, Vertisol), the fracture density is related by the power law with the number of points of
tree-like pore space ramification (Figure 4).

The general p-adic case, p > 1, can be treated similarly. However, it would be essentially more
complicated, technically.

On one hand, our derivation justifies the use of the p-adic (ultrametric) pseudo-differential equations
to model fluid flows in capillary networks in porous media, cf. [4–6]. On the other hand, by proceeding
from the discrete tree-like dynamics, for which the physical meaning of dynamics’ parameters are well
defined, to “continuous” pseudo-differential equations, we also clarify the physical meaning of their
parameters. As a purely mathematical consequence of our modeling, we can count stimulation of the
interest to development of a general theory of nonlinear ultrametric dynamics.

The paper is structured as follows. Section 2 is devoted to the brief presentation of the basics
about trees and ultrametric spaces. Section 3 is devoted to the derivation of discrete tree-like
dynamical equations describing fluid flows in capillary networks in porous media. In Section 4
we present essentials of the theory of p-adic numbers (encoding branches of homogeneous trees) and
the corresponding theory of the Fourier transform and pseudo-differential operators (this presentation
is really very brief and the reader can find details, e.g., in our paper [4]). Finally, in Section 5 we
transform the system of discrete tree-like dynamical equations into p-adic (for the simplest case p = 2)
nonlinear pseudo-differential equations which can be treated as the tree-set analog of the Euclidean
space-based system of the Navier–Stokes equations.

Concluding this introductory section we remark that novel applications of ultrametric methods
are not restricted to our recent studies in geophysics [4–6]. We can also point to a series of studies
performed in [30–33].
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2. Tree-Like Models for Capillary Networks in Porous Media

The capillary networks present in rocks have very complex structure (see, e.g., Figures 4–6).
Mathematically, they can be represented as graphs of very large variety. In mathematical models,
it is very convenient to use approximations preserving some distinguished features of complex
spatial objects related to NRFs. The tree-like approximation of the graphs of capillary networks in
porous media combines (relative) simplicity with encoding of the basic fractal features of such networks.
This motivates consideration of the tree-like models, instead of general graphs (although, in real applications,
we should proceed with more complex networks which are not reduced to the tree-like objects).

Entropy 2017, 19, 161  5 of 14 

 

2. Tree-Like Models for Capillary Networks in Porous Media 

The capillary networks present in rocks have very complex structure (see, e.g., Figures 4–6). 
Mathematically, they can be represented as graphs of very large variety. In mathematical models, it 
is very convenient to use approximations preserving some distinguished features of complex spatial 
objects related to NRFs. The tree-like approximation of the graphs of capillary networks in porous 
media combines (relative) simplicity with encoding of the basic fractal features of such networks. This 
motivates consideration of the tree-like models, instead of general graphs (although, in real applications, 
we should proceed with more complex networks which are not reduced to the tree-like objects). 

 
Figure 4. Original image (courtesy of Dr. G. Ronquillo). 

 
Figure 5. Combined matrix (in blue) and fracture (in red) network.  

Figure 4. Original image (courtesy of Dr. G. Ronquillo).

Entropy 2017, 19, 161  5 of 14 

 

2. Tree-Like Models for Capillary Networks in Porous Media 

The capillary networks present in rocks have very complex structure (see, e.g., Figures 4–6). 
Mathematically, they can be represented as graphs of very large variety. In mathematical models, it 
is very convenient to use approximations preserving some distinguished features of complex spatial 
objects related to NRFs. The tree-like approximation of the graphs of capillary networks in porous 
media combines (relative) simplicity with encoding of the basic fractal features of such networks. This 
motivates consideration of the tree-like models, instead of general graphs (although, in real applications, 
we should proceed with more complex networks which are not reduced to the tree-like objects). 

 
Figure 4. Original image (courtesy of Dr. G. Ronquillo). 

 
Figure 5. Combined matrix (in blue) and fracture (in red) network.  Figure 5. Combined matrix (in blue) and fracture (in red) network.



Entropy 2017, 19, 161 6 of 14
Entropy 2017, 19, 161  6 of 14 

 

 
Figure 6. Micropores are shown in blue. 

