

 Prediction and Evaluation of Zero Order Entropy Changes in Grammar-Based Codes

Prediction and Evaluation of Zero Order Entropy Changes in Grammar-Based Codes

Entropy 2017, 19(5), 223; doi:10.3390/e19050223

Article

Prediction and Evaluation of Zero Order Entropy Changes in Grammar-Based Codes

Michal Vasinek * and Jan Platos

Department of Computer Science, FEECS, VSB-Technical University of Ostrava, 17. listopadu 15/12172, Ostrava 708 33, Czech Republic

*

Correspondence: Tel.: +420-597-323-971

Academic Editor: Raúl Alcaraz Martínez

Received: 30 January 2017 / Accepted: 10 May 2017 / Published: 13 May 2017

Abstract:

The change of zero order entropy is studied over different strategies of grammar production rule selection. The two major rules are distinguished: transformations leaving the message size intact and substitution functions changing the message size. Relations for zero order entropy changes were derived for both cases and conditions under which the entropy decreases were described. In this article, several different greedy strategies reducing zero order entropy, as well as message sizes are summarized, and the new strategy MinEnt is proposed. The resulting evolution of the zero order entropy is compared with a strategy of selecting the most frequent digram used in the Re-Pair algorithm.

Keywords:

data compression; grammars; entropy; transformations; context; Re-Pair

1. Introduction

Entropy is a key concept in the measurement of the amount of information in information theory [1]. From the data compression perspective, this amount of information represents the lower limit of the achievable compression of some information source. Due to the well-known work by Shannon [2], we know that using less bits than the amount given by entropy to represent a particular message or process would necessarily lead to the loss of some information and as a consequence our inability to properly recover the former structure of the message.

This work is focused on the study of entropy in data compression, and therefore, our discussion will be restricted to only finite messages. These finite messages are formed by symbols, and in this perspective, the entropy can be understood as the lowest number of bits needed on average to uniquely represent each symbol in a message. There are messages for which the evaluation of entropy can be a very hard task, and so, we are often forced to satisfy ourselves with some approximation of entropy.

The simplest approximation is the one based on the probability distribution of symbols in a particular message. In this case, the symbols are viewed as independent entities, and their mutual relationships are not taken into account. A better approximation of entropy is based on the conditional probabilities when we also take into account how symbols follow each other. We can also approximate entropy by computing bits per byte ratio of message encoded by state of the art data compression algorithms.

In this article, we study entropy at the level of independent symbols. This approximation of entropy is often called zero order entropy. There are two major data compression algorithms in use that compress messages almost to the rate given by zero order entropy: Huffman [3] and arithmetic [4] coding. The zero order entropy can be computed using the Shannon equation:

[image: there is no content]

(1)

where X stands for a random variable representing the probability distribution of symbols in the input message m and [image: there is no content] is the probability of symbol x from alphabet [image: there is no content]. The expected length of the code for the particular symbol x is given by [image: there is no content]. If the expected length of the code is multiplied by its probability, we obtain the average number of bits needed to represent any symbol [image: there is no content]. The size of the message using the expected lengths of codes is given as a product of the length of the message [image: there is no content] measured as a number of symbols and zero order entropy:

[image: there is no content]

(2)

When we refer to the term entropic size of the message, we always mean the quantity given by Equation (2), and it will be denoted using a superscript as [image: there is no content]. We study how the entropic size of the message evolves when all occurrences of some m-gram are substituted for some other n-gram and vice versa. We study two such substitutions: transformations and compression functions. Transformations replace n-grams of the same length. Transformation leaves the message size intact, but since the probability of symbols changes, the value of zero order entropy also has to change. Compression functions replace m-grams for n-grams, where [image: there is no content], and leave the message size smaller, but the change in zero order entropy also occurs.

The main idea behind the concept of transformations is the following: consider Huffman coding; more probable symbols are encoded by shorter or at least by the same length prefix codes than the lower probability ones, if the symbol [image: there is no content] is more probable than the symbol [image: there is no content], but in the context of some symbol [image: there is no content], [image: there is no content] is more frequent than [image: there is no content], then if these symbols following [image: there is no content] are exchanged, the longer codes used for encoding [image: there is no content] will instead be encoded by shorter codes representing the encoding of [image: there is no content]. Under this assumption, it is possible to pre-process data so that the frequency of more frequent symbols increases and the frequency of less frequent symbols decreases.

1.1. Notation and Terminology

	
The alphabet of the input message m of the size [image: there is no content] is denoted by [image: there is no content] and its size by [image: there is no content].

	
Greek symbols are used to denote variables representing symbols in the input message. For instance, suppose two digrams [image: there is no content], [image: there is no content] and the alphabet [image: there is no content]. Then, [image: there is no content] and [image: there is no content].

	
When we refer to the term entropy, we always mean Shannon’s entropy defined by Equation (1).

	
All logarithms are to base two.

	
Any quantity [image: there is no content] with a subscript [image: there is no content] denotes consecutive states of the quantity between substitutions. For instance, a quantity [image: there is no content] is a value of the quantity before any substitution is applied, and [image: there is no content] is a value of the quantity after some substitution is applied.

