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Abstract:



We apply the geometric quantization procedure via symplectic groupoids to the setting of epistemically-restricted toy theories formalized by Spekkens (Spekkens, 2016). In the continuous degrees of freedom, this produces the algebraic structure of quadrature quantum subtheories. In the odd-prime finite degrees of freedom, we obtain a functor from the Frobenius algebra of the toy theories to the Frobenius algebra of stabilizer quantum mechanics.
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1. Introduction


The aim of geometric quantization is to construct, using the geometry of the classical system, a Hilbert space and a set of operators on that Hilbert space that give the quantum mechanical analogue of the classical mechanical system modeled by a symplectic manifold [1,2,3]. Starting with a symplectic space M corresponding to the classical phase space, the square integrable functions over M is the first Hilbert space in the construction, called the prequantum Hilbert space. In this case, the classical observables are mapped to the operators on this Hilbert space, and the Poisson bracket is mapped to the commutator. The desired quantum Hilbert space consists of the sections of the prequantum Hilbert space, which depends on the “position” variables. These “position” variables are obtained by splitting the phase space via the polarization P, which is the Lagrangian subspace (i.e., the maximal subspace where the symplectic form vanishes) of the phase space.



The space of functions on M is a commutative algebra under the operations of pointwise addition and multiplication. A bivector field on M determines a Poisson bracket so that M can be regarded as an approximation to a noncommutative algebra. The quantization approach due to Rieffel aims to obtain such a [image: there is no content]-algebra, which is approximated by the Poisson algebra of the functions on M [4]. In this case, the algebra after quantization is a continuous field of [image: there is no content]-algebras rather than a single algebra. On the other hand, Hawkins suggests a quantization recipe using symplectic groupoids to obtain a single [image: there is no content]-algebra [5]. In this paper, we use the quantization formulation of Hawkins to investigate the epistemic toy theory due to Spekkens [6,7].



Recently, there has been a growing interest in quantum foundations in light of the quantum information revolution [8,9,10]. In this direction, Spekkens introduced this toy theory in support of the epistemic view of quantum mechanics [6]. The toy theory reproduces a large part of quantum theory by positing restrictions on the knowledge of an observer. The distinctively quantum phenomena arising in the toy theory include complementarity, no-cloning, no-broadcasting, teleportation, entanglement, Choi–Jamiolkowski isomorphism, Naimark extension, etc. On the other hand, the phenomena, such as Bell inequality violations, non-contextuality inequality violations and computational speed-up, do not arise in the toy theory.



The toy theory that we are interested in is the generalization of the original theory to the continuous and finite variables [7]. This is achieved by positing a restriction on what kind of statistical distributions over the space of physical states can be prepared. The new theory is called epistricted theory. In this way, quantum subtheories, the Gaussian subtheory of quantum mechanics, the stabilizer subtheory for qutrits and the Gaussian epistricted optics can be obtained from statistical classical theories, Liouville mechanics, statistical theory of trits and statistical optics, respectively.



The epistemic restriction defined on the classical phase-space states that an agent knows the values of a set of variables that commute relative to the Poisson bracket and maximally ignorant otherwise. Hence, a symplectic structure, which appears in the function space of the phase space, has mathematical correspondence with the ingredients of the quantization scheme. As a result, we conclude that the geometric quantization, via Hawkins’ symplectic groupoid approach, produces a [image: there is no content]-algebra that encodes the algebraic structure of the quadrature subtheories. Moreover, this construction gives us a functor from epistricted theories to the quantum subtheories.



In the second part of this paper, we construct a similar quantization functor of the toy theory for discrete degrees of freedom. In this case, the toy theory is defined precisely the same as the continuous case except that the finite dimensional symplectic vector space is over a finite field with odd prime characteristic. However, in order to apply groupoid quantization, we resort to the methods of categorical quantum mechanics pioneered by Abramsky and Coecke [11]. The categorical description of the toy theory is given in [12,13,14], where the toy theory is formulated as a subcategory of the dagger compact symmetric monoidal category of finite sets a Rel, and the toy observables correspond to dagger Frobenius algebras.



We start our construction with the dagger Frobenius algebras of the toy observables, which are functorially characterized as groupoids by Heunen, Catteneo and the first author in [15]. After equipping the resulting groupoid with a symplectic structure, we construct the pair groupoid to apply the quantization recipe of Hawkins. One can also obtain this pair groupoid from a different direction called [image: there is no content]-construction introduced in [16]. In the category of Hilbert spaces, Frobenius algebras correspond to finite dimensional [image: there is no content]-algebras under this construction as as consequence of [17]. For the category Rel, the pair groupoids are the objects of [image: there is no content]. Hence, our main result establishes a functor from the dagger Frobenius algebra in Rel for epistricted theories to the Frobenius algebra in the category of Hilbert spaces.



The outline of this paper is as follows. We begin Section 2 with a brief summary of the geometric quantization procedure. We then discuss epistricted theories of continuous variables and their correspondence in the geometric quantization framework. We next briefly review Eli Hawkins’ groupoid quantization recipe from which we obtain the usual Moyal quantization as a twisted group [image: there is no content]-algebra from the geometric formulation of epistricted theories. We finally conclude that the resulting [image: there is no content]-algebra contains phase-space formalism for quadrature subtheories. In Section 3, we follow the same quantization procedure for the odd-discrete degrees of freedom. We end the paper with the conclusion and discussions.




