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Abstract:



Representing patterns as labeled graphs is becoming increasingly common in the broad field of computational intelligence. Accordingly, a wide repertoire of pattern recognition tools, such as classifiers and knowledge discovery procedures, are nowadays available and tested for various datasets of labeled graphs. However, the design of effective learning procedures operating in the space of labeled graphs is still a challenging problem, especially from the computational complexity viewpoint. In this paper, we present a major improvement of a general-purpose classifier for graphs, which is conceived on an interplay between dissimilarity representation, clustering, information-theoretic techniques, and evolutionary optimization algorithms. The improvement focuses on a specific key subroutine devised to compress the input data. We prove different theorems which are fundamental to the setting of the parameters controlling such a compression operation. We demonstrate the effectiveness of the resulting classifier by benchmarking the developed variants on well-known datasets of labeled graphs, considering as distinct performance indicators the classification accuracy, computing time, and parsimony in terms of structural complexity of the synthesized classification models. The results show state-of-the-art standards in terms of test set accuracy and a considerable speed-up for what concerns the computing time.
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1. Introduction


Graphs offer powerful models for representing patterns characterized by interacting elements, both in static and dynamic scenarios. A labeled (also called attributed) graph is a tuple [image: there is no content], where [image: there is no content] is the finite set of vertices, [image: there is no content] is the set of edges, [image: there is no content] is the vertex labeling function, with [image: there is no content] denoting the set of vertex labels, and finally [image: there is no content] is the edge labeling function, with [image: there is no content] denoting the set of edge labels [1]. The topology of a graph enables characterizing patterns in terms of “interacting” elements. Moreover, the generality of both [image: there is no content] and [image: there is no content] allows to cover a broad range of real-world application domains. applications involving labeled graphs for representing data can be cited in many scientific fields, such as electrical circuits [2], networks of dynamical systems [3], biochemical networks [4,5], time-varying labeled graphs [6], and segmented images [7,8]. Owing to the rapid diffusion of (cheap) multicore computing hardware, and motivated by the increasing availability of interesting datasets describing complex interaction-oriented patterns, recent researches on graph-based pattern recognition systems have produced numerous methods [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25].



Focusing on high-level design of classification systems for graphs, it is possible to identify two main approaches: those that operate directly in the domain of labeled graphs and those that deal with the classification problem in an embedding space. Of notable interest are those systems that are based on the so-called explicit graph embedding algorithms, which transform the input graphs into numeric vectors by means of a mapping or feature extraction technique [1]. Graph embedding algorithms [12,26,27,28,29,30,31,32], operate by explicitly developing an embedding space, [image: there is no content]. The distance between two graphs is hence computed by processing their vector representations in [image: there is no content], usually by a geometric or information-theoretic interpretation (e.g., based on distances or divergences [19]). We distinguish two main categories of graph embedding algorithms: those that are defined in terms of a core inexact graph matching (IGM) procedure working directly in the graph domain, [image: there is no content], and those that exploit a matrix representation of graph to extract characterizing information. The former (e.g., see [12,27,31]) can process virtually any type of labeled graph, according to the capability of the adopted core IGM algorithm. The latter [28,29,32,33,34,35] are constrained to process a restricted variety of labeled graphs, in which all relevant information can be effectively encoded into a matrix representation, such as (weighted) adjacency, transition, or Laplacian matrix. The interested reader is referred to [1,24,36] and references therein for reviews of recent graph embedding techniques.



The dissimilarity representation offers a valuable framework for this purpose, since it permits to describe arbitrarily complex objects by means of their pairwise dissimilarity values (DV) [37]. In the dissimilarity representation, the elements of an input dataset [image: there is no content] are characterized by considering vectors made of their pairwise DVs [37,38]. The key component is hence the definition of a nonnegative (bounded) dissimilarity measure [image: there is no content]. A set of prototypes, [image: there is no content], called representation set (RS), is used to compute the dissimilarity matrix (DM), [image: there is no content], whose elements are given as [image: there is no content], for every [image: there is no content] and [image: there is no content]. By means of [image: there is no content], it is possible to embed the data in [image: there is no content] by developing the so-called dissimilarity space representation: each input sample is represented by the corresponding row-vector of [image: there is no content].



Recently, the Optimized Dissimilarity Space Embedding (ODSE) system has been proposed as a labeled graph classifier, achieving state-of-the-art results in terms of classification accuracy on well-known benchmarking datasets [11]. The synthesis of the ODSE model is performed by a novel information-theoretic interpretation of the DM in terms of conveyed information. In practice, the system estimates the informativeness of the input data dissimilarity representation by calculating the quadratic Rényi entropy (QRE) [39]. Such an entropic characterization has been used in the compression–expansion scheme as well as an important factor of the ODSE objective function. However, training the ODSE model is computationally demanding. As a consequence, we have developed two improved versions that are based on a fast clustering-based compression (CBC) scheme [40]. The parameters of such a clustering algorithm are analytically determined, hence obtaining a considerable computational speed-up of the training phase, yet maintaining state-of-the-art standards in terms of test set classification accuracy.



In this paper, we elaborate further over the same CBC scheme first introduced in [40] by estimating the differential [image: there is no content]-order Rényi entropy of the DVs by means of a faster technique that relies on an entropic Minimum Spanning Tree (MST). Also in this case, we give a formal proof pertaining the setting of the clustering algorithm governing the compression operation. We experimentally demonstrate that the performance of ODSE operating with the MST-based estimator is comparable with the one using the kernel-based estimator. Additionally, we observe that with the former the overall computing time is in general lower.



The remainder of the paper is organized as follows. In Table 1 we show all acronyms. Section 2 provides the necessary theoretical background related to the entropy estimators used in this work. In Section 3 we give an overview of the original ODSE graph classification system [11]. In Section 4 we present the improved ODSE system, which is primarily discussed considering the QRE estimator. In Section 4.3, we discuss a relevant topic related to the (worst-case) efficiency of the developed CBC procedure. Section 5 introduces the principal theoretical contribution of this paper. We prove a theorem related to the CBC scheme when considering the MST-based estimator. Experiments and comparisons with other graph classifiers on well-known benchmarking datasets are presented and discussed in Section 6. Conclusions and future directions follow in Section 7.



Table 1. Acronyms sorted in alphabetic order.







	
Acronym

	
Full Name






	
BSAS

	
Basic sequential algorithmic scheme




	
CBC

	
Clustering-based compression




	
DM

	
Dissimilarity matrix




	
DS

	
Dissimilarity space




	
DV

	
Dissimilarity value




	
IGM

	
Inexact graph matching




	
MinSOD

	
Minimum sum of distances




	
MMN

	
Min-max network




	
MS

	
Mode Seek




	
MST

	
Minimum spanning tree




	
MST-RE

	
Minimum spanning tree-Rényi entropy




	
ODSE

	
Optimized dissimilarity space embedding




	
QRE

	
Quadratic Rényi entropy




	
RS

	
Representation set




	
SOA

	
State-of-the-art




	
SVM

	
Support vector machines




	
TWEC

	
Triple-weight edit scheme











2. Differential Rényi Entropy Estimators


Designing pattern recognition systems by using concepts derived from information theory is nowadays well-established [39]. A key issue in this context is the estimation of information-theoretic quantities from a given dataset, such as entropy and mutual information. From the groundbreaking work of Shannon, different generalized entropy formulations have been proposed. Here we are interested in the generalization proposed by Rényi, which is called [image: there is no content]-order Rényi entropy. Given a continuous random variable X, distributed according to a probability density function [image: there is no content], the [image: there is no content]-order Rényi entropy is defined as:


Hα(X)=11−αlog∫p(x)αdx,α≥0,α≠1.



(1)







In the following two subsections, we provide the details of the non-parametric [image: there is no content]-order Rényi entropy estimation techniques used here.



2.1. The QRE Estimator


Recently, Príncipe [39] provided a formulation of Equation (1) in terms of the so-called information potential of order [image: there is no content], [image: there is no content],


Vα(X)=∫p(x)αdx;Hα(X)=−logVα(X)1α−1.



(2)







When [image: there is no content] holds in Equation (2), the entropy measure simplifies to the so-called quadratic Rényi entropy. Non-parametric kernel-based estimators offer a plug-in solution for the density estimation problem. Typically, a zero-mean Gaussian kernel [image: there is no content] is adopted, [image: there is no content]. The Gaussian kernel [image: there is no content] enables a controllable bias–variance trade-off of the estimator dependent on the kernel size[image: there is no content]; and on the data sample size n. According to Príncipe [39], the QRE of the joint distribution of a d-dimensional random vector can be estimated by relying on d unidimensional kernel estimators combined as follows:


[image: there is no content]



(3)




where [image: there is no content] is the quadratic information potential and [image: there is no content] is a convoluted Gaussian kernel with doubled variance, evaluated at the difference between the inputs. Since the input domain is bounded, the entropy is maximized when the distribution is uniform, [image: there is no content], where [image: there is no content] is the input data extent [39].