The detailed presentation of the tree-like modeling in geology can be found in paper [4], with 
motivations, images from oil industry research, and the corresponding mathematical formalism. 
Now, we just briefly recall the basics which will be used in the theoretical modeling of fluid flow in 
capillary networks in Sections 3 and 5. 

We start by recalling that a tree is an undirected graph in which any two vertices are connected 
by exactly one path. We shall work with rooted trees. Such a tree has the special vertex (denoted by the 
symbol R) which is selected as the root. This is similar to selection of one point in the Euclidean space 
as the center of the coordinate system. On a rooted tree it is possible to introduce orientations. Each 
edge can be assigned a direction, either away from or towards R. Such graphs play the important role 
in graph theory and they are known as directed rooted trees.  

Let T be a rooted tree. Let us consider the following (partial) order structure on the set of its 
vertices. By this order structure, for two vertices, x and y, we set x ≤ y if and only if the path from R to 
x passes through y. This order structure determines the hierarchic structure on the tree. Consider an 
arbitrary tree (finite or infinite) T, such that the path in the tree between arbitrary two vertices is 
finite, and the number of edges incident to each of the vertices is finite. If a vertex I is incident to 
mI + 1 edges, it has the branching index mI. To each such a tree we shall associate an ultrametric 
space, so called absolute of the tree. This space is defined in the following way. 

The infinitely-continued path starting in the vertex I is a path with the beginning in I, which 
is not contained in a larger path with the beginning in I. 

Let us now fix some vertex R of a tree: its “root”. 
The space of infinitely-continued paths in the tree, which begin in the root R is called the 

absolute of the tree. 
This definition does not depend on the choice of the root R. Now we define the metric 

on the absolute X = X(T) of the tree T. Each x ∈ X can be represented as a sequence of vertices 
starting with the root R, ݔ = ୍ܴబ…୍ೖషభ.  Take two points x ,  y ∈ X. These two branches have the finite 
common root-path, with vertices ୍ܴబ…୍ೖషభ (the kth vertices in branches x and y are not equal). 
Now we see ρ(ݔ, (ݕ = 1 (୍݉బ୍݉భ …୍݉(ೖషభ)ൗ ). One can check that this is the ultrametric on the 
absolute, i.e., it satisfies not only the usual triangle inequality, but even the strong triangle 
inequality: ρ(x,y) ≤ max[ρ(x,z),ρ(z,y)]. 

If the tree T is homogeneous with mI = m = const, then ρ(x,y) = 1/mk. Such homogeneous trees 
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The detailed presentation of the tree-like modeling in geology can be found in paper [4], with
motivations, images from oil industry research, and the corresponding mathematical formalism. Now,
we just briefly recall the basics which will be used in the theoretical modeling of fluid flow in capillary
networks in Sections 3 and 5.

We start by recalling that a tree is an undirected graph in which any two vertices are connected
by exactly one path. We shall work with rooted trees. Such a tree has the special vertex (denoted by
the symbol R) which is selected as the root. This is similar to selection of one point in the Euclidean
space as the center of the coordinate system. On a rooted tree it is possible to introduce orientations.
Each edge can be assigned a direction, either away from or towards R. Such graphs play the important
role in graph theory and they are known as directed rooted trees.

Let T be a rooted tree. Let us consider the following (partial) order structure on the set of its vertices.
By this order structure, for two vertices, x and y, we set x ≤ y if and only if the path from R to x passes
through y. This order structure determines the hierarchic structure on the tree. Consider an arbitrary
tree (finite or infinite) T, such that the path in the tree between arbitrary two vertices is finite, and the
number of edges incident to each of the vertices is finite. If a vertex I is incident to mI + 1 edges, it has
the branching index mI. To each such a tree we shall associate an ultrametric space, so called absolute of
the tree. This space is defined in the following way.

The infinitely-continued path starting in the vertex I is a path with the beginning in I, which is
not contained in a larger path with the beginning in I.