2. Continuous Degrees of Freedom


The main idea in this section is to describe the general framework of geometric quantization in the context of epistemically-restricted theories with continuous variables. We start with a quick overview of the standard literature on geometric quantization, and then, we move on to the interpretation for epistemically-restricted theories. We end the section with the algebraic counterpart of geometric quantization, introduction Hawkins’ approach of quantization via symplectic groupoids. The outcome of this approach is a [image: there is no content]-algebra for the epistricted theory.



2.1. Overview of Geometric Quantization


There are several ideas behind the construction of geometric quantization; however, the main objective is to produce quantum objects by using the geometry of the objects from the classical theory. In the sequel, we follow closely the approach of Bates and Weinstein [2].



2.1.1. The WKB Method


A basic technique for obtaining approximate solutions to the Schrödinger equation from classical motions is called the WKB method, after Wentzel, Kramers, and Brillouin. The WKB picture appears as an effort to describe quantum mechanics from a geometric viewpoint. It essentially approximates the solution of the time-independent Schrödingerequation, in the form:


[image: there is no content]








where S is a solution of the Hamilton–Jacobi Equation:


[image: there is no content]











We can then use the geometry of the phase space to realize the solution to the Schrödinger equation as a Lagrangian submanifold [image: there is no content] of the level set [image: there is no content]. More precisely, let us consider the semiclassical approximation for [image: there is no content]. From the transport equation:


[image: there is no content]








where a is a function on [image: there is no content], and after multiplying both sides by a, we obtain that:


[image: there is no content]



(1)




Now, if we consider the vector field:


[image: there is no content]








onto [image: there is no content] where the Hamiltonian H is [image: there is no content] and [image: there is no content] is the canonical density on [image: there is no content], its projection [image: there is no content] onto [image: there is no content] satisfies the following invariance condition:


[image: there is no content]



(2)




where [image: there is no content] denotes the Lie derivative, if we restrict to the Lagrangian submanifold [image: there is no content]. Since the vector field [image: there is no content] is tangent to the manifold [image: there is no content] and [image: there is no content] is diffeomorphisms invariant, Equation (2) implies that the pullback [image: there is no content] is invariant under the flow of [image: there is no content], where [image: there is no content] denotes the projection onto [image: there is no content].



This discussion implies that a semi-classical state can be defined geometrically as a Lagrangian submanifold [image: there is no content] of [image: there is no content], equipped with a half density function a. This semi-classical state is stationary when [image: there is no content] lies in the level set of the Hamiltonian, and the half density a is invariant under the Hamiltonian flow. Transformations of the state correspond to Hamiltonians on [image: there is no content]. To summarize this geometric picture, Table 1 exhibits the correspondence between semi-classical objects (of geometric nature) and quantum objects (of algebraic nature) in this particular case.



Table 1. Correspondence between classical and quantum objects.







	
Object

	
Semi-Classical (Geometric) Version

	
Quantum (Algebraic) Version






	
Phase space

	
[image: there is no content]

	
Hilbert space [image: there is no content]




	
State

	
Lagrangian submanifold of [image: there is no content] with half-density

	
half-density on [image: there is no content]




	
Transformations

	
Hamiltonian H on [image: there is no content]

	
operator [image: there is no content] on smooth half densities




	
Stationary state

	
Lagrangian submanifold in level set of H with invariant half-density

	
eigenvector of [image: there is no content]










Note that in Table 1, to the semi-classical space [image: there is no content], we associate the so-called intrinsic Hilbert space [image: there is no content], that is the Hilbert space of half densities on [image: there is no content], which must be introduced in order for the invariance condition in Equation (2) to make sense in terms of density functions.




2.1.2. Basic Symplectic and Poisson Geometry


From now on, we consider finite dimensional vector spaces V to be symplectic, if they are equipped with a non-degenerate skew form [image: there is no content]. For a vector subspace W of V, its orthogonal complement is defined by [image: there is no content]. We have the following special cases for W:

	
W is isotropic if [image: there is no content].



	
W is coisotropic if [image: there is no content].



	
W is symplectic if [image: there is no content].



	
W is Lagrangian if [image: there is no content].





It can be easily checked that if W is Lagrangian, then [image: there is no content].



Definition 1.

A manifold is called Lagrangian (resp. isotropic, coisotropic and symplectic) if its tangent space is a Lagrangian subspace at every point.





We also consider Poisson algebras, which are commutative algebras [image: there is no content] equipped with a Lie bracket [image: there is no content] that is a derivation for the commutative product. As a particular case in our discussion, the algebra of functions of a symplectic manifold [image: there is no content] is naturally a Poisson algebra.




2.1.3. Prequantum Line Bundle


In this section, we follow Dirac’s approach to axiomatize the quantization procedure.



Definition 2.

A pre-quantization is a linear map [image: there is no content]from a Poisson algebra (more precisely, the algebra of functions of a Poisson manifold M) into the set of operators on a (pre)-Hilbert space [image: there is no content], satisfying the following properties:

	1.

	
[image: there is no content].




	2.

	
[image: there is no content].




	3.

	
[image: there is no content], where ∗ denotes complex conjugation on left side and adjunction on the right side.











Definition 3.

A pre-quantization is called quantization if, in addition to the properties above, the following condition is satisfied:

	4.

	
For a complete set of functions [image: there is no content], its quantization [image: there is no content]is also a complete set of operators.











Proposition 1.

In the specific case where M is a cotangent bundle [image: there is no content], a pre-quantization (referred to in the literature as the Koopman–Van Hove–Segal pre-quantization) can be constructed, and it has the following form:


[image: there is no content]



(3)




where [image: there is no content]is a Hamiltonian vector field with generating function F and θ is a primitive of the Liouville form [image: there is no content].





