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Abstract:



We consider the rate R and variance [image: there is no content] of Shannon information in snippets of text based on word frequencies in the natural language. We empirically identify Kolmogorov’s scaling law in σ2∝k-1.66±0.12 (95% c.l.) as a function of [image: there is no content] measured by word count N. This result highlights a potential association of information flow in snippets, analogous to energy cascade in turbulent eddies in fluids at high Reynolds numbers. We propose R and [image: there is no content] as robust utility functions for objective ranking of concordances in efficient search for maximal information seamlessly across different languages and as a starting point for artificial attention.
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1. Introduction


Exponential growth of Internet usage [1] is driving the development of new algorithms to efficiently search text for potentially relevant information. As smartphones will overtake personal computers in Internet traffic by 2020 [2], identifying maximal information in concise text is increasingly important. Objective search may be approached by utility functions based on word statistics in the natural language (e.g., [3]), viewing text as linguistic networks (e.g., [4]).



Herein we discuss utility functions based on Shannon information theory [5,6] which are applicable to snippets of text obtained by key words search. These concordances ([7] and references therein) are extracted from documents obtained from the Internet. Real-world searches require robust utility functions that are well-defined in the face of words that fall outside common dictionaries or in mixed language documents. In a computerized extraction of concordances from large numbers of documents, such utility functions enable the ranking of text, facilitating in-depth document search in any given language.



Shannon quantifies information by surprise factors of symbols used in discrete encoding of messages by probability of occurrence. In digital computer communications, message size is typically much greater than the size of the dictionary of symbols [image: there is no content]. However, conveying information by snippets generally comprises very few words from a natural language dictionary. Miller [8] refers to such snippets as “chunks”. Shannon and Miller hereby discuss principally distinct limits of large and small message size in data transmission, measured by size relative to the dictionary. Miller posits (without proof) that the Shannon information and variance fulfill similar roles in human communication.



In this Letter, we report on empirical power law behavior in information rate and variance in concordances as a function of size N measured by total word count. A distinguishing feature of the present study is emphasis on relatively short concordances of [image: there is no content] 20–200 words, distinct from entire books (e.g., [9]).



To illustrate and set notation, consider a dictionary [image: there is no content]. Messaging by a source [image: there is no content] with uniform probability distribution [image: there is no content][image: there is no content] features an information rate


[image: there is no content]



(1)




that is, [image: there is no content] bits per word, defined by the average surprise factor [image: there is no content]. Messaging over a proper subset [image: there is no content] by a source [image: there is no content] with probability distribution [image: there is no content] ([image: there is no content]; [image: there is no content]) features a reduced information rate


[image: there is no content]



(2)




where the right-hand-side provides an approximation based on the probability distribution of [image: there is no content]. By probabilities, [image: there is no content] is preferred over S as a source of messages. In the present study, we aim to rank messages accordingly, in the form of concordances extracted from online text by key word search.



In real-world applications, our symbols of encoding are words with typical frequencies determined by the natural language. Sources may display variations in word probabilities reflecting individual word preferences. For computational analysis of messages across a broad range of sources, we consider a truncated dictionary D of the most common words, whose probability distribution approximates that of all words in a more comprehensive dictionary, dropping words that are exceedingly rare, not traditionally included in dictionaries, or of foreign origin. Such D is readily extracted from a large number of documents, randomly selected over a broad range of subjects. Fixing D, [image: there is no content] for each [image: there is no content] is established by normalizing inferred word frequencies,


[image: there is no content]



(3)







For instance, [image: there is no content] have relative probabilities


[image: there is no content]



(4)




based on a truncated dictionary D defined by a top list of 10,000 words (Table 1).



Table 1. Probabilities of a truncated dictionary D of the 10,000 most common words in the English language. Words not listed in D are assigned probability zero. Probabilities refer to words regardless of case.