[image: there is no content] kernel evaluations are needed to compute (3), which may become onerous due to the cost of computing the exponential function.




2.2. The MST-Based Estimator


Let [image: there is no content] be the data sample of n measurements (points), with [image: there is no content], and [image: there is no content], and let [image: there is no content] be a complete graph constructed over these n measurements. An edge [image: there is no content] of such a graph connects [image: there is no content] and [image: there is no content] in [image: there is no content] by means of a straight line with length


[image: there is no content]



(4)







The [image: there is no content]-order Rényi entropy (1) can be estimated according to a geometric interpretation of a MST of [image: there is no content] in [image: there is no content] (shortened as MST-RE). To this end, let [image: there is no content] be the weighted length of a MST T connecting the n points, which is defined as


[image: there is no content]



(5)




where [image: there is no content] is a user-defined parameter, and [image: there is no content] is the set of all possible (entropic) spanning trees of [image: there is no content]. The Rényi entropy of order [image: there is no content], elaborated using the MST length (5), is defined as follows [41,42]:


[image: there is no content]



(6)




where the order [image: there is no content] is determined by calculating:


[image: there is no content]



(7)







The [image: there is no content] term is a constant (given the data dimensionality) that can be approximated, for large enough d, as:


[image: there is no content]



(8)







By modifying [image: there is no content] we obtain different [image: there is no content]-order Rényi entropies. By definition of [image: there is no content], MST-RE (6) is not sensitive to the input dimensionality.



Assuming to perform the estimation on a set of n measurements in [image: there is no content], the computational complexity involved in computing Equation (6) is given by:


[image: there is no content]



(9)







The first term in (9) accounts for the generation of [image: there is no content], computing the respective Euclidean distances for the edge weights. The second term quantifies the cost involved in the MST computation using the well-known Kruskal’s algorithm. The last term in (9) concerns the computation of the MST length.





3. The Original ODSE Graph Classifier


The ODSE graph classification system [11] is founded on an explicit graph embedding mechanism that represents [image: there is no content], using a suitable RS [image: there is no content], by initially computing the corresponding DM, [image: there is no content]. The configuration of the embedding vectors representing the input data in [image: there is no content] is derived directly using the rows of [image: there is no content]. The adopted IGM dissimilarity measure is the symmetric version of the procedure called best matching first that uses a three-weight edit scheme (TWEC). Although TWEC provides a heuristic solution to the graph edit distance problem, it has shown a good compromise between computational complexity (quadratic in the graph order) and the number of characterizing parameters [1,11,12]. TWEC performs a greedy assignment of the vertices among the two input graphs on the base of the corresponding labels dissimilarity; edge operations are induced accordingly.



ODSE synthesizes the classification model optimizing the DS representation by means of two dedicated operations, called compression and expansion. Both operations make use of the QRE estimator (Section 2.1) to quantify the information conveyed by the DM.



Another important component of the ODSE graph classification system is the feature-based classifier, which operates directly in [image: there is no content]; its own classification model is trained during the ODSE synthesis. Such a classifier can be any well-known classification system, such as an MMN [43], or a kernelized support vector machine (SVM). Test labeled graphs are classified in ODSE by feeding the corresponding dissimilarity representation to the learned feature-based classifier, which assigns proper class labels to the test patterns.



Figure 1a,b gives, respectively, the schematics of the ODSE training and determination of the prototypes. The ODSE classification model is defined by the RS, [image: there is no content], the TWEC parameters, [image: there is no content], and the model of the trained feature-based classifier. During the synthesis stage additional parameters are optimized: the kernel size [image: there is no content] used by the entropy estimator and two thresholds, [image: there is no content], which are used in the compression and expansion operations, respectively. The ODSE model is synthesized by cross-validating the learned models on the training set [image: there is no content] over a validation set [image: there is no content]. The global optimization is governed by a genetic algorithm, since the classification accuracy is used as part of the final objective and its analytical definition with respect to (w.r.t.) the model parameters is not available in closed form. A genetic algorithm, although it does not assure convergence towards a global optimum, is easily and effectively parallelizable, allowing to make use of multicore hardware/software implementations during the training stage.


Figure 1. Schematic descriptions of the main stages in the ODSE training phase. (a) ODSE training; (b) Determination of the prototypes.
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3.1. The ODSE Objective Function


All parameters of the ODES model are arranged into codes, [image: there is no content]. These include the two entropy thresholds [image: there is no content], the kernel size of the entropy estimator, [image: there is no content], the weights of TWEC and any parameter of the vertex/edge label dissimilarity measures, all ranging in [image: there is no content]. Since each [image: there is no content] induces a specific RS, [image: there is no content], the optimization problem that characterizes the ODSE synthesis consists in deriving the best-performing RS:


[image: there is no content]



(10)







The objective function (10) is defined as a linear convex combination of two objectives,


[image: there is no content]



(11)




where [image: there is no content] and [image: there is no content] shortens the dissimilarity representation of an entire dataset using the compressed-and-expanded RS instance, [image: there is no content]. The function [image: there is no content] evaluates the recognition rate achieved on a validation set [image: there is no content], while [image: there is no content] accounts for the quality of the synthesized classification model. Specifically,


[image: there is no content]



(12)




where [image: there is no content], and [image: there is no content] denotes the cost related to the number [image: there is no content] of prototypes. Accordingly,


[image: there is no content]



(13)




where [image: there is no content] is the number of classes characterizing the classification problem at hand. The second term, namely [image: there is no content], captures the informativeness of the DM:


[image: there is no content]



(14)







We consider the entropy factor (14) in the ODSE objective function (11) to increase the spread–dispersion of the DVs, which in turn is assumed to magnify the separability of the classes.




3.2. The ODSE Compression Operation


The compression operation searches for subsets of the initial RS, [image: there is no content], which convey “similar information”; the initial RS is equal to the whole [image: there is no content] in the original ODSE. In order to describe the mechanism behind the ODSE compression operation, we need to define when a given subset [image: there is no content] of prototypes is compressible. Let [image: there is no content] be the DM corresponding to [image: there is no content] and [image: there is no content], with [image: there is no content] and [image: there is no content]. Basically, [image: there is no content] individuates a subset of [image: there is no content] columns of [image: there is no content]. Let [image: there is no content] be the filtered DM, i.e., the submatrix considering the prototypes in [image: there is no content] only. We say that [image: there is no content] is compressible if


[image: there is no content]



(15)




where [image: there is no content] is the compression threshold, and [image: there is no content] estimates the QRE of the underlying joint distribution of [image: there is no content]. In practice, the values of [image: there is no content] are interpreted as k measurements of a n-dimensional random vector; [image: there is no content] is the corresponding notation that we use throughout the paper to denote a sample of k random measurements elaborated from the DM. If the measurements are concentrated around a single n-dimensional support point, the estimated joint entropy is close to zero. This fact allows us to use Equation (15) as a systematic compression rule, retaining only a single representative graph of [image: there is no content].



The selection of the subsets [image: there is no content], is the first important algorithmic issue to be addressed. In the original ODSE [11], the subset selection has been performed by means of a randomized algorithm. The computational complexity of this approach was [image: there is no content], which does not scale adequately as the input size grows.




3.3. The ODSE Expansion Operation


The expansion focuses on each single [image: there is no content], by analyzing the corresponding columns of the compressed DM, [image: there is no content]. By denoting with [image: there is no content] the sample containing the n DVs corresponding to the j-th column of [image: there is no content], we say that [image: there is no content] is expandable if


[image: there is no content]



(16)




where [image: there is no content] is the expansion threshold. Practically, the information provided by the prototype is low if the n unidimensional measurements are concentrated around a single real-valued number. In such a case, the estimated entropy would be low, approaching zero as the underlying distribution becomes degenerate. Examples of such prototypes are outliers and prototype graphs that are equal in the same measure to all other graphs. Once an expandable [image: there is no content] is individuated through (16), [image: there is no content] is substituted by extracting [image: there is no content] new graphs elaborated from [image: there is no content]. Notably, those new graphs are derived by searching for recurrent subgraphs in a suitable subset of the training graphs.