In order to implement this pre-quantization for a arbitrary symplectic manifold [image: there is no content], we require a complex line bundle over M, equipped with a Hermitian structure and a Hermitian connection ∇, for which the pre-quantization formula 3 takes the following form:


[image: there is no content]



(4)







Provided a compatibility condition between curv [image: there is no content] and [image: there is no content], this formula gives a pre-quantization for [image: there is no content].




2.1.4. Polarization


It is easy to realize in some examples that the Hilbert space of pre-quantization is too big for the completeness Condition 4 to hold. By using the ordinary viewpoint of quantum mechanics, only half of the coordinates of the classical phase space are required to write down the wave functions, depending on whether the coordinate or momentum representation is considered. In (symplectic) geometric terms, for general symplectic manifolds, a polarization is defined as follows:



Definition 4.

Let [image: there is no content]be a symplectic manifold. A polarization of M is a Lagrangian involutive distribution [image: there is no content]of M.





Thus, the quantization space consists of functions constant along the leaves of a the distribution [image: there is no content] on M; more precisely, the quantization Hilbert space [image: there is no content] is the space of sections s of the complex line bundle on M such that:


[image: there is no content]



(5)




where [image: there is no content] is a vector field tangent to the polarization [image: there is no content].





2.2. Quadrature Epistricted Theories


We now introduce the quadrature epistricted theories for continuous variables [7]. The epistemic restrictions on classical variables are adopted from the condition of the joint measurability of quantum observables.



Definition 5.

A set of variables are jointly knowable if and only if it is commuting with respect to the Poisson bracket.





The other restriction besides joint knowability is that an agent can know only the variables that are the linear combination of the position and momentum variables. Such variables are called quadrature variables. Hence, the valid epistemic states are the ones for which an agent knows the values of a set of quadrature variables that commute with respect to the Poisson bracket and that is maximally ignorant otherwise. This notion is termed classical complementarity.



Example 1 (Darboux coordinates).

If we start with the phase space [image: there is no content]where a point is denoted by [image: there is no content], epistemic restrictions imply that the functionals [image: there is no content]are of the form:


[image: there is no content]








where [image: there is no content]and [image: there is no content]and [image: there is no content]are functionals associated with momentum and position, respectively. Hence, each functional f is associated with a vector [image: there is no content]. It is not hard to show that the value of the Poisson bracket over the phase space is uniform and equal to the symplectic inner product:


[image: there is no content]








where:


[image: there is no content]








and J is the skew symmetric [image: there is no content]matrix with components [image: there is no content]. Hence, the vector space Ω becomes a symplectic vector space with the symplectic inner product [image: there is no content]. This allows us to give the geometric presentation of the quadrature variables.



The only set of variables jointly knowable are the ones that are Poisson commuting. In symplectic geometry, this set corresponds to the subspace V of vectors whose symplectic inner product vanishes, i.e., [image: there is no content][image: there is no content]. For a [image: there is no content]-dimensional phase space, the maximum possible dimension of such a V is n. Such a maximal space is a Lagrangian space as defined above, and it corresponds to the maximal possible knowledge an agent can have. In order to specify an epistemic state, one should also set the values of the variables on V. The linear functional v acting on a quadrature functional corresponds to the set of vectors in [image: there is no content], which is determined via [image: there is no content]. That is, for every vector [image: there is no content], we obtain distinct value assignment.



In summary, a pure state in the epistricted theory consists of a Lagrangian subspace [image: there is no content]and a valuation functional [image: there is no content]. In geometric quantization, the half density function can be regarded as this valuation function.



On the other hand, the valid transformations are the symplectic transformations that map the quadrature variables to itself. These transformations map a phase space vector [image: there is no content]to [image: there is no content]where [image: there is no content]is a displacement vector and S is [image: there is no content]a symplectic matrix. The group formed by these transformations is called the affine symplectic group, which is subgroup of the Hamiltonian symplectomorphism group. Thus, each of these transformations can be obtained from a Hamiltonian. Finally, the sharp measurements are parametrized by Poisson commuting sets of quadrature variables (isotropic subspaces V), and the outcomes are indexed by the vectors in V.





We summarize the correspondence between geometric quantization and epistricted theories in Table 2.



Table 2. Correspondence between geometric quantization and epistricted theories.







	
Object

	
Semi-Classical Version in Quantization

	
Epistricted Theories






	
Phase space

	
[image: there is no content]

	
[image: there is no content]




	
State

	
Lagrangian submanifold of [image: there is no content] with half-density [image: there is no content]

	
Lagrangian subspace with a valuation function [image: there is no content]




	
Transformations

	
Hamiltonian H on [image: there is no content]

	
affine symplectic transformation











2.3. Hawkins’ Groupoid Quantization


The aim of this section is to point out that the epistricted theories can be quantized by a twisted polarized convolution [image: there is no content]-algebra of a symplectic groupoid in the sense of Hawkins. The main idea in this method is to find a [image: there is no content]-algebra that is approximated by a Poisson algebra of functions on a manifold. [image: there is no content]-algebra quantization is mainly developed by the work of Rieffel, where the quantization is stated as a continuous field of [image: there is no content]-algebras [image: there is no content]. Hawkins’ construction gives a single algebra [image: there is no content] by involving additional structures on the symplectic groupoid. In his approach, it is possible to reinterpret geometric quantization for a broader class of examples, coming from deformation quantization of Poisson algebras. This gives a rigorous treatment to the dictionary strategy of Weinstein relating the symplectic category and its geometrically quantized counterpart [2].