	
Index

	
Word

	
Probability [image: there is no content]

	
Comment






	
386

	
apple

	
0.0256

	
Upper and lower case




	
6481

	
perfect

	
0.1525

	
"




	
6034

	
no

	
6.7556

	
"




	
9946

	
yes

	
2.7188

	
"




	
-

	
Woolsthorpe

	
0

	
Newton’s city of birth, not in Merriam-Webster










In text, words contribute to the information rate per word according to


[image: there is no content]



(5)







A sum over all [image: there is no content] in D obtains the mean rate


RD=∑wiϵDri=9.11bitsword-1.



(6)







Relative to the maximum [image: there is no content] bits word-1 for a uniform probability distribution ([image: there is no content] for all i), we have


RD=0.6854R0,



(7)




illustrated by (2) in our example above.



The result (6) illustrates Miller’s classic result on approximately 8–10 mostly binary features identified in speech analysis [8,10]. However, (7) under-estimates information rates in short expressions due to the non-unform probability distribution of words in the natural language (Table 1). It becomes meaningful only in the large N limit, for text approaching the size of a dictionary. While this limit may apply to large bodies of text, it is not representative for messages in direct human-to-human communication or human–machine interactions.



To begin, we consider the above for communications in a data base of 90,094 concordances of size [image: there is no content] 20–200 comprising a total of 8,842,720 words, extracted from the Internet by various key word searches and evaluated for Shannon information rates and associated variances (Section 2). Statistical properties are observed to satisfy power law behavior. They are analyzed for their dependence on [image: there is no content], motivated by a heuristic analogy between information flow across messages of various size and inertial energy cascade over turbulent eddies. The latter serves as a model for energy flow over complex nonlinear dynamics involving a large number of degrees of freedom, satisfying Kolmogorov scaling as a function of wave number k [11,12,13] (Section 3). Results for our data base of concordances are given in terms of power law indices and compared with Kolmogorov scaling (Section 4). In Section 5, we summarize our findings.




2. A Data-Base of Concordances


We compiled a data-base of 90,094 concordances C with size [image: there is no content] 20–200 from thousands of documents on the Word Wide Web (Figure 1). They are extracted by key word search covering a broad range of generic topics in sports, culture, science, and politics [14,15]. For each search, concordances are extracted from about [image: there is no content] online source pages identified with the highest document rank by existing Internet search, and downloaded for analysis as described below by parallel computing on a cluster of personal computers. Experimentally, we determined top lists of concordances ranked by information rate (8) (below), which remain essentially unchanged when M reaches 80; M less than 50 occasionally fails to capture concordances of highest text rank as defined below. On this basis, our results are also expected to be reasonably independent of the choice of Internet document search engine.


Figure 1. (a) Histogram of 90,094 concordances C in the data-base, shown by various sizes N measured by total word count; (b) Fractions [image: there is no content] and [image: there is no content] of counts of distinct words and, respectively, distinct words in a truncated dictionary D of the 10,000 most common words.



[image: Entropy 19 00198 g001]






As snippets, concordances always comprise a small subset of a dictionary, including D containing most common words mentioned above. For N on the order of tens to hundreds of words, [image: there is no content] in (7) is not directly meaningful for estimating information in concordances due to selection effects: snippets contain few words, many of which are relatively common by non-uniformity of word frequencies in D (Table 1) with relatively significant contributions to information flow rate [image: there is no content] in (5).



Information rates in concordances are obtained by summing (5) over all distinct words therein,


[image: there is no content]



(8)







Our focus is to quantify statistical properties of R as a function of N given D. Here, [image: there is no content] shall denote its list of q distinct words in C that are in D. This reduction avoids over-counting of words, and implicitly assigns probability zero to words that are not in D. The first is important for accuracy, the second renders (8) robust in the face of words that are not included in D, because they are rarely used (Table 1) or of foreign origin. Assigned [image: there is no content], these exceptional words are not included in (3). Since (8) has a well-defined limit as [image: there is no content] approaches zero, it applies to real-world text extracted from documents online by generic search engines. Distinct words [image: there is no content] in C that are in D comprise [image: there is no content] words, typically about one-half of N (Figure 1).