1.2. Order of Context and Entropy

1.2.1. Zero Order Context

When all symbols are interpreted as independent individual entities and no predecessors are taken into consideration, such a case is called zero order context. Zero order entropy is then computed as Shannon’s entropy of a random variable given by the probabilities of symbols in the input message.

1.2.2. N-th Order Context

In a case where the probability distribution of symbols following a particular fixed length prefix w is taken into consideration, then if the length of the prefix is N, then the order of context is N, and the N-th order entropy is computed as Shannon’s entropy of the conditional distribution of symbols following all different prefixes [image: there is no content].

2. Previous Work

The class of algorithms dealing with exchanges of different [image: there is no content]-grams are called grammar-based algorithms. Their purpose is to provide a set of production rules inferring the content of the message. Using the Chomsky hierarchy, we identify two classes of formal grammars used in data compression: context-free grammars (CFG) and context-sensitive grammars (CSG). Context transformations presented in Section 3 belong to the CSG class; meanwhile, compression functions belong to the CFG class. The problem of the search for the most compact context-free grammar representation of a message is NP-hard, unless [image: there is no content] [5]. Instead of searching for the optimal solution, many heuristic and greedy algorithms were proposed.

CFGs for data compression were first discussed by Nevill-Manning [6] followed by the proposal of the SEQUITUR algorithm [7]. SEQUITUR reads the sentence in the left-right manner so that each repeated pattern is transformed into a grammar rule. The grammar is utilized in such a way that the two properties are fulfilled: a digram uniqueness (no pair of adjacent symbols appear more than once in the grammar and a rule utility); every rule is used more than once. Kiefer and Yang [8] were the first who addressed data compression using CFGs from the information theoretic perspective; they showed that the LZ78 [9] algorithm can be interpreted as a CFG and that the proposed BISECTION algorithm forms a grammar-based universal lossless source code. BISECTION repeatedly halves the initial message into unique phrases of length [image: there is no content], where k is the integer.

In the work of Yang and He [10], the context-dependent grammars (CDG) for data compression were introduced. In CSG, the context is present in both sides of production rules; meanwhile in CDG, the context is defined only on the left side of the production rule.

One of the first concepts in greedy grammar-based codes was the byte pair encoding (BPE) [11]. The BPE algorithm selects the most frequent digram and replaces it with some unused symbol. The main weakness of this approach is that the algorithm is limited to an alphabet consisting only of byte values. The concept of byte pair encoding was later revised, and the limitation on the alphabet size used was generalized independently by Nakamura and Murashima [12] and by Larsson and Moffat [13]; the resulting approach is called Re-Pair [13]. Re-Pair stands for recursive pairing, and it is a very active field of research [14,15]. It iteratively replaces the most frequent digrams with unused symbols until there is no digram that occurs more than once.

Unlike BPE that codes digrams using only byte values, Re-Pair expects that the symbols of the final message will be encoded using some entropy coding algorithm. Approaches derived from Re-Pair are usually greedy, since each iteration of the algorithm is dependent on a successful search of the extremal value of some statistical quantity related to the input message. The study of the Re-Pair from the perspective of ergodic sources is discussed in [16,17]. Neither BPE nor Re-Pair compress the message into the least possible size, but they rather form a trade-off between message and dictionary sizes. Re-Pair-like algorithms are off-line, in the sense that they need more than one pass through the input message; meanwhile, SEQUITUR incrementally builds the grammar in a single pass. The Re-Pair algorithm is an algorithm with [image: there is no content] time complexity; it is easy to implement using linked lists and a priority queue. Further, it was shown in [18] that it can compress an input message of length n over an alphabet of size [image: there is no content] into at most [image: there is no content] bits, where [image: there is no content] is k-th order entropy.

Our recent studies were focused on a special class of grammar transforms that leave the message size intact [19,20]. In the present paper, the class of grammar transformations is extended with a novel concept of higher order context transformation [21]. We shall provide examples of transformations and the evaluation of entropy resp. entropic size reduction to the class of grammar compression algorithms, and we compare the evolution of entropy, entropic size and the resulting number of dictionary entries for Re-Pair and our version of Re-Pair, called MinEnt, which is based on the selection of the pair of symbols reducing the entropic size of the message the most. Re-Pair finds application in areas such as searching in compressed data [22], compression of suffix arrays [23] or compression of inverted indexes [24], to name a few. These areas are also natural application fields for MinEnt. From the perspective of the number of passes through the message, the approaches discussed in this paper belong to off-line algorithms.

3. Transformations and Compression Algorithms

In this section, we will describe and evaluate several invertible transformations T and substitution functions F so that for any two consecutive states of the message, [image: there is no content] and [image: there is no content], before and after application of T or F, the following relation holds:

[image: there is no content]

(3)

The measure of the size of the message by the entropic size of the message is preferred, since using the arithmetic coding, one can achieve a compression rate very close to the zero order entropy, and so, the size [image: there is no content] is in theory accessible. Further, it allows the comparison of two distinct substitutions when their resulting sizes measured by the number of symbols are equal. The derivation of equations for the computation of [image: there is no content], resp. [image: there is no content], are provided in Section 4.