Symplectic Groupoids


We start with the definition of symplectic groupoid, arising from the usual definition of the Lie groupoid, requiring compatibility conditions with a symplectic structure on the space of arrows.



Definition 6.

A topological groupoid Σ is a groupoid object in the category of topological spaces, that is Σ consists of a space of [image: there is no content]of objects and a space [image: there is no content]of arrows, together with five continuous structure maps:

	
The source map [image: there is no content]assigns to each arrow [image: there is no content]its source [image: there is no content]



	
The target map [image: there is no content]assigns to each arrow [image: there is no content]its target [image: there is no content]. For two objects x, [image: there is no content], one writes [image: there is no content]to indicate that [image: there is no content]is an arrow with [image: there is no content]and [image: there is no content].



	
If g and h are arrows with [image: there is no content], one can form their composition, denoted [image: there is no content], with [image: there is no content]and [image: there is no content]. If [image: there is no content]and [image: there is no content], then [image: there is no content]is defined, and [image: there is no content]The composition map m is defined by [image: there is no content], and it is a well-defined map [image: there is no content], where [image: there is no content]



	
The unit map [image: there is no content]is a two-sided unit for composition.



	
The involution map [image: there is no content]. Here, if [image: there is no content], then [image: there is no content]is two-sided inverse for composition.










[image: there is no content] is said to be a groupoid over [image: there is no content]



Definition 7.

A Lie groupoid is a topological groupoid Σ where [image: there is no content]and [image: there is no content]are smooth manifolds and such that the structure maps s, t, m, u and [image: there is no content]are smooth. Moreover, s and t are required to be submersions, so that the domain of m is a smooth manifold.





Definition 8.

A Lie groupoid Σ is called a symplectic groupoid if [image: there is no content]is a symplectic manifold with symplectic form ω, and the graph multiplication relation [image: there is no content]is a Lagrangian submanifold of [image: there is no content], where [image: there is no content]is the symplectic manifold [image: there is no content].





This definition is equivalent to saying that the symplectic form [image: there is no content] is multiplicative, i.e., it satisfies the following compatibility conditions with the multiplication and projection maps:


[image: there is no content]



(6)




where [image: there is no content] and [image: there is no content] are the projections of [image: there is no content] onto the first and second component, respectively. As [image: there is no content] is Lagrangian, one can find a unique Poisson structure on [image: there is no content] of a symplectic groupoid, such that s is a Poisson map, and t is anti-Poisson. Hence, we have the following definition.



Definition 9.

A symplectic groupoid Σ is said to integrate a Poisson manifold Ω if there exists a Poisson isomorphism from [image: there is no content]onto Ω.





The following are the basic examples of symplectic groupoids, the first one being of central importance for the geometric quantization procedure in epistricted theories.



Example 2 (Pair groupoid of a symplectic manifold).

As we will describe in more detail later in the paper, given a smooth manifold M, the manifold [image: there is no content]is naturally the space of arrows for a Lie groupoid, called the pair groupoid. In the case where M is equipped with a symplectic structure ω, then the Lie groupoid Pair [image: there is no content]is a symplectic groupoid with symplectic structure [image: there is no content].





Example 3 (Cotangent bundle).

If M is a manifold, any vector bundle E over M is a Lie groupoid over M; the multiplication is given by fiber addition; the source and target maps are projection onto the base; whereas the unit is given by the zero section of the bundle. In the particular case that [image: there is no content]and that ω is the Liouville form on the cotangent bundle, it it easy to verify that [image: there is no content]is a symplectic groupoid over M.





Here is Hawkins’ strategy for geometric quantization of a manifold [image: there is no content]. For a detailed discussion, one can refer to [5]:

	
Construct an symplectic groupoid [image: there is no content] over [image: there is no content].



	
Construct a pre-quantization [image: there is no content] of [image: there is no content].



	
Choose a symplectic groupoid polarization P of [image: there is no content], which satisfies both symplectic and groupoid polarization.



	
Construct a “half form” bundle.



	
[image: there is no content] is quantized by twisted, polarized convolution algebra [image: there is no content].








Proposition 2.

Hawkins’ geometric quantization of the symplectic space [image: there is no content]and Darboux coordinates (Example 1) is the Moyal quantization of the Poisson algebra of the symplectic vector space.





Proof. 

In the particular case that the symplectic manifold is a vector space [image: there is no content] with symplectic form [image: there is no content], which is the context of the epistricted theories, we have the symplectic groupoid [image: there is no content] integrating the symplectic vector space [image: there is no content], where the multiplication is given by fiber addition on [image: there is no content], i.e., the symplectic integration comes equipped with Darboux coordinates.



More explicitly, [image: there is no content] gives a map [image: there is no content]. One obtains a symplectic structure:


[image: there is no content]










[image: there is no content]








We identify [image: there is no content] with the cotangent bundle [image: there is no content] as follows: for the local coordinates of covectors [image: there is no content], [image: there is no content] in [image: there is no content], the cotangent symplectic structure is


[image: there is no content]








This gives us a symplectomorphism [image: there is no content] such that:


[image: there is no content]








where [image: there is no content] (this example has also been studied by Hawkins (see Example 6.2 of [5])).