Table 2 illustrates a top list of concordances, obtained by the key word search “apple pie” and text ranked by R. A search with relatively few key and generic words readily obtains well over ten concordances per document (i.e., on the order of one thousand in [image: there is no content] documents extracted from the Internet by existing document search). Identification of those potentially most relevant to the user necessitates computerized ranking, here by the utility function R.



Table 2. Sample concordances of [image: there is no content] words selected by key words “apple pie” (bold) ranked by information rates R. Included are the standard deviations [image: there is no content] (obtained by [14,15]).







	
Rank

	
Concordance

	
R

	
[image: there is no content]






	
1

	
.. splash of brandy. My homemade apple pie is like a siren call to my family. All I have to do is pick up the phone and say “pie” to my father and he’s here in less time than it takes to clear a place at the table. You know when people ..

	
1.1202

	
1.6275




	
2

	
.. of pumpkin and apple together just make my heart happy. The photos are gorgeous and your lattice is freaking perfect! :) I have never been to an apple orchard either but I always envision it as a marvelous occasion. Maybe one day I will go! Pinning this pie for future reference ;) Reply ..

	
1.0987

	
1.5144




	
...

	
...

	
...

	
...




	
10

	
.. that I’ve baked apple pie, this recipes was easy to follow AND most importantly it came out delicious. Received lots of compliments on this so Thank You!!!! Curious to know if there are any supplements for the sugar though, trying to make a version for my parents who are trying to cut back ..

	
1.0263

	
1.5126










In studying statistical properties of R as a function of concordance size N, we further consider the unnormalized variance


[image: there is no content]



(9)




suggested by Miller’s conjecture on information measured by variance, [image: there is no content]. Dependence on N in the statistical properties of [image: there is no content] will be found to satisfy a power law with index [image: there is no content],


[image: there is no content]



(10)







The index [image: there is no content] in (10) will be determined by detailed partitioning of information flow in large amounts of text into multiple messages, i.e., in expressions, statements, snippets and the like across different sizes. In the absence of detailed modeling, [image: there is no content] in (10) is expected to be tightly correlated to R in (8) in an intuitive analogy of information and energy flow. In fluid dynamics, representing a nonlinear system with a large number of degrees of freedom, energy flow satisfies Kolmogorov scaling in conservative cascade to small scales in fully developed turbulence [16].




3. Kolmogorov Scaling in Energy Flow


Turbulent motion in high Reynolds number (Re) fluid flow demonstrates power law behavior in energy cascade by nonlinear dynamics that includes period doubling. Its inertial range comprises a large number of degrees of freedom ∝ Re94, over which energy flow cascades over eddies of size [image: there is no content], breaking up conservatively into increasingly smaller eddies across wave numbers


[image: there is no content]



(11)







Here, [image: there is no content], [image: there is no content] refers to eddies set by the linear size of the system, and [image: there is no content] refers to the wave number at which viscous dissipation sets in. This cascade persists by power input [image: there is no content] at [image: there is no content]. In the inertial range (11), the [image: there is no content] is conserved across k, posing a constraint on the spectral energy density [image: there is no content], satisfying Plancherel’s formula


[image: there is no content]



(12)




with


[image: there is no content]



(13)







Since [image: there is no content] s-1, [image: there is no content] s-2, dimensional analysis obtains the Kolmogorov scaling


[image: there is no content]



(14)







The Kolmogorov index [image: there is no content] has been found to be remarkably universal in fully developed turbulence, from fluid dynamics [17] to broadband fluctuations in gamma-ray light curves [18].




4. Power Law and Kolmogorov Scaling in Information Flow


By (5), information rates of concordances


[image: there is no content]



(15)




are increasing as a function of size N, formally satisfying


[image: there is no content]



(16)




where [image: there is no content] denotes the number of times a word [image: there is no content] appears in C. The latter is a consequence of the fact that [image: there is no content] approaches D in the limit as N becomes arbitrarily large.