Let us now fix some vertex R of a tree: its “root”.
The space of infinitely-continued paths in the tree, which begin in the root R is called the absolute

of the tree.
This definition does not depend on the choice of the root R. Now we define the metric on the

absolute X = X(T) of the tree T. Each x ∈ X can be represented as a sequence of vertices starting
with the root R, x = RI0 ...Ik−1 . Take two points x, y ∈ X. These two branches have the finite common
root-path, with vertices RI0 ...Ik−1 (the kth vertices in branches x and y are not equal). Now we see
ρ(x, y) = 1/(mI0 mI1 . . . mI(k−1)

). One can check that this is the ultrametric on the absolute, i.e., it satisfies
not only the usual triangle inequality, but even the strong triangle inequality: ρ(x,y) ≤max[ρ(x,z),ρ(z,y)].
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If the tree T is homogeneous with mI = m = const, then ρ(x,y) = 1/mk. Such homogeneous trees
will play an important role in our further modeling, Sections 4 and 5.

3. Tree-Like Analogs of Navier–Stokes Equations

By fixing the special fractal model, namely, the tree-like ultrametric model, we shall derive
ultrametric analogs of the basic equations of fluid dynamics, which are based on the commonly used
Euclidean space representation of capillary networks. Our equations can be written in the form of
nonlinear pseudo-differential equations on ultrametric spaces; see Section 5 (in fact, we consider the
simplest ultrametric tree, the 2-adic tree, in Figure 7).
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In the previous articles [4–6] we derived the ultrametric analogs of the probabilistic dynamics
based on the balance equations for capillary networks in porous random media. Now we plan to obtain
the ultrametric representation of the dynamics of fluid’s velocity (averaged in a capillary). We start
with the hierarchic discrete analog of the Navier–Stokes equations in Section 3.2. These discrete
tree-like equations will be transformed into (nonlinear) ultrametric pseudo-differential equations in
Section 5.

One of the problems of theoretical modeling in the ultrametric framework [4–6] was establishing
the connection between the abstract theory of ultrametric pseudo-differential equations and concrete
physical parameters related to fluid flow. Here we shall make a step towards the solution of this
problem. Physical parameters incorporated in the discrete tree-like equations are then “lifted” to the
corresponding pseudo-differential ultrametric equation.

Our approach leading to a discrete tree-like version of the Navier–Stokes equations is similar
to shell models leading to discrete (in space) chain representations of this equation (see, e.g., [22–27]).
Instead of linear chains, which are standardly used for the discrete approximation of partial differential
equations in the Euclidean spaces, we proceed towards the tree-structured discrete representations. Thus,
we shall take into account the hierarchic tree-like structure of the system of capillaries in porous
random media. Here we apply the ideas explored in modeling of the hierarchic structure of turbulent
flows of fluid [26–28], cf. especially with the model of article [27]. Although our study is not about
turbulence, the mathematics for the simulation of hierarchic flows from [26–28] can be applied to our
situation, as well as to flows with the internal hierarchy corresponding to a capillary tree.

3.1. Shell Models for the Navier–Stokes Equations

The shell models for the Navier–Stokes equations were elaborated as an attempt to simplify the
study of turbulence phenomenon encoded in these equations. As was pointed out, in our research,
we are not interested concretely in turbulence. Our interest to the shell models is of the conceptual
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nature: we treat the shell modeling as a procedure of extraction of the basic features of phenomena described
by a complex nonlinear system of partial differential equations.

Consider the standard Navier–Stokes equations:

∂u
∂t

= −(u·∇)u + v∇2u− 1
d
∇p + f

Here the following variables and parameters are in use: velocity field u, pressure field p, viscosity
v, density d (the latter two are constants), and external force f . The standard symbolism of the
vector-field theory is used (the nabla operator, Laplacian, gradient, vector gradient, divergence):

∇ =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
, ∇2 = ∇·∇ =

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 ,

∇p =

(
∂p
∂x

,
∂p
∂y

,
∂p
∂z

)
, ∇·u =

∂u
∂x

+
∂v
∂y

+
∂w
∂z

, ∇u = (∇u, ∇v, ∇w)