Although the idea of trying to extract new features by searching for (recurrent) subgraphs is interesting, it is also very expensive in terms of computational complexity.





4. The Improved ODSE Graph Classifier


The improved ODSE system [40] is designed with the primary goal of a significant computational speed-up. The first variant, which is presented in Section 4.1, considers a simple yet fast RS initialization strategy and a more advanced compression mechanism. The compression is grounded on a formal result discussed in Section 4.1.2. The second variant is presented in Section 4.2. This version includes a more elaborated initialization of the RS, while it is characterized by the same CBC operation. The expansion operation, in both cases, has been greatly simplified. Finally, in Section 4.3 we discuss an important fact related to the efficiency of the implemented CBC.



4.1. ODSE with Clustering-Based Compression Operation


4.1.1. Randomized Representation Set Initialization


The initial RS [image: there is no content], that is, the RS used during the synthesis, is defined by sampling the [image: there is no content] according to a selection probability, p. The size of the initial RS is thus characterized by a binomial distribution, selecting in average [image: there is no content] graphs, with variance [image: there is no content]. Although such a selection criteria is linear in the training set size, it operates blindly and may also cause an unbalanced selection of the prototypes w.r.t. the prior class distributions. However, such a simple sampling scheme is mostly used when the available hardware cannot process the entire dataset at hand.




4.1.2. Compression by a Clustering-Based Subset Selection


The entropy measured by the QRE estimator (3) is used to determine the compressibility of a subset of prototypes, [image: there is no content]. Since the entropy estimation is directly related to the DVs between the graphs of [image: there is no content], we design a subset selection strategy that aggregates the initial prototypes according to their distances in the DS. Such subsets are guaranteed to be compressible by definition, avoiding thus the computational burden involved in entropy estimation.



We make use of the well-known Basic Sequential Algorithmic Scheme (BSAS) clustering algorithm (see the pseudo-code in Algorithm 1) with the aim of grouping the n-dimensional dissimilarity column-vectors [image: there is no content], with (hyper)spheres and using the Euclidean metric [image: there is no content]. The main reason behind the use of such a simple cluster generation rule is that it is much faster than other more sophisticated approaches [44], and it gives full control on the generated cluster geometry through a single real-valued parameter, [image: there is no content]. Since [image: there is no content] constrains each cluster [image: there is no content] to have a maximum intra-cluster DV (i.e., a diameter) lower or equal to [image: there is no content], we can deduce analytically the value of [image: there is no content] considering the particular instance of the kernel size [image: there is no content] and entropy threshold [image: there is no content] used in Equation (15). Accordingly, the following theorem (see [40] for the proof) allows us to determine a partition [image: there is no content] that contains clusters that are compressible by construction.



	Algorithm 1 BSAS Cluster Generation Rule



	Input: The ordered n input elements, a dissimilarity measure [image: there is no content], the cluster radius [image: there is no content], and the maximum number of allowed clusters Q

Output: The partition [image: there is no content]

1: for [image: there is no content]do

2:  if [image: there is no content]then

3:   Create a new cluster in [image: there is no content] and define [image: there is no content] as the set representative

4:  else

5:   Get the distance value D from the closest representative modeling a cluster of the current partition [image: there is no content]

6:   [image: there is no content]

7:   if [image: there is no content] AND [image: there is no content]then

8:    Add a new cluster in [image: there is no content] and define [image: there is no content] as the representative

9:   else

10:    Add [image: there is no content] in the j-th cluster and update the representative element

11:   end if

12:  end if

13: end for






Theorem 1.

The compressible partition [image: there is no content] obtained on a training set [image: there is no content] of n graphs, is derived setting:


[image: there is no content]



(17)











The optimization of [image: there is no content] and [image: there is no content], together with the proof of Theorem 1, allows us to search for the best level of training set compression for the problem at hand. Algorithm 2 shows the pseudo-code of the herein described compression operation. Since the ultimate aim of the compression is to aggregate prototypes that convey similar information w.r.t. [image: there is no content], we represent a cluster using the minimum sum of distances (MinSOD) technique [45]. In fact, the MinSOD allows to select a single representative element [image: there is no content] according to the following expression:


[image: there is no content]



(18)







Eventually, the p prototype graphs, [image: there is no content], corresponding to the p computed MinSOD elements in the DS, populate the compressed RS, [image: there is no content].



	Algorithm 2 Clustering-Based Compression Algorithm



	Input: The initial set of prototype graphs [image: there is no content], the DM [image: there is no content], the compression threshold [image: there is no content], and the kernel size [image: there is no content]

Output: The compressed set of prototype graphs [image: there is no content]

1: Configure BSAS setting [image: there is no content] and [image: there is no content] according to Equation (17)

2: Let [image: there is no content] be the (ordered) set of dissimilarity vectors elaborated from the columns of [image: there is no content]

3: Execute the BSAS on [image: there is no content]. Let [image: there is no content] be the obtained compressible partition

4: Compute the MinSOD element [image: there is no content] of each cluster [image: there is no content], according to Equation (18). Retrieve from [image: there is no content] the prototype graph [image: there is no content] corresponding to each dissimilarity vector [image: there is no content]

5: Define [image: there is no content]

6: return [image: there is no content]








The search interval for the kernel size [image: there is no content] can be effectively reduced as follows:


[image: there is no content]



(19)







A proof for (19) can be found in [40]. This bound is important, since it allows to narrow down the search interval for the kernel size [image: there is no content], which is theoretically defined in the entire extended real line.




4.1.3. Expansion Based on Replacement with Maximum Dissimilar Graphs


The genetic algorithm evolves a population of models over iterations [image: there is no content]. Let [image: there is no content] be defined as shown in Section 4.1.1, and let [image: there is no content] be the set of unselected training graphs at iteration [image: there is no content]. Finally, let [image: there is no content] be the compressed RS at iteration t. The herein described expansion operation makes use of the elements of [image: there is no content] replacing in [image: there is no content] those prototypes that do not discriminate the classes. The expansion of a single prototype graph is still performed by the same criterion described in Section 3.3. Notably, if the estimated entropy of the j-th column vector is lower than the expansion threshold [image: there is no content], then l new training graphs are selected from [image: there is no content] for each class, where [image: there is no content]. [image: there is no content] new graphs are selected such that they result maximally dissimilar w.r.t. the j-th prototype under analysis. The new expansion procedure is outlined in Algorithm 2 of [40].



Since compression and expansion are evaluated considering two different interpretations of the DM, we accordingly use two different kernel sizes: [image: there is no content] and [image: there is no content].




4.1.4. Analysis of Computational Complexity


The computational complexity is dictated by the execution of the genetic algorithm, [image: there is no content]. I is the cost of the RS initialization, E is the number of (maximum) evolutions, P is the population size, and finally F is the cost related to a single fitness function evaluation. Here, the initialization is linear in the training set size, [image: there is no content]; in average we select [image: there is no content] prototypes. The detailed cost related to the fitness function, [image: there is no content], is articulated as the sum of the following costs:


O(F1)=O(nd′g);O(F2)=O(nQCe);O(F3)=Od←n2×Nlog(N)+ζl;O(F4)=Ond¯;O(F5)=Ov×d¯+kn;O(F6)=On2d¯.



(20)







The first cost, [image: there is no content], is related to the computation of the initial DM corresponding to [image: there is no content] with RS obtained through the initialization of Section 4.1.1; g is the computational cost associated with the adopted IGM procedure. [image: there is no content] is related to the compression operation which consists of a single BSAS execution, where [image: there is no content] is the cache size of the MinSOD [45], [image: there is no content], and [image: there is no content] is the cost of a single Euclidean distance computation. [image: there is no content] is the cost characterizing the expansion operation; N is the cardinality of the set [image: there is no content]. This operation is repeated at most [image: there is no content] times, with a quadratic entropy estimation cost in the training set size. [image: there is no content] is the cost related to the embedding of the DM, and [image: there is no content] is due to the classification of the validation set using a k-NN rule based classifier—this cost is updated according to the specific classifier. [image: there is no content] is the cost for the QRE over the compressed and expanded DM.



As it is possible to deduce from Equation (20), the model synthesis is now characterized by a quadratic cost in the training set size, n, as well as in the RS size, d, while in the original ODSE it was (pseudo) cubic in both n and d.





4.2. ODSE with Mode Seeking Initialization


The ODSE variant described in this section does not include any expansion operation. The RS initialization is now part of the synthesis, since it depends on some of the parameters tuned during the optimization. Compression is still implemented as described in Section 4.1.2.