One can obtain the the Darboux coordinates [image: there is no content] of [image: there is no content] from the symplectomorphism [image: there is no content]. The projection of [image: there is no content] to [image: there is no content] is a fibration of groupoids whose fibers are Lagrangian. Thus, this is a polarization of the symplectic groupoid given by:


[image: there is no content]








The symplectic potential, which vanishes on P, can be chosen as [image: there is no content]



This polarization gives us the half-form pairing, which enables quantizable observables to be represented as operators on the Hilbert space [image: there is no content]. Hence, this yields the correspondence between the kernels of operators on [image: there is no content] and Weyl symbols of these operators. This kernel T of an operator f is given by:


[image: there is no content]











The quantization procedure gives the twisted group algebra [image: there is no content] where [image: there is no content], [image: there is no content]. This is the usual Moyal quantization of a Poisson vector space (see [18]). In this setting, the observables correspond to functions in classical phase-space, and the Moyal product of functions is derived from the product of the pair of observables. In this case, the position and momentum operators correspond to the generators of the Heisenberg group, and they are related to each other by a Fourier transform. ☐





Theorem 1.

Quadrature quantum subtheories and the Moyal quantization from Proposition 2 coincide.





Proof. 

To be consistent with the formalism of [7], we work with projector valued measures (PVM) rather than Hermitian operators. PVMs are used in quantum information and quantum foundations to represent measurements, as eigenvalues of Hermitian operators are operationally insignificant and serve as labels of outcomes. A projector-valued measure with outcome set K is a set of projectors [image: there is no content] such that [image: there is no content], [image: there is no content] and [image: there is no content]. Hence, the position (momentum) observables are the set of projectors onto position (momentum) eigenstates (in the continuous case, one can also use Hermitian operators corresponding to the real valued functionals, but the commutation relation of Hermitian operators does not have a finite counterpart. Therefore, Spekkens preferred to use PVMs in order to cover finite and continuous cases simultaneously):


[image: there is no content]








where


[image: there is no content]











We now define a unitary representation of symplectic affine transformation to introduce the other quadrature observables. The projective unitary representation [image: there is no content] of the symplectic group acting on the phase space [image: there is no content] satisfies [image: there is no content] for every symplectic matrix [image: there is no content] and where [image: there is no content] is a phase factor. The action of this unitary is defined by the conjugation:


[image: there is no content]








For a single degree of freedom, let [image: there is no content] be the symplectic matrix that takes the position functional q to a quadrature functional f, such that [image: there is no content]. Then, the quadrature observable associated with f is defined as follows:


[image: there is no content]








where:


[image: there is no content]











For the n degrees of freedom [image: there is no content], the quadrature observable associated with f is given by:


[image: there is no content]








where:


[image: there is no content]








for [image: there is no content]. We also know that the set of quadrature observables [image: there is no content] commutes if and only if the corresponding functionals [image: there is no content] are Poisson-commuting (see [6]). Hence, the commuting set of quadrature observables can be labeled by isotropic subspaces of [image: there is no content]. This set defines a single quadrature observable:


[image: there is no content]








where:


[image: there is no content]











On the other hand, in the geometric quantization procedure, any functional f on [image: there is no content] is mapped to a Hermitian operator [image: there is no content] in a prequantum Hilbert space, which corresponds to the observable [image: there is no content]. Moreover, the commutation relation for the observables in both quadrature subtheories and geometric quantization is implied by the Poisson commutation relation of the classical observables. As the polarization is the commuting set of these Hermitian operators, the state that is obtained after quantization is the operator [image: there is no content]. The choice of the vertical polarization for the groupoid [image: there is no content] is the responsible of the correspondence between the two quantum states. The half-form pairing defined above can be computed in terms of the integral kernel of the projection operator [image: there is no content], which has Weyl symbol f. This establishes a correspondence between phase-space formalism and quantum mechanics, and the Moyal product is deduced from this correspondence. ☐





In [6], the operational equivalence quantum subtheories and epistricted theories are proven using Wigner representation, which maps operators in Hilbert space to the functions in the phase-space formulation of quantum mechanics. It is also a well-known fact that the Wigner representation of an operator product is given by the Moyal product. As a result, geometric quantization with an appropriate choice of polarization is operationally equivalent to epistricted theories. We can also conclude that group algebra [image: there is no content], which is the Hilbert space considered as a group representation of the Heisenberg group H, contains the algebraic structure of quadrature subtheories.



This discussion leads to the following theorem:



Theorem 2 (Main result in the continuous case).

The geometric quantization, via Hawkins’ symplectic groupoid approach, of the Spekkens toy theory of continuous degrees of freedom produces a [image: there is no content]-algebra that is a group representation for the Heisenberg group H, and it encodes the algebraic structure of the quadrature subtheories, via Moyal quantization.







2.4. Functoriality


The functoriality of geometric quantization is a delicate issue, and it has been proven that the quantization that fits with the Schröedinger picture is in fact not functorial. There are several problems even before quantization, in particular that the symplectic category is not quite a category, since the composition of Lagrangian correspondences is not in general well defined, and also that, when it is defined, the composition is not continuous with the standard topology in the Lagrangian Grassmannian. The failure of geometric quantization to functorially represent Schröedinger’s picture is given, e.g., in Gotay’s work [19].



However, the geometric quantization picture for symplectic groupoids turns out to be functorial with respect to the choices, i.e., the polarizations (the groupoid one), the half line bundle. The fact that the choices of polarizations are affine means that there is a higher structure for our [image: there is no content]-algebra quantization, namely the objects are symplectic manifolds; one-morphisms are Lagrangian polarizations; and two-morphisms are affine transformations between Lagrangian polarizations. These two-morphisms are reflected in [image: there is no content]-algebra automorphisms after quantization.