3.1. Transformations

Consider transformation, where we replace all occurrences of some symbol [image: there is no content] for some symbol [image: there is no content] and vice versa; such a transformation is called a symmetry transformation, because it does not modify any measurable quantities related to the amount of information. The information content is changed when the replacement is taken in the context of an other symbol [image: there is no content]. Such a transformation corresponds to the exchange of all digrams [image: there is no content] for [image: there is no content] and vice versa. In this section, several different forms of transformation are distinguished and briefly described. Some properties of transformations and their proofs can be found in Appendix A.

3.1.1. Context Transformation

The concept of context transformations was first proposed in [25], and the results were presented in [19]. It is the simplest transformation that assumes a pair of digrams beginning with the same symbol when one of the digrams is initially missing in the input message.

Definition 1.

Context transformation (CT) is a mapping [image: there is no content] that replaces all digrams [image: there is no content] for [image: there is no content], where [image: there is no content] and [image: there is no content]. Σ is the alphabet of the input message w, and n is the length of w.

Let [image: there is no content] be the context transformation applied from the end of the message to the beginning and [image: there is no content] in the opposite direction. The context transformation [image: there is no content] is an inverse transformation of [image: there is no content]. The proof of this property with an explanation for why it is the only pair of the function and its inverse is left to Appendix A. The application of two consecutive context transformations and their inverse functions is presented in the following example:

Example 1.

abcdabacd|CT←(ab→aa)aacdaaacd|CT←(cd→cc)aaccaaacc|CT→(cc→cd)aacdaaacd|CT→(aa→ab)abcdabacd|

3.1.2. Generalized Context Transformation

Context transformations were restricted in cases where one of the digrams was missing in the input message. This restriction is removed by the introduction of the generalized context transformations first proposed in [20].

Definition 2.

Generalized context transformation (GCT) is a mapping [image: there is no content] that exchanges all occurrences of a digram [image: there is no content] by a digram [image: there is no content] and vice versa. Σ is the alphabet of the input message w, and n is the length of w.

Example 2.

aabcabab|GCT←(ab↔aa)abacaaaa|GCT→(aa↔ab)aabcabab

Meanwhile, both transformations [image: there is no content] and [image: there is no content] swap occurrences of two different digrams beginning with the same symbol; they differ in the way they are applied and how the inverse transformation is formed. [image: there is no content] can be applied in both directions, and the inverse transformation [image: there is no content] is always applied in the opposite direction, than the forward transformation direction. The algorithm based on the [image: there is no content] and [image: there is no content] works as follows:

	
Find and apply transformation T so that the change of the entropic size [image: there is no content] is maximal.

	
Repeat Step 1 until no transformation can decrease the entropic size of the message.

It is also possible to define a transformation and its inverse so that all symbols constituting replaced pairs differ, for instance [image: there is no content]; such a transformation is called generic transformation [image: there is no content]. In this article, we have not proposed algorithms based on [image: there is no content], but because the set of all generalized context transformations is a subset of a set of generic transformations, the proof of the inverse transformation existence is the same for both [image: there is no content] and [image: there is no content]. The reader can find the proof in Appendix A.

3.1.3. Higher Order Context Transformation

Every time we apply any generalized context transformation [image: there is no content], we acquire knowledge about the positions of two distinct digrams in the message. We can either discard this knowledge or we can try to build on it. In the following definition, we define a transformation that is applied over positions where some other transformation was applied before:

Definition 3.

Let [image: there is no content] be a set of positions of the first symbol following the sub-message w in the message m and [image: there is no content], [image: there is no content]. If [image: there is no content], then the higher order context transformation (HOCT) is a mapping [image: there is no content] that exchanges all sub-messages [image: there is no content] for sub-messages [image: there is no content] and vice versa.

The restriction that the sub-message w has to satisfy is [image: there is no content], where [image: there is no content] is closely related to the existence of the inverse transformation to [image: there is no content]. The properties related to the [image: there is no content] and their proofs are left to Appendix A.

Let [image: there is no content] be the size of the sub-message w from Definition 3, then O is an order of [image: there is no content]. Any [image: there is no content] is then the first order [image: there is no content]. Given that we just before applied some transformation [image: there is no content], we can decide to collect the positions of either [image: there is no content] or [image: there is no content], collect the distribution of symbols in [image: there is no content] and apply another [image: there is no content]. In this sense, [image: there is no content] is not used only to interchange different sub-messages, but it also allows one to proceed with some other transformation [image: there is no content] of a higher order. The application of two consecutive [image: there is no content] transformations is presented in the following example:

Example 3.

abcdabcd|HOCT(ab↔ad,P(a,m)={1,5})adcdadcd|HOCT(adc↔add,P(ad,m)={2,6}))adddaddd|

The [image: there is no content] transformation is a recursive application of [image: there is no content] in the context of some prefix w. The steps of the algorithm are outlined as follows:

	
Find and apply [image: there is no content] over the set of positions [image: there is no content], so that the change of entropic size [image: there is no content] is maximal and [image: there is no content].