For our data base, Figure 1 shows concordance averages of relative counts [image: there is no content] of distinct words (avoiding multiplicities of recurring words) and the relative counts [image: there is no content] of distinct words in D. The average value of [image: there is no content] is found to be somewhat similar to [image: there is no content] in (7), with a minor dependence on the choice of N.



Figure 2 shows [image: there is no content] and its correlation to R. Expressed in terms of the normalized standard deviation


[image: there is no content]



(17)




which points to


σ≃0.2125N12R12.



(18)






Figure 2. (a) [image: there is no content] correlation with R (all concordances, blue dots) show scaling with R. This correlation is effectively linear for most of R (red curve), evidencing Miller’s conjecture on the equivalence of variance with information. However, nonlinearity sets in when R is large (black curve); (b,c) [image: there is no content] scales with [image: there is no content] with an essentially Gaussian distribution in fluctuations.



[image: Entropy 19 00198 g002]






Figure 3 shows the power law behavior as a function of [image: there is no content] obtained by weighted nonlinear model regression computed by the MatLab function fitnlm [19] with weights according to concordance counts (Figure 1). The results with 95% confidence levels are


σ2≃0.0013k-1.66±0.12,R≃0.0381k-0.62±0.08.



(19)






Figure 3. Power law behavior (19) in the mean R and variance [image: there is no content] in a data set of concordances (Figure 1) as a function of [image: there is no content].



[image: Entropy 19 00198 g003]






Scaling of [image: there is no content] in (19) is consistent with (18) combined with scaling of R in (19).



Figure 3 shows a slight concave curvature in the residuals to the linear fit to the data. While this is within the 95% confidence level shown, this feature may be a real deviation from power law behavior, perhaps associated with nonlinear scaling at large R (Figure 2). A detailed consideration is beyond the present scope, however.




5. Conclusions


We identify Kolmogorov scaling (19) in the variance of concordance information with power law scaling in association with information rate as a function of size [image: there is no content] 20–200.



We present Kolmogorov scaling in variance as an empirical result, which suggests that information flow over snippets is analogous to energy cascade over eddies. Since Kolmogorov scaling in the inertial range (11) critically depends on conservation of energy, (19) suggests that perhaps there is a similar conservation law at work in information flow by concordances.



Our observed power law scalings (19) give a succinct statistical summary on communication by concordances in the natural language. At sizes much smaller than the size of a dictionary, the results are fundamentally different from what is obtained in Shannon’s large N limit of binary strings in computer-to-computer communications, arising from the strongly non-uniform probability distribution in words in the natural language.



Figure 4 further shows a generally increasing efficiency [image: there is no content], normalized to the upper bound U defined by word probabilities sorted in descending order ([image: there is no content], [image: there is no content]),


[image: there is no content]



(20)






Figure 4. Information rate efficiency [image: there is no content] as a function of concordance size N.



[image: Entropy 19 00198 g004]






Relatively long concordances show an increase to about 40% efficiency, beyond about 25% in short concordances. Twitter’s tweets of 140 characters—corresponding to about 24 words on average at a mean of about five letters and one space per word in English—hereby appears sub-optimal by a factor of about two. Reasonably efficient social networking communication obtains with tweets on the order of 1000 characters.



Based strictly on word frequencies in natural language, R and/or [image: there is no content] provide robust utility functions for objective ranking of snippets by potential relevance. This can be used for efficient search through a large body of documents from a variety of sources by limiting output to a top list of ranked concordances [14,15]. A suitable sample of source documents is readily extracted from the Internet by existing search engines.



A generalization to search seamlessly across different languages is obtained by first translating key words to a second language in which to obtain a body of source documents and concordances therein. Ranking by R and/or [image: there is no content] based on word frequencies in this second language produces a top list that can be translated back to the first language. This process is highly efficient, by limiting translations to a moderate number of concordances, circumventing the need for any document translation in full [20].



Power law behavior (19) in snippets of text also points to novel directions to machine learning. For instance, ranking by R and/or [image: there is no content] may be a first step to artificial attention—with concordances larger in size than tweets—to select snippets as input to further processing (e.g., generating new queries by artificial intelligence).
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