The main mathematical problem in studies of the Navier–Stokes turbulence is of the following
nature [25]: “Along the line of chaos research, the Navier–Stokes turbulence has come to be considered
as a typical and important dynamical phenomenon which is due to a chaotic attractor with, however,
a huge dimension estimated to be more than at least some millions by using Kolmogorov scaling
argument. Therefore, although it is now widely accepted that the Navier–Stokes turbulence is an
example of chaos phenomena, and high-performance computers have become available recently,
the computing power is still far from sufficient and properties of the underlying huge dimensional
chaotic attractor are not well-understood yet, and especially we do not have an idea of what chaos
properties correspond to the well-known robust statistical properties of fluid turbulence as the
Kolmogorov scaling and the intermittency”. Thus, one wants to simplify the dynamics and move
from the Euclidean continuous space to its discrete model, which is essentially simpler. Our approach
is based on the tree-like configuration space and can also be considered as a simplification of the
dynamics of fluid propagation in porous media. Instead of the continuous model for such media,
we work on the capillary network.

In the standard shell models [22–25], instead of the complete Euclidean space representation
given by the Cartesian system of coordinates (x, y, z) with the corresponding vector of fluid velocity
u = (ux, uy, uz), there are only some special variables that are explored, representing a shell of the
Fourier transform. The new system of equations is discrete and still nonlinear; the space structure does
not present explicitly. One of the basic models is the Gledzer–Ohkitani–Yamada model [22–25]. This
model can be considered as a truncation of the Navier–Stokes equations. The physical state of each
shell is represented by a single discrete variable un, n = 0, 1, 2, . . . . We remark that in the latter model
a shell is given by the set of the wave numbers k: kn < k < kn+1, where kn = 2n. In the shell model
representation of the Navier–Stokes equations, only local couplings between nearest (and next to them)
neighbor shells are preserved; contribution of others is ignored.

The analogy between the shell representation of the Navier–Stokes equations and our coming
tree-like representation is only formal—the split of space into hierarchically-ordered cells corresponds
to the split of a tree composed of capillaries into its levels counted from tree’s root. Similarly to the
shell model, we exclude the three-dimensional space structure and the new equations are written with
respect to specially-discretized and -averaged velocity-field in a capillary network.

The shell models for the Navier–Stokes equations were designed to study turbulence. We have
already pointed out that our research is not oriented to turbulence studies. Roughly speaking, we
model the capillary size coarse graining for fluid flow in a network of capillaries in porous random
media. Such a model matches with the ultraemetric diffusion description. However, the existing
hierarchic models of turbulence played the important role of the conceptual background.
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3.2. Tree-Like Analogs of the Navier–Stokes Equations: The Case of the Binary Tree

To model the multi-fractal structure of turbulence, in [26–28] the shell model of Gledzer–Ohkitani–
Yamada was generalized and the cell-structure was combined with the hierarchic tree-like structure.
We now follow the ideas of the work [27], but just formally, by omitting technicalities. To simplify
considerations, we proceed with the 2-adic tree of capillaries (see Appendix A for the general case).
It has the root I0 vertices, In,1, In,2, In,3, In,4, . . . , In,2n . We are interested in edges connecting vertices
and representing capillaries of the network. They can be labeled in the same way as corresponding
vertices, i.e., E1,1 = I0 I1,1 and E1,2 = I0 I1,2, there are 2n edges connecting vertices of the (n − 1)-th level
with vertices of the n-th level:

En,1 = In−1,1 In,1, En,2 = In−1,1 In,2, En,3 = In−1,2 In,3, En,4 = In−1,2 In,4, . . . ,

or:
En,2j−1 = In−1,j In, 2j−1, En,2j = In−1,j In, 2j.

In the present model the diameters and lengths of edges are coupled by scaling 1
2 . The 2-adic tree is the

simplest ultrametric space; our model can be generalized to the p-adic trees, where p > 1 is a natural
number. In such a model lengths and diameters of capillaries are scaled by the factor 1/p. In principle,
there are no visible barriers to extend the model to general ultrametric spaces. However, the general
case has to be handled more carefully. Ultrametric spaces represent a very general class of trees of
capillaries; here the scaling factors for lengths and diameters of capillaries can depend on the concrete vertex.