	
If the frequency of [image: there is no content] resp. [image: there is no content] is larger than one, then repeat Step 1 over the set of positions [image: there is no content] resp. [image: there is no content], i.e., positions where [image: there is no content] from Step 1 was applied; otherwise, repeat Step 1 over positions [image: there is no content] or return if no more [image: there is no content] passes the entropic size reduction conditions.

The algorithm above is iteratively called for symbols sorted from the most frequent one to the least frequent one. The [image: there is no content] variable can be used to restrict transformations whose entropic size reduction is too small, so they cannot be efficiently stored in the dictionary.

3.2. Compression Functions

In the preceding section, we described three types of transformations that leave message size intact. In this section, we will focus on a description of two approaches in the replacement of digrams for a new symbol. First, we describe basic principles of the well-known algorithm Re-Pair, and then, we will propose a modification of Re-Pair called MinEnt.

3.2.1. Re-Pair

The main idea behind the Re-Pair algorithm is to repeatedly find the most frequent digram and replace all of its occurrences with a new symbol that is not yet present in the message. The algorithm can be described in the following steps:

	
Select the most frequent digram [image: there is no content] in message m.

	
Replace all occurrences of [image: there is no content] for new symbol [image: there is no content].

	
Repeat Steps 1 and 2 until every digram appears only once.

In Step 2 of the algorithm, the pair [image: there is no content] together with a new symbol [image: there is no content] are stored in a dictionary. The implementation details of the Re-Pair algorithm are left to Section 3.2.2 regarding the proposed MinEnt algorithm.

3.2.2. MinEnt

The MinEnt algorithm proposed in this article is derived from the Re-Pair algorithm. The main difference is in Step 1, where instead of the selection of the most frequent digram, we select a digram that minimizes [image: there is no content] from Equation (3):

	
Select digram [image: there is no content] in message [image: there is no content] so that the change of entropic size [image: there is no content] is maximal.

	
Replace all occurrences of [image: there is no content] for new symbol [image: there is no content].

	
Repeat Steps 1 and 2 until every digram appears only once.

More precisely, let [image: there is no content] be the application of Step 1 and Step 2 of the MinEnt algorithm, then digram [image: there is no content] fulfills:

[image: there is no content]

(4)

where [image: there is no content] is the alphabet of the message [image: there is no content]. To demonstrate the difference between Re-Pair and MinEnt, consider the following example:

Example 4.

[image: there is no content]

The entropic size of [image: there is no content] is [image: there is no content] bits. There are two non-overlapping digrams that occur twice: [image: there is no content] and [image: there is no content].

[image: there is no content]

[image: there is no content]

Based on the Re-Pair algorithm, we do not know which digram should be preferred, because both have the same frequency. In the MinEnt case, we can compute [image: there is no content] for both cases, yielding [image: there is no content] bits and [image: there is no content] bits, and so, the replacement [image: there is no content] will be the preferred one.

The MinEnt and the Re-Pair strategies of digram selection are evaluated using the algorithm described in [13]. In the initialization phase of the algorithm, the input file is transformed into the linked list, and each input byte is converted into the unsigned integer value. In the next step, the linked list is scanned, and the frequencies and positions of all digrams are recorded. Frequencies of digrams, resp. the change of the entropic size of the message measured in bytes, are used as indices for the priority queue. The size of the queue is limited to the maximal frequency, resp. in the case of the MinEnt algorithm, the maximum entropic size decrease.

The algorithm iteratively selects the digram with the highest priority, replaces all occurrences of the digram with the newly-introduced symbol, decrements counts of neighboring digrams and increments counts of newly-introduced digrams. In the case of the MinEnt algorithm, we have to recompute the change of the entropic size of all digrams in the priority queue. We restrict the number of recomputed changes of the entropic size to the top 20 digrams with the highest priority, so that the time complexity of this additional step remains [image: there is no content]. Both algorithms are accomplished in [image: there is no content] expected time; see [13] for details. The memory consumption is larger in the MinEnt case, because each digram has to be assigned with the additional quantity: the value of the change of the entropic size of the message.

3.3. Discussion of the Transformation and Compression Function Selection Strategies

To demonstrate the behavior of aforementioned algorithms, we proposed strategies for the selection of transformations and compression algorithms. We compared the evolution of the entropy of the alphabet, the entropic size of the message and the final size of the message given as the sum of the entropic size of the message and the upper boundary on the size of the dictionary (Section 3.3.1). The following strategies are being compared:

	
[image: there is no content]: selection of the generalized context transformation so that the decrease of entropy is maximal.

	
[image: there is no content]: selection of the higher order context transformation so that the decrease of entropy is maximal in the context of prefix w.

	
Re-Pair: selection of the most frequent digram and its replacement with an unused symbol.

	
MinEnt: selection of the most entropic size reducing digram and its replacement with an unused symbol.

3.3.1. The Upper Boundary on the Dictionary Entry Size

All transformations and compression functions are usually stored as an entry in a dictionary. To be able to compare the effectiveness of transformations, we selected the worst case entropy of each symbol, given by [image: there is no content], where [image: there is no content] is an alphabet and subscript i denotes the number of applied transformations.