The initialization makes use of the Mode Seek (MS) algorithm [37], which is a well-known procedure that is able to individuate the modes of a distribution. For each class [image: there is no content], and considering a user-defined neighborhood size [image: there is no content], the algorithm proceeds as illustrated in Algorithm 3 of [40]. The elements of [image: there is no content] found in this way are the estimated modes of the class distribution; it is a supervised algorithm.



The cardinality of [image: there is no content] depends on the choice of s: the larger is s, the smaller [image: there is no content]. This approach is very appropriate when elements of the same class are distributed in different and heterogeneous clusters: the cluster representatives are the modes individuated by the MS algorithm. Moreover, the MS algorithm can be useful to filter out outliers, since they are characterized by a low neighborhood density. The procedure depends on s, which directly influences the outcome of the initialization. Additionally, since a neighborhood is defined in the graph domain, MS is also dependent on the TWEC weights. For this reason, the initialization is now performed during the ODSE synthesis.



To limit the complexity of such an initialization, in the experiments we systematically assign small values to s, constraining the search in small neighborhoods. A possible side effect of this choice is that we can find an excessive number of prototypes/modes. This effect is however attenuated by the use of the compression Algorithm 2.



Analysis of Computational Complexity


The overall computational cost of the synthesis is now bounded by [image: there is no content]; see (21). The two main steps of the fitness function involve the execution of the MS algorithm followed by the compression algorithm. The [image: there is no content] cost refers to the MS algorithm. [image: there is no content] is the number of training data belonging to the i-th class. [image: there is no content] refers to the computation of the initial DM, constructed using [image: there is no content] and the [image: there is no content] prototypes derived with MS. [image: there is no content] is the cost of the compression operation, with [image: there is no content]. [image: there is no content], [image: there is no content], and [image: there is no content] are equivalent to the ones described in Section 4.2. The overall cost is dominated by the initialization stage (the [image: there is no content] cost), which is (pseudo) quadratic in the class size [image: there is no content], and quadratic in the neighborhood size, s,


O(F1)=On+ζ|ci|×|ci|g+|ci|log(|ci|)+s+s2;O(F2)=O(nd′g);O(F3)=O(nQCe);O(F4)=Ond¯;O(F5)=Ov×d¯+kn;O(F6)=On2d¯.



(21)









4.3. The Efficiency of the ODSE Clustering-Based Compression


The BSAS (see Algorithm 1) is characterized by a linear computational complexity. However, due to the sequential processing nature, the outcome is sensitive to the data presentation order. In the following, we study the effect caused by the ordering of the input over the effectiveness of the CBC, by calculating what we called ODSE compression efficiency factor.



Let [image: there is no content] be the sequence of dissimilarity vectors describing the n prototypes in the DS, which are presented in input to Algorithm 1. Let [image: there is no content] be the set of all permutations of the sequence s. We define the optimal compression ratio [image: there is no content] for the sequence s as:


[image: there is no content]



(22)




where [image: there is no content] is the compressed RS obtained by analyzing the prototypes arranged according to [image: there is no content], and [image: there is no content] is the uncompressed RS, i.e., the initial RS. Let [image: there is no content] be the effective compression ratio, achieved by ODSE considering a generic ordering of s. The ratio


[image: there is no content]



(23)




describes the asymptotic efficiency of the ODSE compression as the initial RS size grows.

Theorem 2.

The asymptotic worst-case ODSE compression efficiency factor is [image: there is no content].







The proof can be found in Appendix A. An interpretation of the result of Theorem 2 is that the asymptotic efficiency of the implemented CBC varies within the [image: there is no content] range of the optimum compression.





5. ODSE with the MST-Based Rényi Entropy Estimator


In the following, we contextualize the MST-RE estimation technique introduced in Section 2.2 as a component of the improved ODSE system presented in Section 4. Notably, we discuss a theorem for determining the [image: there is no content] parameter used in the compression operation (Algorithm 2). In this case, we generate clusters according to the particular instance of [image: there is no content] and of the [image: there is no content] parameter, since the kernel size parameter, [image: there is no content], is not present in the MST-based estimator. The [image: there is no content] parameter is optimized during the ODSE synthesis. While [image: there is no content] is defined in [image: there is no content], where d is the dimensionality of the samples, we restrict the search interval to [image: there is no content], with [image: there is no content] in the experiments. This technical choice is motivated by the fact that [image: there is no content] is used in Equation (5) as exponent, and an excessively large value would easily cause overflow problems for the floating-point representation of the MST length variable.

Theorem 3.

Considering the instances of γ and [image: there is no content], a compressible partition [image: there is no content] is derived executing the BSAS algorithm on [image: there is no content] training graphs by setting:


θ≤2τc−1nτc2β−τc+1γc(γ),where0≤c(γ)≤2αγ.



(24)











The proof of this theorem can be found in Appendix B. Defining [image: there is no content] according to Equation (24) constrains the BSAS to generate clusters that are compressible by construction. Since [image: there is no content] and [image: there is no content] are optimized during the ODSE synthesis, the result of Theorem 3, likewise the one of Theorem 1, allows us to evaluate different levels of training set compression according to the overall system performance. It goes without saying that computational complexity discussed in the previous sections is readily updated by considering the cost of the MST-based estimator (see Equation (9) for details).




6. Experimental Section


In Section 6.1 we introduce the IAM benchmarking datasets considered in our study; in Section 6.2 we present the experimental setting. Finally, in Section 6.3 we show and discuss the results.



6.1. Datasets


The experimental evaluation is performed on the well-known IAM graph benchmarking database [46]. The IAM database contains several datasets representing real-world data: from images to biochemical compounds. In particular, we use the Letter LOW (L-L), Letter MED (L-M), Letter HIGH (L-H), AIDS (AIDS), Proteins (P), GREC (G), Mutagenicity (M), and finally the Coil-Del (C-D) datasets. The first three datasets denote digitized characters modeled as labeled graphs, which are characterized by three different levels of noise. The AIDS, P, and M datasets represent biochemical networks, while G and C-D are images of various type. For the sake of brevity, we report only essential details in Table 2, referring the reader to [46] (and references therein) for a more in-depth discussion about the data. Moreover, since each dataset contains graphs characterized by different vertex and edge labels, we adopted the same vertex and edge dissimilarity measures described in [11,12].



Table 2. IAM datasets. See [46] for details. “#” indicates cardinality of the sets.







	
DS

	
# (tr, vs, ts)

	
Classes

	
Average [image: there is no content]

	
Average [image: there is no content]






	
L-L

	
(750, 750, 750)

	
15

	
4.7

	
3.1




	
L-M

	
(750, 750, 750)

	
15

	
4.7

	
3.2




	
L-H

	
(750, 750, 750)

	
15

	
4.7

	
4.5




	
AIDS

	
(250, 250, 1500)

	
2

	
15.7

	
16.2




	
P

	
(200, 200, 200)

	
6

	
32.6

	
62.1




	
G

	
(286, 286, 528)

	
22

	
11.5

	
12.2




	
M

	
(1500, 500, 2337)

	
2

	
30.3

	
30.8




	
C-D

	
(2400, 500, 1000)

	
100

	
21.5

	
54.2











6.2. Experimental Setting


The ODSE system version described in Section 4.1 is denoted as ODSE2v1, while the version described in Section 4.2 as ODSE2v2. These two versions make use of the QRE estimator; the setting of the clustering algorithm parameter [image: there is no content] used during the compression is hence performed according to the result of Theorem 1. By following the same algorithmic scheme, we consider two additional ODSE variants adopting the MST-RE estimator. We denote these two variants as ODSE2v1-MST and ODSE2v2-MST. [image: there is no content] is hence determined according to the proof of Theorem 3. However, the MST-based estimator is conceived for high-dimensional data. As a consequence, in the ODSE2v1-MST system version we still use the QRE estimator in the expansion operation. We adopted two feature-based classifiers operating in the DS. The first one is a k-nearest neighbors (k-NN) rule based classifier equipped with the Euclidean distance, testing three values of k: 1, 3, and 5. We also consider a fast MMN, which is trained with the ARC algorithm [43]. The four aforementioned ODSE variants (i.e., ODSE2v1, ODSEv2, ODSEv1-MST, and ODSE2v2-MST) are therefore replicated into additional four variants that are straightforwardly denoted as ODSE2v1-MMN, ODSEv2-MMN, ODSEv1-MST-MMN, and ODSE2v2-MST-MMN, meaning that we just use the neuro-fuzzy MMN on the embedding space, instead of the k-NN. Table 3 summarizes all ODSE configurations evaluated in this paper.