3. Finite Degrees of Freedom


We now discuss how the geometric quantization relates the epistricted theories to quadrature quantum subtheories for odd-prime discrete degrees of freedom. In [7], the operational equivalence of these two theories for continuous and odd-prime discrete cases was proven using Wigner representation. Here, we aim to construct a functor from a subcategory of the category of groupoids to the category of [image: there is no content]-algebras. This corresponds to a functor from Frobenius algebras in the category FRel (Frobenius algebras in the category of sets and relations) to Frobenius algebras in the category of Hilbert spaces FHilb. Here is the sketch of our discrete quantization:

	
We start with the special dagger Frobenius algebra of epistricted theories, Spek, which is a subcategory of finite sets and relations, FRel.



	
We then construct the groupoid [image: there is no content] corresponding to Spek via the explicit equivalence in Heunen et al. [15].



	
We next obtain the pair groupoid from [image: there is no content] and introduce the symplectic structure on it, which is compatible with the pair groupoid structure. In this case, each polarization corresponds to a Lagrangian subspace in epistricted theories.



	
We then apply the geometric quantization procedure via Hawkins on the pair groupoid.



	
Finally, we end up with the finite dimensional [image: there is no content]-algebra from which one can construct special dagger Frobenius algebra over FHilb via [17].








We begin this section by reviewing the epistricted theories in the discrete case.



3.1. Quadrature Epistricted Theories


The formalism in the finite case is defined over the finite fields with prime order d. These fields are isomorphic to the integers modulo d, denoted by [image: there is no content]. Hence, the configuration space and associated phase-space are [image: there is no content], [image: there is no content], respectively. The linear functionals are also in the form:


[image: there is no content]








where [image: there is no content]. Hence, a vector [image: there is no content] specifies the position and momentum dependence of the quadrature functional f. The dual space [image: there is no content] consists of these vectors associated with the functionals. The Poisson bracket, unlike the continuous case, is defined in terms of finite differences:



Definition 10.

The Poisson bracket in the finite case is given by:


[image: there is no content]








where the operations are in modulo d. The Poisson bracket, [image: there is no content], is also equal to symplectic inner product [image: there is no content]on the discrete phase space.





Like in the continuous case, an epistemic state is determined by the set of quadrature variables that are known to that agent and the values of these variables. This corresponds to the pair [image: there is no content], where [image: there is no content] is an isotropic subspace of the phase space [image: there is no content], and [image: there is no content] is a valuation vector in [image: there is no content]. Similarly, the valid transformations are symplectic transformations, which preserve the symplectic inner product, and they form the affine symplectic group over the finite field [image: there is no content]. Note that these transformations over a finite field are discrete in time; hence, they cannot be generated from a Hamiltonian unlike the continuous case.



Example 4.

As an example, we consider the quadrature epistricted theory of trits [7] for a single system. The configuration space and the phase space are [image: there is no content]and [image: there is no content], respectively. The quadrature functionals in this system are of the form [image: there is no content]where [image: there is no content], [image: there is no content], [image: there is no content]. There are four inequivalent quadrature functionals:


[image: there is no content]








Since none of these functionals Poisson commute, an agent can know at most one of them. This implies that there are twelve epistemic states, as the valuation vectors are chosen from [image: there is no content]. These states are depicted in Figure 1 as

Figure 1. Twelve epistemic states.



[image: Entropy 19 00220 g001]



 [image: there is no content]grids:



The valid transformations, which form the affine symplectic group over [image: there is no content], correspond to a certain subset of permutations of the functionals (See Figure 2 for an example).

Figure 2. The valid transformations.



[image: Entropy 19 00220 g002]










3.2. The Category of Epistricted Theories


We now turn to the category of the epistricted theory of trits. The arguments can easily be generalized to the epistricted theories for other odd primes. We start with the category of FRel, whose objects are sets and whose morphisms [image: there is no content] are relations [image: there is no content] and [image: there is no content]. FRel is a dagger symmetric monoidal category when the tensor product is chosen as a Cartesian product, the single element set [image: there is no content] as the identity and the relational converse as the dagger morphism †.



Definition 11.

An object X in FRel with a morphism [image: there is no content]is called special dagger Frobenius algebra if and only if m has the following properties:

	
[image: there is no content](F)



	
[image: there is no content](M)



	
[image: there is no content](A)



	
there is [image: there is no content]with [image: there is no content](U).










The conditions of Frobenius algebras are presented graphically in Figure 3. These diagrams encode composition by drawing morphisms on top of each other, and the monoidal product is the drawing morphism next to each. The dagger is a vertical reflection.


Figure 3. String diagrams of the properties for the objects in FRel.



[image: Entropy 19 00220 g003]






The category FRel has morphisms [image: there is no content] satisfying:

	
[image: there is no content] (C).








Proposition 3

([15]). FRel is a compact closed category.





Remark 1.

Frobenius algebras with some additional properties on the category of finite dimensional Hilbert spaces FHilb correspond to quantum observables [20]. They are called classical structures in this category theoretical context. In [21], the graphical formulization of complementarity is given using the string diagrams. This results in complete graphical calculus for stabilizer quantum mechanics [22] and Spekkens’ toy theory [12].





The compact structure can be induced from the Frobenius algebra by [image: there is no content]. As a result of the compact structure, we can define transposes of morphism [image: there is no content] by [image: there is no content] The category of Frobenius algebras in FRel with the following morphism is a well-defined category (see Proposition 14 of [15]).



Definition 12.