In the [image: there is no content] and [image: there is no content] strategies, the size of the alphabet will be constant, unless some symbols were completely removed, then the size of the alphabet decreases. Re-Pair and MinEnt algorithms, which introduce new symbols, have an increasing alphabet size. The upper boundary on the resulting size of each dictionary entry [image: there is no content] for [image: there is no content] and [image: there is no content] transformations is defined as:

[image: there is no content]

where [image: there is no content] is the size of the initial alphabet. The Larsson and Moffat [13] version of the Re-Pair introduces several efficient ways of dictionary encoding: the Bernoulli model, literal pair enumeration and interpolative encoding. In our experiments with Re-Pair and MinEnt, we used interpolative encoding to encode dictionary.

3.3.2. Comparison of the Alphabet’s Entropy Evolution

Even though the transformations and compression functions pursue the same objective, minimization of the entropic size of the message, they achieve that by a different evolution of zero order entropy. Transformation-based strategies minimize zero order entropy; meanwhile, both compression strategies introduce new symbols, and as a result, zero order entropy grows. The initial values of the quantities of the examined test file are summarized in Table 1. The example of the comparison of the zero order entropy evolution of different strategies is provided in Figure 1a.

Figure 1. Comparison of zero order entropy evolution over the paper5 file from the Calgary corpus. (a) Evolution of zero order entropy for different strategies; (b) evolution of zero order entropy for different values of the limit (LIM) in the [image: there is no content] strategy.

[image: Entropy 19 00223 g001]

Table 1. Characteristics of the paper5 file from the Calgary corpus: the initial size of alphabet [image: there is no content], the initial file size [image: there is no content] measured in bytes, the initial entropy [image: there is no content] measured in bits and the initial entropic size [image: there is no content] measured in bytes.

	
File Name

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
paper5

	
91

	
11 954

	
4.936

	
7 376

Both compression functions achieve a very similar resulting value of zero order entropy. The Re-Pair strategy begins with the highest growth of entropy, but the increase slows down with the number of iterations as the frequency of each consecutive digram drops. As will be discussed in Section 4.2.2, digrams consisting of symbols with a lower frequency will be preferred by MinEnt, because they will be able to achieve a larger decrease of entropic size, and their replacement brings less costs in the zero order entropy increase. This behavior can be observed especially in later iterations of the Re-Pair and MinEnt algorithms.

Both transformations reduce the value of zero order entropy. [image: there is no content] initially drops faster, but in the end, it significantly slows down. The application of the [image: there is no content] strategy achieves the lowest resulting value of entropy, and the interesting fact is that it decreases at an almost constant rate. The behavior of entropy evolution for different values of the limit in [image: there is no content] is presented in Figure 1b. The unrestricted case ([image: there is no content]) shows us the bottom limit of zero order entropy reduction using the [image: there is no content] strategy.

3.3.3. Comparison of Entropic Size Evolution

The selection of the most frequent digram will produce the largest decrease of the number of symbols in each iteration. Surprisingly, the Re-Pair strategy does not necessarily have to converge to its minimum in the lower number of iterations than MinEnt. Figure 2 presents this behavior for the paper5 file of the Calgary corpus. Both approaches end with a similar number of symbols in the resulting message.

Figure 2. Comparison of Re-Pair and MinEnt algorithms: evolution of the message size measured in the number of symbols over the paper5 file from the Calgary corpus.

[image: Entropy 19 00223 g002]

The MinEnt strategy achieves the lowest entropic size of the message, and at each iteration, the entropic size of the message is lower than in the case of the Re-Pair strategy, see Figure 3. The overall efficiency depends on our ability to compress the resulting dictionary.

Figure 3. Comparison of Re-Pair, MinEnt, [image: there is no content] and [image: there is no content] algorithms: evolution of the entropic message size measured in bits per byte over the paper5 file from the Calgary corpus.

[image: Entropy 19 00223 g003]

A summary of different transformation strategies is provided in Table 2. A summary of compression functions is then given in Table 3. The least number of iterations was achieved by [image: there is no content] with [image: there is no content]; this strategy also leads to the least final size [image: there is no content], but it should be emphasized that the resulting entropic size of the message [image: there is no content] is a very pessimistic estimate, due to the construction of the size of dictionary entries.

Table 2. The comparison of transformation strategies using different criteria: [image: there is no content] is the limiting size of the dictionary entry in bytes, i is the number of iterations; [image: there is no content] is the final entropy measured in bits; [image: there is no content] is the final entropic size measured in bytes; [image: there is no content] is the upper boundary on the amount of information needed to store one symbol to dictionary; and [image: there is no content] is the final size of the file given as the sum of the entropic size of the message and the size of the dictionary measured in bytes.

	
Strategy

	
[image: there is no content]

	
i

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
0

	
2367

	
3.796

	
5674

	
6.508

	
11,451

	
[image: there is no content]

	
[image: there is no content]

	
127

	
4.260

	
6366

	
6.508

	
6676

	
[image: there is no content]

	
0

	
3 821

	
2.786

	
4163

	
6.508

	
13,488

	
[image: there is no content]

	
4

	
1 143

	
3.528

	
5272

	
6.508

	
8061

	
[image: there is no content]

	
8

	
525

	
3.830

	
5713

	
6.508

	
6994

	
[image: there is no content]

	
[image: there is no content]

	
222

	
4.067

	
6078

	
6.508

	
6439

Table 3. The comparison of compression strategies using different criteria: i is the number of iterations; [image: there is no content] is the size of the final alphabet; [image: there is no content] is the resulting size of the file measured as the number of symbols; [image: there is no content] is the final entropy measured in bits; [image: there is no content] is the final entropic size measured in bytes; [image: there is no content] is the average number of bits needed to store one phrase in the dictionary; and [image: there is no content] is the final size of the file given as the sum of the entropic size of the message and the size of the dictionary measured in bytes.