Table 3. Summary of the ODSE configurations evaluated in the experiments. The “Init” column refers to the RS initialization scheme, “Compression/Est.” refers to the compression algorithm and adopted entropy estimator, “Expansion/Est.” the same but for the expansion algorithm, and “Obj. Func. (14)” refers to the entropy estimator adopted in Equation (14). Finally, “FB Class.” specifies the feature-based classifier operating in the DS.







	
Acronym

	
Init

	
Compression/Est.

	
Expansion/Est.

	
Obj. Func. (14)

	
FB Class.






	
ODSE2v1

	
Section 4.1.1

	
Section 4.1.2/QRE

	
Section 4.1.3/QRE

	
QRE

	
k-NN




	
ODSE2v2

	
Section 4.2

	
Section 4.1.2/QRE

	
–

	
QRE

	
k-NN




	
ODSE2v1-MST

	
Section 4.1.1

	
Section 4.1.2/MST-RE

	
Section 4.1.3/QRE

	
MST-RE

	
k-NN




	
ODSE2v2-MST

	
Section 4.2

	
Section 4.1.2/MST-RE

	
–

	
MST-RE

	
k-NN




	
ODSE2v1-MMN

	
Section 4.1.1

	
Section 4.1.2/QRE

	
Section 4.1.3/QRE

	
QRE

	
MMN




	
ODSE2v2-MMN

	
Section 4.2

	
Section 4.1.2/QRE

	
–

	
QRE

	
MMN




	
ODSE2v1-MST-MMN

	
Section 4.1.1

	
Section 4.1.2/MST-RE

	
Section 4.1.3/QRE

	
MST-RE

	
MMN




	
ODSE2v2-MST-MMN

	
Section 4.2

	
Section 4.1.2/MST-RE

	
–

	
MST-RE

	
MMN










Experiments are executed with a (fixed) population size of 30 individuals, and performing a maximum of 40 evolutions; a check on the fitness value is however performed terminating the optimization if the fitness does not change for 15 consecutive evolutions. This choice allows for a fair comparison with the previously obtained results in [11,40]. The genetic algorithm performs roulette wheel selection, two-point crossover, and random mutation on the aforementioned codes [image: there is no content], encoding the real-valued model parameters; in addition, the genetic algorithm implements an elitism strategy which automatically imports the fittest individual into the next population. In all configurations, we executed the system setting [image: there is no content] and [image: there is no content] in Equations (11) and (12), respectively. Moreover, the s parameter affecting the MS algorithm has been set as follows: 10 for the L-L, L-M, and L-H, 20 for AIDS, 2 for P, 8 for G, and finally 100 for either M and C-D. Note that these values have been defined according to the training dataset size and considering some preliminary fine tuning. Each dataset has been processed five times using different random seeds, reporting hence the average test set classification accuracy together with its standard deviation. We show also the required average serial CPU time and the average RS size obtained after the model synthesis. Tests have been conducted on a regular desktop machine with an Intel Core2 Quad CPU Q6600 at 2.40 GHz and 4 Gb of RAM; software is implemented in C++ on Ubuntu 14.04 using the SPARE library [47]. Finally, computing time is measured using the clock() routine of the standard ctime library.




6.3. Results and Discussion


All test set classification accuracy results have been collected in Table 4, including those of three baseline reference systems and several state-of-the-art (SOA) classification systems based on graph embedding techniques. The table is divided in appropriate macro blocks to improve readability. The three reference systems are denoted as RPS + TWEC + k-NN, k-NN + TWEC, and RPS + TWEC + MMN. The first one performs a (class-independent) randomized selection of the training graphs to develop the dissimilarity representation of the input data. This system adopts the same TWEC used in ODSE and performs the classification in the DS by means of a k-NN classifier equipped with the Euclidean distance. The second one differs from the first system by instead using the MMN. Finally, the third reference system operates directly in [image: there is no content] by means of a k-NN rule based classifier equipped with TWEC. In all cases, to obtain a fair comparison, the configuration of the dissimilarity measures for the vertex/edge labels is consistent with the one adopted previously. Additionally, [image: there is no content], and 5 are used in the k-NN rule, performing the TWEC parameters optimization (i.e., the weights in [image: there is no content]) by means of the same aforementioned genetic algorithm implementation. Therefore, also in this case, the test set results must be intended as average of five different runs (however we omit standard deviations for the sake of brevity).



Table 4. Test set classification accuracy results. Lines in grey denote novel results introduced in this paper. The “-” sign means that the result is not available to our knowledge. Bold values denote significant differences as discussed in the text.







	
Classifier

	
Dataset

	
Rank




	
L-L

	
L-M

	
L-H

	
AIDS

	
P

	
G

	
M

	
C-D






	
Reference systems




	
RPS + TWEC + k-NN, [image: there is no content]

	
98.4

	
96.0

	
95.0

	
98.5

	
45.5

	
95.0

	
69.0

	
81.0

	
15




	
k-NN + TWEC, [image: there is no content]

	
96.8

	
66.3

	
36.3

	
73.9

	
52.1

	
95.0

	
57.7

	
61.2

	
38




	
RPS+TWEC + k-NN, [image: there is no content]

	
98.6

	
97.2

	
94.7

	
98.2

	
40.5

	
92.0

	
68.7

	
63.2

	
23




	
k-NN + TWEC, [image: there is no content]

	
97.5

	
57.4

	
39.1

	
71.4

	
48.5

	
91.8

	
56.1

	
33.7

	
39




	
RPS+TWEC + k-NN, [image: there is no content]

	
98.3

	
97.1

	
95.0

	
97.6

	
35.4

	
84.8

	
68.5

	
59.7

	
32




	
k-NN + TWEC, [image: there is no content]

	
97.6

	
60.4

	
42.2

	
76.7

	
43.0

	
88.5

	
56.9

	
27.8

	
40




	
RPS + TWEC + MMN

	
98.0

	
96.0

	
93.6

	
97.4

	
49.5

	
95.0

	
66.0

	
68.4

	
28




	
SOA systems




	
GMM + soft all + SVM [26]

	
99.7

	
93.0

	
87.8

	
-

	
-

	
99.0

	
-

	
98.1

	
12




	
Fuzzy k-means+soft all + SVM [26]

	
99.8

	
98.8

	
85.0

	
-

	
-

	
98.1

	
-

	
97.3

	
9




	
sk + SVM [48]

	
99.7

	
85.9

	
79.1

	
97.4

	
-

	
94.4

	
55.4

	
-

	
30




	
le + SVM [48]

	
99.3

	
95.9

	
92.5

	
98.3

	
-

	
96.8

	
74.3

	
-

	
7




	
PCA + SVM [49]

	
92.7

	
81.1

	
73.3

	
98.2

	
-

	
92.9

	
75.9

	
93.6

	
26




	
MDA + SVM [49]

	
89.8

	
68.5

	
60.5

	
95.4

	
-

	
91.8

	
62.4

	
88.2

	
37




	
svm + SVM [50]

	
99.2

	
94.7

	
92.8

	
98.1

	
71.5

	
92.2

	
68.3

	
-

	
17




	
svm + kPCA [50]

	
99.2

	
94.7

	
90.3

	
98.1

	
67.5

	
91.6

	
71.2

	
-

	
14




	
lgq [51]

	
81.5

	
-

	
-

	
-

	
-

	
86.2

	
-

	
-

	
35




	
bayes1 [52]

	
80.4

	
-

	
-

	
-

	
-

	
80.3

	
-

	
-

	
36




	
bayes2 [52]

	
81.3

	
-

	
-

	
-

	
-

	
89.9

	
-

	
-

	
34




	
FMGE + k-NN [30]

	
97.1

	
75.7

	
66.5

	
-

	
-

	
97.5

	
69.1

	
-

	
31




	
FMGE + SVM [30]

	
98.2

	
83.1

	
70.0

	
-

	
-

	
99.4

	
76.5

	
-

	
21




	
d-sps-SVM [31]

	
99.5

	
95.4

	
93.4

	
98.2

	
73.0

	
92.5

	
71.5

	
-

	
8




	
GRALGv1 [12]

	
98.2

	
75.6

	
69.6

	
99.7

	
-

	
97.7

	
73.0

	
94.0

	
10




	
GRALGv2 [12]

	
97.6

	
89.6

	
82.6

	
99.7

	
64.6

	
97.6

	
73.0

	
97.8

	
6




	
Original ODSE




	
ODSE, [image: there is no content] [11]