A morphism [image: there is no content]in the category of Frobenius algebras in FRel is a morphism [image: there is no content]satisfying:

	
[image: there is no content](R)



	
[image: there is no content](I) where [image: there is no content]is a natural swap isomorphism.










These morphisms are depicted in Figure 4


Figure 4. String diagram of the properties for the morphisms in FRel.
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Proposition 4.

The category Spek for the toy theory of trits is a subcategory of FRel.





Proof. 

The category Spek for the toy theory of trits is defined as the category whose objects are the single element one and n-fold Cartesian product of the nine-element set [image: there is no content]. The morphisms of Spek can be constructed by composition, the Cartesian product and the relational converse from the following relations:

	
The unit (deleting) relation [image: there is no content] defined by [image: there is no content]



	
The relation [image: there is no content] defined as:














	1
	2
	3
	
	
	
	
	
	



	3
	1
	2
	
	
	
	
	
	



	2
	3
	1
	
	
	
	
	
	



	
	
	
	4
	5
	6
	
	
	



	
	
	
	6
	4
	5
	
	
	



	
	
	
	5
	6
	4
	
	
	



	
	
	
	
	
	
	7
	8
	9



	
	
	
	
	
	
	9
	7
	8



	
	
	
	
	
	
	8
	9
	7








For example, [image: there is no content], [image: there is no content], etc.



	
The permutations [image: there is no content] that correspond to affine symplectic maps on the phase-space.



	
The relevant unit, associativity and symmetry natural isomorphisms.








Twelve epistemic states for a single system are given by the following relations:



	q known: [image: there is no content], [image: there is no content], [image: there is no content].



	p known: [image: there is no content], [image: there is no content], [image: there is no content].



	[image: there is no content] known: [image: there is no content], [image: there is no content], [image: there is no content].



	[image: there is no content] known: [image: there is no content], [image: there is no content], [image: there is no content].








It is straightforward to verify that [image: there is no content] is the special dagger Frobenius algebra. ☐





Remark 2.

This structure corresponds to the observable for which q is known. Hence, the relations [image: there is no content], [image: there is no content], [image: there is no content]are the copyable (classical) states for this observable. The other observables can be found by composing m with various valid permutations.






3.3. Frobenius Algebras as Groupoids


We start our procedure of the discrete geometric quantization with constructing the groupoid corresponding to the Frobenius algebra [image: there is no content]. The groupoid characterization of dagger Frobenius algebras is given in [15]. We now give the groupoid following [15].



Definition 13.

The following objects and morphisms in Rel obtained from the Frobenius algebra [image: there is no content]form a groupoid Σ in the category of sets and functions Set (see Theorem 7 of [15]).

	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]










Remark 3.

As proven in [15], this assignment is functorial, if we consider morphisms of groupoids to be sub-groupoids.





Considering the set [image: there is no content] as the finite field [image: there is no content], one can equip [image: there is no content] with the symplectic product [image: there is no content].



Lemma 1.

The graph of the multiplication [image: there is no content]is a Lagrangian subspace of [image: there is no content].





Proof. 



[image: there is no content]










[image: there is no content]










[image: there is no content]











Equipped with the symplectic product [image: there is no content], [image: there is no content] becomes the Lagrangian subspace of [image: there is no content] with the basis


[image: there is no content]








where [image: there is no content]. ☐






3.4. Weyl Correspondence and Pair Groupoid


In order to apply geometric quantization, we need a notion of differential forms suitable for the symplectic finite vector space. As noticed in [23], Kahler differentials are the ideal tool in this setting [24].



We now briefly review the algebraic geometry that we are going to use. Let:


[image: there is no content]








be the algebra of polynomials in two variables over [image: there is no content]. The formal derivatives of the these polynomials are evaluated using the same rules for polynomial functions.



The algebra of Kahler differential [image: there is no content] is defined as the [image: there is no content]-linear combinations of the following terms:


[image: there is no content]








One can also define the vector space of Kahler j-forms [image: there is no content] for which there is also a differential:


[image: there is no content]








The symplectic product [image: there is no content] defined in Section 2 corresponds to the following Kahler j-form:


[image: there is no content]








which satisfies [image: there is no content]. From now on, we will take [image: there is no content] for brevity.



We can now define the pair groupoid and polarization necessary for geometric quantization that will give us the Weyl operator in the discrete case. We first define a skew-symmetric invertible map [image: there is no content] as [image: there is no content].



In the discrete geometric quantization procedure for the symplectic space [image: there is no content], the groupoid associated with M consists of [image: there is no content], where [image: there is no content]. G is endowed with the multiplication [image: there is no content]. M embeds in [image: there is no content] as the diagonal [image: there is no content], and s and t are the projections [image: there is no content] and [image: there is no content]. In this groupoid, there is exactly one arrow from any object to another.



Starting with the groupoid G, one can define a symplectomorphism [image: there is no content] from G to the cotangent bundle [image: there is no content] as:


[image: there is no content]








It is then clear that such a groupoid is symplectic, and it integrates the symplectic space [image: there is no content]. [image: there is no content] is explicitly given as:


[image: there is no content]








where [image: there is no content] and [image: there is no content].



Now, we consider two real polarizations of G:


[image: there is no content]










[image: there is no content]








The symplectic potentials that vanish on F and P may be taken as:


[image: there is no content]










[image: there is no content]








We then obtain [image: there is no content]. Hence, the inner product polarized sections of line bundles is:


[image: there is no content]










[image: there is no content]










[image: there is no content]








where:


[image: there is no content]








can be considered as the integral kernel of the Weyl operator. From Hawkins’ perspective, the corresponding algebra is the twisted group algebra [image: there is no content]. As the Weyl operator is the representation of the finite Heisenberg group H, as shown in [25], [image: there is no content] is isomorphic to the group algebra of [image: there is no content].