	
Strategy

	
i

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
Re-Pair

	
1146

	
965

	
2832

	
9.283

	
3286

	
10.240

	
4753

	
MinEnt

	
1129

	
944

	
2798

	
9.395

	
3286

	
10.281

	
4737

Even though the achieved results of both approaches are similar, we see that the resulting message size [image: there is no content] and alphabet size are lower in the case of MinEnt. The message size [image: there is no content] is given by the sum of the entropic size of the message and the size of the dictionary stored by interpolative encoding. Using values in the columns of Table 3, we express [image: there is no content]; the term [image: there is no content] represents the size of the dictionary given as a product of the total number of iterations and the average number of bits needed to encode one iteration. See Table 4 and Table 5 for more results on files from the Calgary and Canterbury corpora.

Table 4. The comparison of strategies using different criterions, i is the number of iterations, [image: there is no content] is the size of the final alphabet, [image: there is no content] is the resulting size of file measured as the number of symbols, [image: there is no content] is the final entropy measured in bits, [image: there is no content] is the final entropic size measured in bytes, [image: there is no content] is the average number of bytes needed to store one phrase into the dictionary and [image: there is no content] is the final size of the file given as the sum of entropic size of the message and the size of the dictionary measured in bytes.

	
File Name

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
i

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
Calgary corpus

	
bib

	
111,261

	
81

	
5.257

	
5469

	
4216

	
15,159

	
11.410

	
21,621

	
11.589

	
29,544

	
book1

	
768,771

	
82

	
4.528

	
23,587

	
22,649

	
128,059

	
13.422

	
214,859

	
11.904

	
249,957

	
book2

	
610,856

	
96

	
4.681

	
21,147

	
18,501

	
82,446

	
13.213

	
136,165

	
12.829

	
170,079

	
news

	
377,109

	
98

	
5.226

	
20,079

	
13,602

	
55,500

	
12.809

	
88,863

	
12.761

	
120,892

	
obj1

	
21,504

	
256

	
5.929

	
1650

	
1475

	
6464

	
9.888

	
7990

	
10.918

	
10,242

	
obj2

	
246,814

	
256

	
6.280

	
14,635

	
9569

	
35,540

	
12.323

	
54,743

	
13.044

	
78,607

	
paper1

	
53,161

	
95

	
4.967

	
3559

	
2678

	
8800

	
10.890

	
11,979

	
11.360

	
17,033

	
paper2

	
82,199

	
91

	
4.506

	
4297

	
3753

	
14,102

	
11.235

	
19,805

	
11.181

	
25,811

	
paper3

	
46,526

	
84

	
4.588

	
2989

	
2575

	
9061

	
10.767

	
12,195

	
10.791

	
16,227

	
paper4

	
13,286

	
80

	
4.602

	
1194

	
997

	
3136

	
9.622

	
3772

	
10.130

	
5284

	
paper6

	
38,105

	
93

	
5.000

	
2834

	
2108

	
6670

	
10.585

	
8826

	
11.220

	
12,801

	
progc

	
39,611

	
92

	
5.282

	
2854

	
2066

	
6526

	
10.641

	
8681

	
11.254

	
12,696

	
progl

	
71,646

	
87

	
4.830

	
4162

	
2577

	
7216

	
10.851

	
9788

	
12.003

	
16,033

	
progp

	
49,379

	
89

	
4.823

	
3147

	
1684

	
4528

	
10.272

	
5814

	
11.952

	
10,516

	
trans

	
93,695

	
99

	
5.545

	
5918

	
2505

	
6513

	
10.968

	
8929

	
12.419

	
18,116

	
Canterbury corpus

	
alice29.txt

	
152,089

	
74

	
4.435

	
6733

	
6068

	
25,077

	
11.985

	
37,568

	
11.482

	
47,232

	
asyoulik.txt

	
125,179

	
68

	
4.889

	
5799

	
5293

	
23,532

	
11.774

	
34,634

	
10.932

	
42,559

	
bible.txt

	
4,047,392

	
63

	
4.260

	
81,229

	
71,256

	
386,094

	
15.017

	
724,728

	
14.525

	
872 215

	
cp.html

	
24,603

	
86

	
5.107

	
1785

	
1271

	
4242

	
9.590

	
5085

	
10.689

	
7470

	
E.coli

	
4,638,690

	
4

	
2.000

	
67,368

	
62,924

	
652,664

	
13.725

	
1,119,687

	
7.462

	
1182 530

	
fields.c

	
11,150

	
90

	
4.924

	
927

	
658

	
1503

	
9.304

	
1748

	
10.822

	
3002

	
kennedy.xls

	
1,029,744

	
256

	
3.584

	
2446

	
2545

	
160,177

	
9.788

	
195,978

	
8.274

	
198 508

	
lcet10.txt

	
426,754

	
84

	
4.627

	
14,515

	
12,395

	
55,691

	
12.759

	
88,823

	
12.426

	
111,369

	
ptt5

	
513,216

	
159

	
1.049

	
5995

	
5697

	
30,463

	
11.424

	
43,503

	
11.178

	
51,880

	
random.txt

	
100,000

	
64

	
6.000

	
5065

	
5126

	
54,182

	
11.182

	
75,731

	
3.983

	
78,253

	
sum

	
38,240

	
255

	
5.447

	
3116

	
1749

	
6251

	
10.290

	
8041

	
11.912

	
12,681

	
world192.txt

	
2,473,400

	
94

	
5.024

	
55,473

	
47,150

	
212,647

	
14.552

	
386,808

	
13.973

	
483 705

	
xargs.1

	
4227

	
74

	
4.863

	
468

	
384

	
990

	
8.255

	
1022

	
9.811

	
1596

Table 5. The comparison of the strategies using different criteria: i is the number of iterations; [image: there is no content] is the size of final alphabet; [image: there is no content] is the resulting size of the file measured as the number of symbols; [image: there is no content] is the final entropy measured in bits; [image: there is no content] is the final entropic size measured in bytes; [image: there is no content] is the average number of bytes needed to store one phrase in the dictionary; and [image: there is no content] is the final size of the file given as the sum of entropic size of the message and the size of the dictionary measured in bytes.