	
98.6

	
96.8

	
96.2

	
99.6

	
61.0

	
96.2

	
73.4

	
-

	
1




	
Improved ODSE with QRE




	
ODSE2v1, [image: there is no content] [40]

	
99.0

	
97.0

	
96.1

	
99.1

	
61.2

	
98.1

	
68.2

	
78.1

	
4




	
ODSE2v2, [image: there is no content] [40]

	
98.7

	
97.1

	
95.4

	
99.5

	
51.9

	
95.4

	
68.1

	
77.2

	
5




	
ODSE2v1, [image: there is no content] [40]

	
99.0

	
97.2

	
96.1

	
99.3

	
41.4

	
90.2

	
68.7

	
64.3

	
13




	
ODSE2v2, [image: there is no content] [40]

	
98.8

	
97.4

	
95.1

	
99.4

	
31.4

	
38.0

	
69.4

	
59.0

	
24




	
ODSE2v1, [image: there is no content] [40]

	
99.1

	
96.8

	
95.2

	
99.0

	
38.9

	
85.4

	
69.0

	
58.6

	
27




	
ODSE2v2, [image: there is no content] [40]

	
98.7

	
97.0

	
95.6

	
99.4

	
31.3

	
82.5

	
70.0

	
54.0

	
25




	
ODSE2v1-MMN

	
98.3

	
95.2

	
94.0

	
99.3

	
53.1

	
94.5

	
67.9

	
62.8

	
22




	
ODSE2v2-MMN

	
97.8

	
95.6

	
93.6

	
99.6

	
48.7

	
94.8

	
68.2

	
59.2

	
29




	
Improved ODSE with MST-RE




	
ODSE2v1-MST, [image: there is no content]

	
98.6

	
96.8

	
98.9

	
99.3

	
61.3

	
95.6

	
70.0

	
81.0

	
3




	
ODSE2v2-MST, [image: there is no content]

	
98.4

	
97.1

	
96.0

	
99.7

	
51.0

	
94.1

	
71.6

	
82.0

	
2




	
ODSE2v1-MST, [image: there is no content]

	
98.7

	
97.0

	
96.8

	
99.5

	
43.0

	
92.3

	
68.6

	
64.8

	
11




	
ODSE2v2-MST, [image: there is no content]

	
98.8

	
96.9

	
96.0

	
99.7

	
35.0

	
91.0

	
69.4

	
60.0

	
16




	
ODSE2v1-MST, [image: there is no content]

	
99.0

	
96.8

	
95.6

	
99.6

	
41.4

	
85.0

	
68.6

	
60.0

	
18




	
ODSE2v2-MST, [image: there is no content]

	
98.8

	
97.0

	
95.5

	
99.7

	
32.9

	
83.3

	
70.0

	
54.0

	
19




	
ODSE2v1-MST-MMN

	
97.9

	
95.4

	
93.6

	
99.3

	
49.9

	
95.0

	
68.3

	
62.6

	
20




	
ODSE2v2-MST-MMN

	
97.9

	
95.1

	
91.8

	
99.2

	
48.5

	
94.8

	
67.1

	
59.0

	
33










Table 4 presents the obtained test set classification accuracy results, while Table 5 gives the corresponding standard deviations. We provide two types of statistical evaluation of such results. First, we perform pairwise comparisons by means of the t-test; we adopt the usual 5% as significance threshold. Notably, we check if any of the improved ODSE variants significantly outperforms, for each single dataset, both the reference systems and original ODSE. Best results satisfying such a condition are reported in bold in Table 4. In addition to the pairwise comparisons, we calculate also a global ranking of all classifiers by means of the Friedman’s test. Missing values are replaced by the dataset-specific averages.



Table 5. Standard deviations of ODSE results shown in Table 4. (Lines in grey denote novel results introduced in this paper).







	
Classifier

	
Dataset




	
L-L

	
L-M

	
L-H

	
AIDS

	
P

	
G

	
M

	
C-D






	
ODSE [11]

	
0.0256

	
1.2346

	
0.2423

	
0.0000

	
0.7356

	
0.4136

	
0.6586

	
-




	
ODSE2v1, [image: there is no content] [40]

	
0.0769

	
0.2309

	
0.1539

	
0.0000

	
2.6242

	
1.3350

	
0.5187

	
4.3863




	
ODSE2v2, [image: there is no content] [40]

	
0.0769

	
0.0769

	
0.4000

	
0.0000

	
0.2915

	
0.8021

	
0.5622

	
2.2654




	
ODSE2v1, [image: there is no content] [40]

	
0.0769

	
0.2309

	
0.2666

	
0.0000

	
1.0513

	
1.2236

	
0.0856

	
0.0577




	
ODSE2v2, [image: there is no content] [40]

	
0.0769

	
0.4618

	
5.0800

	
0.1924

	
1.1666

	
3.1540

	
0.0356

	
1.2361




	
ODSE2v1, [image: there is no content] [40]

	
0.5047

	
0.0769

	
0.9365

	
0.1924

	
0.5050

	
2.5585

	
0.3803

	
1.3279




	
ODSE2v2, [image: there is no content] [40]

	
0.1333

	
0.2309

	
0.0769

	
0.0000

	
2.7815

	
4.5220

	
1.2666

	
0.0026




	
ODSE2v1-MMN

	
0.1520

	
0.3320

	
0.3932

	
0.1861

	
1.7740

	
0.7315

	
1.1300

	
1.0001




	
ODSE2v2-MMN

	
0.2022

	
0.2022

	
0.7682

	
0.0000

	
2.7290

	
1.3584

	
1.4080

	
0.3896




	
ODSE2v1-MST, [image: there is no content]

	
0.0730

	
0.0730

	
0.1115

	
0.2772

	
1.5500

	
0.1055

	
1.0786

	
0.4163




	
ODSE2v2-MST, [image: there is no content]

	
0.0596

	
0.2231

	
0.0730

	
0.0000

	
1.1660

	
0.2943

	
0.9534

	
0.2146




	
ODSE2v1-MST, [image: there is no content]

	
0.1192

	
0.1520

	
0.0942

	
0.6982

	
1.0940

	
0.0000

	
0.5926

	
1.7088




	
ODSE2v2-MST, [image: there is no content]

	
0.1460

	
0.2022

	
0.0730

	
0.0000

	
0.0000

	
0.1112

	
0.2365

	
0.5655




	
ODSE2v1-MST, [image: there is no content]

	
0.1115

	
0.0942

	
0.2190

	
0.0596

	
0.4748

	
0.0000

	
0.0547

	
1.2356




	
ODSE2v2-MST, [image: there is no content]

	
0.0730

	
0.0596

	
0.9933

	
0.0000

	
0.0000

	
0.1112

	
1.0023

	
0.9563




	
ODSE2v1-MST-MMN

	
0.1115

	
0.4216

	
0.7624

	
0.3217

	
2.5735

	
0.3067

	
0.7926

	
0.9899




	
ODSE2v2-MST-MMN

	
0.0596

	
0.7636

	
0.7477

	
0.0000

	
2.7290

	
0.5828

	
0.8911

	
1.2020










First of all, we note that results obtained with the baseline reference systems are always worse than those obtained with ODSE. Test set classification accuracy percentages obtained by ODSE2v1-MST and ODSE2v2-MST are comparable with those of ODSE2v1 and ODSE2v2, although we note a slightly general improvement for the first two variants. Results are also more stable varying the neighborhood size parameter, k, of the k-NN rule. It is worth noting that, for difficult datasets such as P and C-D, increasing the neighborhood size in the k-NN rule significantly affects the test set performance (i.e., results degrade considerably). Test set results obtained by means of the MMN operating in the DS are in general (slightly) inferior w.r.t. the ones obtained with the k-NN rule with [image: there is no content]. This result is not too unusual since the k-NN rule is a valuable classifier, especially in absence of noisy data. Since ODSE operates by searching for the best-performing DS for the data at hand, we may deduce that the embedding vectors are discriminative for the classes. Test set results on the first four datasets (i.e., L-L, L-M, L-H, and AIDS) denote an important improvement over a large part of the SOA systems. On the other hand, results over the P, G, and M datasets are comparable w.r.t. those of the SOA systems. For all ODSE configurations, we observe non convincing results on the C-D dataset; in this case results are comparable only with those of the reference systems (first block of Table 4). However, a rational reason explaining this fact is not yet emerged from the tests, requiring thus further investigations. The global picture provided by the “Rank” column shows that the ODSE classifiers rank very well w.r.t. the SOA systems. Standard deviations (Table 5) are reasonably small, denoting a reliable classifier regardless the particular ODSE variant.