Remark 4.

Note that we cannot apply the same procedure to the toy bits, i.e., [image: there is no content], as the symplectomorphism Φ and other steps of quantization include division by two.





Our main result produces a functorial quantization via symplectic groupoids, in the case of epistricted theories with an odd prime number of degrees of freedom.



Theorem 3 (Main result for the finite case).

The discrete geometric quantization procedure is a functor from the Frobenius algebra in Rel for epistricted theories to the Frobenius algebra for stabilizer quantum mechanics in the odd prime discrete case.





Proof. 

[image: there is no content] can be equipped with a symplectic structure so that it becomes the symplectic groupoid where the polarization is [image: there is no content] corresponding to [image: there is no content] in [image: there is no content]. Hence, the quantization gives us a subalgebra of [image: there is no content] as we only consider the linear combination of position and momentum operators. The resulting operator algebra is a projective representation of the finite Heisenberg group given by the above discrete Weyl transform W. The stabilizer states are joint eigenstates of commuting Weyl operators. In [7], it has been shown that the stabilizer states is equivalent to quadrature states of epistricted theories.



The resulting finite dimensional algebra [image: there is no content] is equivalent to a dagger Frobenius algebra in Hilb (see Theorem 4.7 of [17]). By the functoriality of quantization in this specific case and the functoriality of the above embedding into [image: there is no content] (see Corollary 4.4 of [16], we obtain a functor from the dagger Frobenius algebras in Rel to the dagger Frobenius algebras in Hilb. The affine symplectic transformations of the epistricted theories are mapped to the group representations of the affine symplectic group, which acts as a superoperator in the resulting [image: there is no content]-algebra. ☐





We now construct a pair groupoid M from the dagger Frobenius algebra [image: there is no content]. We start with the monoid structure [image: there is no content] in Rel, where [image: there is no content]. This monoid is a specific example of endomorphism monoids in [17], which is an analogue of algebras of bounded linear operators. Note that the new monoid multiplication [image: there is no content] is precisely the multiplication in [image: there is no content] in the pair groupoid, and the unit is the diagonal [image: there is no content]. The abstract polarization P in this context can be cast as [image: there is no content]. We denote this monoid as [image: there is no content]



The algebra [image: there is no content] can be embedded into endomorphism monoid [image: there is no content] similar to the fact that every algebra has a homomorphism in the algebra of operators. The embedding homomorphism [image: there is no content] is defined by:


[image: there is no content]








It is easy to show that h preserves multiplication and the unit. One can also refer to Lemma 3.19 in [17] for a more general case. Let [image: there is no content] denote the image of h in the endomorphism monoid. We now can construct the groupoid [image: there is no content] from the dagger Frobenius algebra [image: there is no content] following the construction in [15] one more time:

	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]










4. Conclusion and Further Work


We have established the relationship between geometric quantization and quadrature subtheories for the continuous degrees of freedom. We conclude that the group algebra [image: there is no content] for Heisenberg group H contains the quadrature subtheories as a result of groupoid quantization procedure. One can use this fact to give the operator algebraic approach to quantum optics.



4.1. [image: there is no content]-Quantization


This construction also suggests that there is a “geometric quantization” functor, from a subcategory of the category of groupoids to the category of [image: there is no content]-algebras. Following [15], this corresponds to a functor from Frobenius algebras in the category FRel (Frobenius algebras in the category of sets and relations) to Frobenius algebras in the category of Hilbert spaces FHilb. The functor has to be defined in the subcategory of Frobenius algebras arising from symplectic groupoids, and the morphisms have to be adapted in order to obtain functoriality.




4.2. The Even Case


We investigate discrete degrees of freedom. The variables in this case are chosen from a finite field instead of real numbers. Even though Spekkens’ original toy theory [7] is contained in the case where the finite field is [image: there is no content], we consider odd degrees freedom. The reason is that for [image: there is no content], the discrete Wigner representation can take negative values, and therefore, the epistricted theory does not coincide with the quadrature subtheories [6]. Our main result is to give a discrete version of groupoid quantization. The resulting algebra is [image: there is no content] for the finite Heisenberg group H. This finite [image: there is no content]-algebra corresponds to a Frobenius structure via the construction of Vicary [17]. Thus, one can study quantum phenomena such as complementarity in quadrature theories in this algebraic framework.




4.3. Geometric Quantization Over Finite Fields


In the work of Gurevich and Hadani [26], a functorial description of geometric quantization is developed for vector spaces over fields with positive characteristics. The odd prime case is resemblant of the discrete geometric quantization procedure we have described in this paper. We expect to have a more explicit comparison in the future between our quantization procedure for the odd finite case and this geometric quantization program.




4.4. Quantum Circuit Dynamics Via Path Integrals


For Clifford circuits, Penney et al. define the relative phases of different discrete-time paths in terms of classical action [23]. They show that for each gate, one can associate a symplectomorphism on the phase-space, and for each symplectomorphism, one can define a generating function on two copies of the configuration space. The action functional for a sequence of gates is defined using the sum of the generating functions. This approach can be cast using discrete geometric quantization used by the paper. Using our method, one can extend the results in [23] to different kinds of quantum circuits. Similarly, geometric quantization of physical theories, where space-time is discrete (e.g., cellular automata, discrete mechanical systems), will be treated in future work.
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