In contrast to the “Euclidean equations of Navier–Stokes”, our capillary system is constructed of
one-dimensional edges. In the present model, motion of fluid, e.g., oil in a capillary is characterized by
the averaged (over capillary’s volume) velocity vn,j(t). Thus, we are not interested in the velocity at
each point of a capillary, but in its average over it.

To write a hierarchic tree-like system of equations for velocity vn,j(t), we assume that fluid in
the capillary En,j interacts only with fluid in neighboring (from the viewpoint of the tree topology)
capillaries, i.e., the dynamics of vn,j(t) is determined by functions of vn,j(t) and corresponding velocities
for the (n− 1)th and (n + 1)th levels. The latter level gives a contribution with vn+1,2j−1(t) and vn+1,2j(t).
The upper level contributions can be represented in the following way:

Let j = 2i− 1 or j = 2i, then the (n− 1)-th level contributes through vn−1,i(t). The simplest coupling
(similar to the classical Navier–Stokes equations) has the quadratic form. Thus, we obtain the following
system of ordinary differential equations representing dynamics in the tree-structured network of
capillaries. Here, Fn,j denotes the force acting to the fluid in the j-th capillary of the n-th level, ϑ denotes
viscosity, which is assumed to be constant:

∂
∂t vn,2i−1(t) = kn Avn,2i−1(t)vn−1,i(t) + kn Bvn,2i−1(t)vn+1,4i−3(t)+

kn Cvn,2i−1(t)vn+1,4i−2(t)− k2
n ϑ vn,2i−1(t) + Fn,2i−1(t)

(1)

∂
∂t vn,2i(t) = kn Avn,2i(t)vn−1,i(t) + kn Bvn,2i(t)vn+1,4i−1(t)+

knCvn,2i(t)vn+1,4i(t) − k2
n ϑ vn,2i(t) + Fn,2i(t)

(2)

Here kn = 2n; the coefficient A represents the amplitude for the transition of the fluid from the
capillary of the previous level to the two “child-capillaries” of the next level; the coefficients B and C
represent amplitudes for the transition from the n-th level to the (n + 1)-st level.

This is the simplest hierarchic (nonlinear) system representing, in a “capillary coarse graining”
manner, the flow of fluid through the capillary network. It takes into account only the transition from,
and to, the nearest levels. A closer analogy with the Navier–Stokes equations can be obtained by taking
into account, for each level n, two successive levels, i.e., n − 2, n − 1 and n + 1, n + 2. By omitting



Entropy 2017, 19, 161 10 of 14

the low indices, labeling capillaries of the fixed level of the hierarchy, we can write such generalized
systems of dynamical equations for fluid flow in a capillary network as follows:

∂
∂t vn(t) = kn Avn(t)vn−1(t) + knBvn(t)vn+1(t) + kna vn−2(t)vn−1(t)+

kn b vn+1(t)vn+2(t)− k2
n ϑ vn(t) + Fn(t)

(3)

The system of Equation (3) is a closer analog of the “Euclidean Navier–Stokes equations”. In the
tree-like representation the diffusion term of the latter correspond to involvement of not only the
closest neighboring levels, but the closest higher and lower levels (tree-like analogy with the second
difference scheme, cf. also with the hierarchic shell models, e.g., [27]). It is easy to represent the system
of Equation (3) in the detailed two-index form, as Equations (1) and (2), but it would become too
complex and less visualizable.

3.3. Connection with Dynamics on the 2-Adic Space

To couple the discrete tree-like analog of the Navier–Stokes Equations (1), (2), or (3) with theory of
p-adic pseudo-differential equations (in fact, equations with the p-adic fractional derivatives, Vladimirov’s
operators), we remark that the edge En,j can be represented by the vertex In,j or, more precisely, by the
pathway starting at the root I0 and finishing in the latter vertex. Then (see [3]) each vertex represents the
p-adic ball, in our 2-adic model, the vertex In,j represents the ball Bn,j of the radius rn = 1/2n, whose
center is determined by the pathway of vertices, a = I0 . . . In,j . Thus, the capillary coarse-grained
velocity vn,j(t) can be represented as a function of the corresponding ball, vn,j(t) = v(t, In,j) = v(t, Bn,j).
The theory of p-adic and more general ultrametric pseudo-differential equations was presented in
an applications-friendly manner and in significant detail in our recent article [4]. The mathematical
foundations of this theory were set in works [7–15] (see also the extended bibliography presented
in the monograph [10]). Our aim is to write the tree-like analog of the Navier–Stokes equations
(see Equations (1) and (2)) for the simplest model based on interactions only between three successive
levels of the network hierarchy.