We demonstrated that the asymptotic computational complexity of ODSE2 is quadratic, while for the original ODSE it was cubic. Here, in order to complement this result with experimental evidence, we discuss also the physical computing time. The calculated serial CPU time, for each dataset, is shown in Table 6, which includes both ODSE synthesis and test set evaluation. The ODSE variants based on the MST entropy estimator are faster, with the only exception for the P and C-D datasets. This fact is magnified on the first four datasets, in which the speed-up factor w.r.t. the original ODSE considerably increases. The speed-up factors obtained for the first three datasets are one order of magnitude higher than the ones obtained in the other datasets. In order to provide an explanation for such differences, we need to take a closer look at the dataset details shown in Table 2, computational complexity in Equations (20) and (21), and the computational complexity of the original ODSE [11]. It is possible to notice that the first three datasets contain smaller (in average) labeled graphs. Therefore, this suggests to look for the related terms in the computational complexity formulae. The g term (the cost of the graph matching algorithm) is directly affected by the size of the graphs and appears in [image: there is no content] Equation (20) and [image: there is no content] in Equation (21). The same g term appears also in [image: there is no content] of Equation 24 in [11]. In the original ODSE version [11], the dissimilarity matrix is constructed using an initial set of prototypes equal to the training set (then it is compressed and expanded). In the new version presented in this paper, we instead use a reduced set with [image: there is no content] elements. In the first variant that we presented, [image: there is no content] graphs are selected randomly from the training set based on a selection probability. In the second variant, instead, we use the MS algorithm, which finds a much lower number of representatives (although, as said in the experimental setting section, we use a conservative setting for MS). This fact provides a first rational justification for explaining the aforementioned differences. In fact, graph matching algorithms are expensive from the computational viewpoint (the adopted algorithm is quadratic in the number of vertices). In addition, compression and expansion operations are now much faster. As shown in Table 7, the new ODSE versions compute a smaller RS; a direct consequence of the improved compression operation. This is another important factor contributing to the overall speed-up, since smaller RSs imply less graph matching computations during the validation and test stages; we remind that ODSE is trained by cross-validation. Clearly, there are also other factors, such as the convergence of the optimization algorithm, which might be affected by the specific dataset at hand.



Table 6. Average serial CPU time in minutes (and speed-up factor w.r.t. the original ODSE system) considering ODSE model synthesis and test set evaluation. In the k-NN case, we report the results with [image: there is no content] only. (Lines in grey denote novel results introduced in this paper).







	
Classifier

	
Dataset




	
L-L

	
L-M

	
L-H

	
AIDS

	
P

	
G

	
M

	
C-D






	
ODSE [11]

	
63274

	
52285

	
28938

	
394

	
8460

	
601

	
43060

	
-




	
ODSE2v1 [40]

	
284 (222)

	
329 (158)

	
328 (88)

	
38 (10)

	
3187 (3)

	
210 (3)

	
3494 (12)

	
2724




	
ODSE2v2 [40]

	
126 (502)

	
268 (195)

	
183 (158)

	
110 (3)

	
1683 (5)

	
96 (6)

	
10326 (4)

	
8444




	
ODSE2v1-MMN

	
129 (490)

	
284 (184)

	
263 (110)

	
17 (23)

	
3638 (2)

	
170 (4)

	
8837 (5)

	
5320




	
ODSE2v2-MMN

	
195 (324)

	
422 (124)

	
183 (158)

	
86 (5)

	
1444 (6)

	
77 (8)

	
28511 (2)

	
20301




	
ODSE2v1-MST

	
213 (297)

	
231 (226)

	
225 (129)

	
18 (22)

	
3860 (2)

	
168 (4)

	
2563 (17)

	
3261




	
ODSE2v2-MST

	
145 (463)

	
160 (327)

	
107 (270)

	
93 (4)

	
2075 (4)

	
74 (8)

	
7675 (6)

	
10092




	
ODSE2v1-MST-MMN

	
201 (315)

	
249 (210)

	
205 (141)

	
15 (26)

	
3450 (2)

	
155 (4)

	
5496 (8)

	
7135




	
ODSE2v2-MST-MMN

	
117 (541)

	
176 (292)

	
118 (245)

	
83 (5)

	
1380 (6)

	
75 (8)

	
28007 (2)

	
16599










Table 7. Average cardinality of the best-performing RS. In the k-NN case, we report the results with [image: there is no content] only since results with [image: there is no content] and [image: there is no content] are similar. (Lines in grey denote novel results introduced in this paper).







	
Classifier

	
Dataset




	
L-L

	
L-M

	
L-H

	
AIDS

	
P

	
G

	
M

	
C-D






	
ODSE [11]

	
435

	
750

	
750

	
250

	
200

	
283

	
1500

	
-




	
ODSE2v1 [40]

	
146

	
449

	
449

	
8

	
197

	
283

	
760

	
615




	
ODSE2v2 [40]

	
183

	
431

	
338

	
7

	
82

	
126

	
801

	
770




	
ODSE2v1-MM

	
136

	
192

	
144

	
6

	
190

	
163

	
563

	
555




	
ODSE2v2-MM

	
197

	
546

	
80

	
2

	
93

	
115

	
815

	
740




	
ODSE2v1-MST

	
597

	
595

	
597

	
6

	
198

	
283

	
687

	
618




	
ODSE2v2-MST

	
551

	
574

	
447

	
61

	
122

	
129

	
813

	
775




	
ODSE2v1-MST-MMN

	
600

	
606

	
500

	
5

	
190

	
184

	
424

	
549




	
ODSE2v2-MST-MMN

	
550

	
580

	
411

	
61

	
93

	
115

	
456

	
733










As expected, the sped-up factors obtained by using the MMN as classifier are in general higher than those obtained with kNN. In fact, MMN synthesizes a classification model over embedded training data. This significantly reduces the computing time necessary for the evaluation of the test set (and also of the validation stage). This is demonstrated by the results in Table 8, where we report the CPU time for the test set evaluation only. This fact might assume more importance in particular applications, especially in those where the synthesis of the classifier can be effectively performed only once in off-line mode and the classification model is employed to process high-rate data streams in real-time [53].



Table 8. Average serial CPU time in seconds for test set evaluation only. For simplicity, we report the results of only one system variant operating in the DS with the k-NN classifier and only one with the MMN. (Lines in grey denote novel results introduced in this paper).







	
Classifier

	
Datasets




	
L-L

	
L-M

	
L-H

	
AIDS

	
P

	
G

	
M

	
C-D






	
ODSE2v1-MST, [image: there is no content]

	
0.740

	
0.740

	
0.740

	
0.130

	
0.020

	
0.060

	
9.020

	
9.700




	
ODSE2v1-MST-MMN

	
0.105

	
0.105

	
0.105

	
0.005

	
0.014

	
0.045

	
6.600

	
5.250










Let us focus now on the structural complexity of the synthesized classification models. The cardinality of the best-performing RSs are shown in Table 6. It is possible to note that the cardinality are slightly bigger for those variants operating with MST-RE (especially in the first three datasets, i.e., L-L, L-M, and L-H). From this fact we deduce that, when configuring the CBC procedure with the MST-RE estimator, the ODSE classifier, in order to obtain good results in terms of test set accuracy, requires a more complex model w.r.t. the variants involving the QRE estimator. This behavior is, however, magnified by the setting of the objective function parameter [image: there is no content] adopted in our experiment, which biases the ODSE system towards maximizing the recognition rate. Notably, variants operating with the MMN develop considerable less costly classification models (see Table 7 and Table 9 for the details). This particular aspect becomes very important in resource-constrained scenarios and/or when the input datasets are large. The considerable reductions of the RS size achieved here strengthen the fact that the entropy estimation operates adequately in the dissimilarity representation context.



Table 9. Average number of hyperboxes generated by the MMN. The number of hyperboxes can be used as a complexity indicator of the model synthesized by the MMN on the DS. Such values should be taken into account considering also the dataset characteristics of Table 2 and the average RS sizes in Table 7. (Lines in grey denote novel results introduced in this paper).