	
File Name

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
i

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
Calgary corpus

	
bib

	
111,261

	
81

	
5.201

	
5513

	
4150

	
15,103

	
11.307

	
21,346

	
11.717

	
29,421

	
book1

	
768,771

	
82

	
4.527

	
23,843

	
22,616

	
127,777

	
13.377

	
213,656

	
12.134

	
249,822

	
book2

	
610,856

	
96

	
4.793

	
20,852

	
17,997

	
80,814

	
13.170

	
133,045

	
12.847

	
166,533

	
news

	
377,109

	
98

	
5.190

	
20,118

	
13,388

	
55,347

	
12.697

	
87,845

	
12.918

	
120,333

	
obj1

	
21,504

	
256

	
5.948

	
1638

	
1418

	
6459

	
9.727

	
7853

	
11.135

	
10,133

	
obj2

	
246,814

	
256

	
6.260

	
14,673

	
9337

	
35,510

	
12.173

	
54,031

	
13.218

	
78,275

	
paper1

	
53 161

	
95

	
4.983

	
3579

	
2633

	
8726

	
10.741

	
11,716

	
11.413

	
16,822

	
paper2

	
82,199

	
91

	
4.601

	
4247

	
3612

	
13,797

	
11.088

	
19,123

	
11.221

	
25,080

	
paper3

	
46,526

	
84

	
4.665

	
3004

	
2529

	
8993

	
10.676

	
12,002

	
10.892

	
16,092

	
paper4

	
13,286

	
80

	
4.700

	
1136

	
930

	
3133

	
9.232

	
3615

	
10.288

	
5076

	
paper6

	
38,105

	
93

	
5.010

	
2841

	
2080

	
6662

	
10.398

	
8659

	
11.297

	
12,671

	
progc

	
39,611

	
92

	
5.199

	
2871

	
2034

	
6530

	
10.444

	
8525

	
11.307

	
12,583

	
progl

	
71,646

	
87

	
4.770

	
4175

	
2495

	
7134

	
10.742

	
9579

	
12.100

	
15,894

	
progp

	
49,379

	
89

	
4.869

	
3145

	
1631

	
4509

	
10.166

	
5730

	
12.194

	
10,524

	
trans

	
93,695

	
99

	
5.533

	
5916

	
2425

	
6515

	
10.736

	
8743

	
12.713

	
18,145

	
Canterbury corpus

	
alice29.txt

	
152,089

	
74

	
4.568

	
6649

	
5903

	
24,825

	
11.767

	
36,516

	
11.573

	
46,135

	
asyoulik.txt

	
125,179

	
68

	
4.808

	
5804

	
5220

	
23,359

	
11.563

	
33,764

	
11.018

	
41,758

	
bible.txt

	
4,047,392

	
63

	
4.343

	
77,117

	
66,593

	
386,092

	
14.649

	
706,991

	
14.543

	
847,187

	
cp.html

	
24,603

	
86

	
5.229

	
1748

	
1212

	
4313

	
9.462

	
5101

	
10.897

	
7482

	
E.coli

	
4,638,690

	
4

	
2.000

	
66,995

	
62,463

	
652,663

	
13.717

	
1,119,067

	
7.667

	
1,183,281

	
fields.c

	
11,150

	
90

	
5.008

	
868

	
587

	
1606

	
8.724

	
1751

	
11.013

	
2946

	
kennedy.xls

	
1,029,744

	
256

	
3.573

	
2612

	
2511

	
159,999

	
10.012

	
200,240

	
8.575

	
203,040

	
lcet10.txt

	
426,754

	
84

	
4.669

	
14,506

	
12,178

	
54,937

	
12.661

	
86,941

	
12.462

	
109,539

	
ptt5

	
513,216

	
159

	
1.210

	
23,203

	
6314

	
94,463

	
4.566

	
53,918

	
12.308

	
89,618

	
random.txt

	
100,000

	
64

	
5.999

	
5145

	
5209

	
54,011

	
11.235

	
75,854

	
4.075

	
78,475

	
sum

	
38,240

	
255

	
5.329

	
3130

	
1683

	
6245

	
10.034

	
7833

	
12.184

	
12,600

	
world192.txt

	
2,473,400

	
94

	
4.998

	
54,946

	
45,920

	
212,499

	
14.340

	
380,896

	
14.078

	
477,588

	
xargs.1

	
4227

	
74

	
4.898

	
342

	
326

	
1235

	
7.755

	
1197

	
9.988

	
1624

4. Zero Order Entropy and Entropic Message Size Reduction

The primary purpose of context transformation and other derived transformations is to reduce the zero order entropy measured by Shannon’s entropy [2] defined in Equation (1). In this section, we shall show under what conditions the transformation and compression function reduces zero order entropy resp. the entropic size of the message. Suppose that [image: there is no content] is a zero order entropy of message m, and [image: there is no content] is a zero order entropy after a transformation T is applied. The conditions under which the following inequalities hold are the major subject of interest.

[image: there is no content]

(5)

Let [image: there is no content] be a set of symbols whose frequencies before and after transformation differ, and [image: there is no content] is a set of symbols whose frequencies are intact. For transformations, the inequality (5) can be further restricted only to the set of symbols [image: there is no content], since the terms containing symbols from [image: there is no content] subtract:

[image: there is no content]

(6)

In the following paragraph, we will specify the forms of the set [image: there is no content] and the relations for the probabilities of its symbols after transformations, so that the change of entropy given by Equation (6) can be computed before any transformation actually occurs.