We now move to the mathematical representation of the above discussion. Here we have to
start with the brief introduction to p-adic numbers (encoding homogeneous tress with p > 1 branches
leaving each vertex).

4. P-Adic Numbers, Fractional Differential Operators, Fourier Transform, and Convolution

In this section we briefly present basics of the theory of p-adic Fourier transform (see [4] for a
non-mathematician-friendly detailed presentation; see also the monograph [10] for the mathematical
details). Consider (see Section 2) the homogeneous tree with the constant branching index mI = p,
where p > 1 is the fixed prime number. The branches of such a tree (which is denoted by Zp) can be
represented by sequences of digits xk ∈ {0, 1, . . . , p− 1} labeling branches leaving each vertex. Such
sequences of digits can be treated as “numbers”, which are formally written as a series with respect to
natural powers of p:

x =
∞

∑
k=0

xk pk, xk ∈ {0, 1, . . . , p− 1}. (4)

This number representation gives the possibility to introduce on Zp algebraic operations of
addition, subtraction, and multiplication. In algebra such structures are called rings, i.e., Zp is a ring.
It is convenient to extend this ring to a field, i.e., to define the operation of division. The field of p-adic
numbers, denoted by Qp consists of series of the form:

x =
∞

∑
k=γ

xk pk,
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where γ = γ(x) = 0, ±1, . . . , xk = 0, 1, . . . , p− 1, xγ 6= 0, γ ≤ k < ∞. The p-adic norm is defined as
|x|p = p−γ, if x 6= 0, and |x|p = 0, for x = 0. It determines the ultrametric on Qp: ρp(x, y) = |x− y|p.
In the same way, as for real numbers, we can introduce the fractional part {x}p for p-adic numbers.

Let us remember that there exists a Haar mesure µp on Qp. Now we define the Fourier transform
of a function ϕ : Qp → C in the following way:

ϕ̂(y) = F[ϕ](y) =
∫
Qp

χp(yx)ϕ(x)dµp(x),

where χp(t) = e2πi{t}p is the additive character on Qp. In real analysis the Fourier transform can be
used for the integral representation of usual differential operators, Dn, n = 1, 2, . . . . Generalization
of this representation to fractional degrees leads to fractional differential operators Dα which play an
important role in many applications, including reaction-diffusion equations used in geology. This is
the very special case of pseudo-differential operators. The Vladimirov operators of p-adic fractional
differentiation (for α > 0) is defined as:

Dα ϕ(x) =
∫
Qp
|ξ|αpχp(−ξx)ϕ̂(ξ)dµp(ξ), ξ ∈ Qp.

On p-adic trees these are no straightforward analogs of the usual differential operators (even for
α = 1). However, these are the straightforward generalizations of pseudo-differential operators which
are defined with the aid of the Fourier transform. We list a few basic properties of the p-adic Fourier
transform and Vladimirov operators:

F[Dα ϕ](y) = |y|αp F[ϕ](y);

F[ f g] = F(f)× F(g),

where the convolution of two functions, u and v, is defined by the usual integral formula:

u× v(y) =
∫
Qp

u(x− y)v(x)dµp(x),

Of course, the existence of the convolution integral is a separate mathematical problem. However,
in this paper, we shall proceed formally. In particular, we have:

F[uDαu](ξ) = F[u]× (|ξ|αp F[ϕ]) (ξ) =
∫
Qp
|y|αp F[u](ξ − y)F[v](y) dµp(y),

5. From the Discrete Hierarchical Dynamics to P-Adic Pseudo-Differential Equations

In Section 3 we presented the system of dynamical equations (see Equations (1) and (2)), reflecting
the tree structure of a capillary network in porous media. This system accounted for interactions
between fluid volumes in neighboring capillaries, where neighboring is with respect to the ultrametric
topology of a tree (in our concrete model, the 2-adic tree). As in standard shell models, Equations (1) and
(2) can be treated as the discretized (and hierarchically ordered) versions of the dynamical equations of
the Fourier amplitude, v(k) = F(u)(k). Here the k-variable is the dual variable to the “spatial variable”
x varying on the 2-adic tree of capillaries. The linear term, −ϑ k2

n vn,2i−1(t), corresponds to the
2-adic diffusion process driven by the second order (pseudo-)differential operator D2. The quadratic
(with respect to the velocity) term, kn Avn(t)vn−1(t) + knBvn(t)vn+1(t) + kna vn−2(t)vn−1(t) +
kn b vn+1(t)vn+2(t), represents a discretized version of the Fourier transform of the product of a
function and its “derivative”, namely, of the term u Du. We also remark that in Equations (1) and (2)



Entropy 2017, 19, 161 12 of 14

the Fourier transform of Du produces multiplication by the discretization kn of the k-variable. Thus,
in the continuous version of the system Equations (1) and (2) of discrete equations has the form:

∂v
∂t

(t, k) = v(t, k)× k v(t, k) − ϑ k2v(t, k) + F(t, k). (5)

Now by using the inverse Fourier transform, we obtain the p-adic pseudo-differential equation:

∂u
∂t

(t, x) = u(t, x) Du(t, x) − ϑ D2u(t, x) + G(t, x), (6)

where ϑ is the viscocity parameter. This equation can be treated as the p-adic analog of the
Navier–Stokes equation.

This is a nonlinear p-adic pseudo-differential equation. The mathematical theory of such equations
has not yet been developed (see [11] for one special example). We hope that the presented derivation
of Equation (6) from the system of hierarchic equations for fluid flow in a capillary network in porous
media will stimulate purely mathematical research to build such a theory.
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Appendix A. From a Tree-Like Analog of the Navier–Stokes Equation to Its P-Adic Version:
The Case of Arbitrary Prime p

The scheme presented in Sections 3–5 can be straightforwardly generalized to the case of an
arbitrary p-adic tree, where p > 1 is a prime number (the last condition, namely, that p is prime will play
a role only at the last step of the derivation of the analog of the Navier–Stokes equation—application
of theory of p-adic Fourier transform and pseudo-differential equations.)

Consider the homogeneous tree with p branches leaving each vertex. We enumerate the vertices
at the nth level of the tree by the index j = 1, 2, . . . , pn. Any vertex at the nth level interacts with one
vertex at the (n − 1)th level and with p vertices at the (n + 1)th level. The corresponding tree-like
equation can be written as:

∂

∂t
vn,i(t) = kn

[
Avn,i(t)vn−1,i(t) + B1vn,i(t)vn+1,p(i−1)+1(t) + B2vn,i(t)vn+1,p(i−1)+2(t) + . . . + Bpvn,i(t)vn+1,pi(t)

]
− k2

n ϑ vn,i(t) + Fn,i(t).

Now by applying the p-adic convolution and Fourier transform and assuming the equality of the
B-coefficients, B1 = B2 = . . . = Bp, we obtain Equation (6) with the p-adic pseudo-differential operator,
the Vladimirov operator for α = 2. We remark that the summation in the right-hand side of the equation
corresponds to integration with respect to the p-adic Haar measure in the Vladimirov operator.

If B-coefficients are not equal, we obtain a more complicated pseudo-differential operator,
an analog of the differential operator of the second order with constant coefficients. We can even
consider the case of more complex interactions on the p-adic tree. The coefficients A and B1 can
also depend on the level of the tree: An, Bn, 1, . . . , Bn,p. Such a dynamics with the hierarchic tree
structure leads to the equation of the Navie-Stokes type with pseudo-differential operator with the
symbol depending on p-adic balls. This very special class of p-adic pseudo-differential operators was
considered by Kozyrev [9]. Such equations can be solved by using theory of p-adic wavelets.
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