	
Classifier

	
Dataset




	
L-L

	
L-M

	
L-H

	
AIDS

	
P

	
G

	
M

	
C-D






	
ODSE2v1-MMN

	
15

	
39

	
34

	
5

	
43

	
27

	
164

	
357




	
ODSE2v2-MMN

	
15

	
28

	
41

	
4

	
48

	
28

	
159

	
368




	
ODSE2v1-MST-MMN

	
15

	
27

	
38

	
3

	
48

	
28

	
168

	
348




	
ODSE2v2-MST-MMN

	
15

	
27

	
34

	
4

	
43

	
27

	
175

	
365












7. Conclusions and Future Directions


In this paper, we have presented different variants of the improved ODSE graph classification system. All discussed variants are based on the characterization of the informativeness of DMs through the estimation of the [image: there is no content]-order Rényi entropy. The first adopted estimator computes the QRE by means of a kernel-based density estimator, while the second one uses the length of an entropic MST. The improved ODSE system has been designed by providing different strategies for the initialization, compression, as well as for the expansion operation of the RS. In particular, we conceived a fast CBC scheme, which allowed us to directly control the compression level of the data through the explicit setting of the cluster radius parameter. We provided formal proofs related to the two estimation techniques, which enabled us to determine the value of cluster radii analytically according to the ODSE model optimization procedure. We have studied also the asymptotic worst-case efficiency of the CBC scheme implemented by means of a sequential cluster generation rule (BSAS).



Experimental evaluations and comparisons with several state-of-the-art systems have been performed on well-known benchmarking datasets of labeled graphs (IAM database). We used two different feature-based classifiers operating in the DS: the k-NN classifier equipped with the Euclidean distance and a neurofuzzy MMN trained with the ARC algorithm. Overall, the variants adopting the MST-based estimator were faster but less parsimonious for what concerns the synthesized ODSE model (i.e., the cardinality of the best-performing RS was larger). The use of the k-NN rule (with [image: there is no content]) produced slightly better test set accuracy results w.r.t. the MMN classifier, while in the latter case we observed important differences in term of (serial) CPU computing time, especially for what concerns the test set processing. The test set classification accuracy results confirmed the effectiveness of the ODSE classifier w.r.t. state-of-the-art standards. Moreover, the significative CPU time improvements w.r.t. the original ODSE version, and the highly parallelizable global optimization scheme based on genetic algorithms, bring the ODSE graph classifier one step closer towards the applicability to larger labeled graphs and big datasets.



The vector representation of the input graphs have been obtained directly using the rows of the DM. Such a choice, while it is known to be effective, has been mainly dictated by the computing time requirements of the system. It is worth analyzing the performance of ODSE also when the embedding space is obtained by a (non)linear embedding of the (corrected) pairwise dissimilarity values [54]. Future experiments include testing other core IGM procedures [55] and additional [image: there is no content]-order Rényi entropy estimators and feature-based classifiers.
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Appendix A Proof of Theorem 2


Proof. 

We focus on the worst-case scenario for [image: there is no content], giving thus a lower bound for the efficiency (23). Let [image: there is no content] denote the i-th element of the sequence s, i.e., the i-th dissimilarity vector corresponding to the prototype graph [image: there is no content]. Let [image: there is no content] be the best ordering for s, i.e.,


[image: there is no content]



(A1)







Let us assume the case in which the Euclidean distance among any pair of vectors in s is given by


d2(s[i],s[j])=|i−j|θ,1≤i,j≤n,



(A2)




where [image: there is no content] is the cluster radius adopted for the ODSE compression. It is easy to understand that this is the worst-case scenario for the compression purpose in the sequential clustering setting. In fact, each vector [image: there is no content] in the sequence s has a distance with its predecessor/successor equal to the maximum cluster radius [image: there is no content]. As a consequence, there is still a possibility to compress the vectors, although it is strictly dependent on the specific ordering of s.



First of all, it is important to note that, due to the distances assumed in (A2), only three elements of s can be contained into a single cluster. In fact, any three consecutive elements of the sequence s would form a cluster with a diameter equal to [image: there is no content]. Therefore, considering the sequential rule shown in Algorithm 1, and setting [image: there is no content], the best possible ordering [image: there is no content] is the one that preserves a distance equal to [image: there is no content] for any two adjacent elements of s, achieving a compression ratio of:


[image: there is no content]



(A3)







The worst possible ordering, instead, yields [image: there is no content], which can be achieved (assuming n odd) when considering the following ordering [image: there is no content] w.r.t. the optimal [image: there is no content]:


si[j]=s*[(2j mod n)+1],j=1,2,...,n.



(A4)







In this case, Algorithm 1 would generate exactly


[image: there is no content]



(A5)




clusters, corresponding to the first [image: there is no content] elements of the sequence [image: there is no content], since every pair of consecutive elements in [image: there is no content] is at a distance of exactly [image: there is no content]. Therefore, [image: there is no content] is the maximum number of clusters that can be generated by considering the distances assumed in (A2). Combining Equations (A3) and (A5), we obtain for a given s,


[image: there is no content]



(A6)




which allows us to claim that the worst-case efficiency of the ODSE compression varies as follows:


[image: there is no content]



(A7)







Taking the limit for [image: there is no content] in Equation (A7) gives us the claim. ☐






Appendix B Proof of Theorem 3


Proof. 

Let us focus the analysis on a single cluster [image: there is no content], containing [image: there is no content] prototypes within a training set of n graphs. We remind that cluster radius and diameter are, respectively, [image: there is no content] and [image: there is no content] in the spherical cluster case. Therefore, we can obtain an upper bound for the MST length factor (5), considering that (all) corresponding MST, T, of the complete graph generated from the k measurements has [image: there is no content] edges with weights equal to [image: there is no content]. Specifically,


[image: there is no content]



(A8)







In the following, we evaluate [image: there is no content] exactly as defined in Equation (8), considering n dimensions—note that [image: there is no content] is shortened as [image: there is no content]. Equation (A8) allows us to derive the following upper bound for the MST-based entropy estimator (6):


H^α(D̲k)=nγlnLγ(D̲k)kα−lnβ(Lγ,n)≤nγlnLγ(θ)kα−ln(β)=nγln(k−1)×(2θ)γkα−ln(β)=nγln(k−1)+γln(2θ)−ln(kα)−ln(β).



(A9)







However, the entropy estimator shown in Equation (6) does not yield normalized values (e.g., in [image: there is no content]). We can normalize the estimations by considering the following factor:


[image: there is no content]



(A10)







The quantity [image: there is no content] is the maximum distance in an Euclidean [image: there is no content]-hypercube of n-dimensions; [image: there is no content] is the input data extent, which is 2 in our case. Equation (A10) is a maximizer of (6), since the logarithm is a monotonically increasing function and the other relevant factors in the expression remain constant changing the input distribution. Instead, the MST length achieves its maximum value only in the specific case where all k points are at a distance equal to [image: there is no content]. Therefore, by normalizing Equation (A9) using (A10), we obtain:


[image: there is no content]



(A11)







Rewriting the expression in terms of the ODSE compression rule (15), we have:


[image: there is no content]



(A12)







Solving for [image: there is no content], the right-hand side of (A12) can be manipulated as follows:


γln(2θ)≤τcln(k−1)+γln(2n)−ln(kα)−ln(β)−ln(k−1)+ln(kα)+ln(β);ln(2θ)≤τcγln(k−1)+γln(2n)−ln(kα)−ln(β)+1γ−ln(k−1)+ln(kα)+ln(β);θ≤12expτcγln(k−1)+γln(2n)−ln(kα)−ln(β)×exp1γ−ln(k−1)+ln(kα)+ln(β);θ≤12expln(k−1)+γln(2n)−ln(kα)−ln(β)τcγ×exp−ln(k−1)+ln(kα)+ln(β)1γ;θ≤12(k−1)2γnγ2k−αβ−1τcγ(k−1)−1kαβ1γ;θ≤12(k−1)τcγ2τcnτc2k−ατcγβ−τcγ(k−1)−1γkαγβ1γ;θ≤(k−1)τc−1γ2τc−1nτc2kα(−τc+1)γβ−τc+1γ.



(A13)







Considering that [image: there is no content] and [image: there is no content] hold for any [image: there is no content], we rewrite Equation (A13) accordingly as follows:


[image: there is no content]



(A14)






[image: there is no content]



(A15)







The right-hand side of Equation (A15) can be further simplified as


[image: there is no content]



(A16)




where the [image: there is no content] function has the following bounds:


[image: there is no content]



(A17)







In fact, provided that [image: there is no content] and [image: there is no content] hold, with [image: there is no content] (there is no need to compress singleton clusters), we have:


[image: there is no content]



(A18)







Note that [image: there is no content] depends also on [image: there is no content], which, however, in turn depends on [image: there is no content] (7); we express [image: there is no content] as a function of the [image: there is no content] parameter only. Equation (A18) evaluates to [image: there is no content] when [image: there is no content] and [image: there is no content], providing hence the upper bound for [image: there is no content]. ☐
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