4.1. Transformation of Probabilities

We begin with the simplest case: suppose the context transformation [image: there is no content]. Since only the probabilities of symbols [image: there is no content] and [image: there is no content] will change, then [image: there is no content], and it is sufficient to express probabilities only for [image: there is no content] and [image: there is no content]:

[image: there is no content]

(7)

and:

[image: there is no content]

(8)

In the case of the generalized context transformation [image: there is no content], the set [image: there is no content] is identical, and the probabilities transform according to:

[image: there is no content]

(9)

and:

[image: there is no content]

(10)

In the last case of higher order transformation, the probabilities transform according to:

[image: there is no content]

(11)

and:

[image: there is no content]

(12)

In all cases, the set [image: there is no content] forms a binary alphabet. The following theorem then describes the condition for zero order entropy reduction:

Theorem 1.

Suppose the generalized context transformation [image: there is no content]. Let [image: there is no content] and [image: there is no content] be the probabilities of symbols before the transformation is applied, and let [image: there is no content]. After the transformation, the associated probabilities are [image: there is no content], [image: there is no content] and [image: there is no content]. If [image: there is no content], then the generalized context transformation T reduces entropy.

The proof of Theorem 1 is based on the properties of entropy when only two letters from alphabet [image: there is no content] are considered. Let [image: there is no content], where [image: there is no content], c is invariant, it does not change during the transformation. We can express one of these probabilities using the other one; for example, let [image: there is no content]; this allows us to express the entropy function as a function of only one variable. A few examples of such functions are shown in Figure 4. The maximum value of the function is located in the value [image: there is no content], and it has two minimums at zero and at c.

Figure 4. The entropy of two letters with different [image: there is no content].

[image: Entropy 19 00223 g004]

Proof.

Since the entropy function for two different letters is defined on the interval [image: there is no content] and it is concave with a maximum at [image: there is no content] and minimums at zero and c, then [image: there is no content] has to be located on the interval [image: there is no content]; but on that particular interval, the higher the maximum is, the lower the entropy is, so if we increase the maximum (or we can say increase the absolute value of the difference [image: there is no content]), then the entropy will decrease. ☐

4.2. General Entropy Change Relations

In this section, we generalize the notion of zero order entropy change on the exchange of any two words. The solution is divided into three parts. The first part deals with the set of symbols [image: there is no content] whose frequency does not change before and after the substitution function is applied; the second part establishes relations for the set of symbols [image: there is no content] whose probability is changed, but their initial and final frequencies are non-zero; the third part discusses symbols introduced to and removed from the alphabet. Let [image: there is no content] be a set of removed symbols, and [image: there is no content] is a set of introduced symbols; then, we can split the sum in Equation (1), yielding:

[image: there is no content]

(13)

The four sets of symbols in Equation (13) exhibit different behaviors under the substitution function, and they will be discussed in separate sections. The entropic size of the message [image: there is no content] can also be handled separately; let [image: there is no content] be a portion of entropy conveyed by symbols from alphabet [image: there is no content], and let [image: there is no content] be particular portions of the entropic size of the message; then, we can split the resulting entropic size as we did before:

|m|H=|m|[H(p(ΣI))+H(p(ΣT))+H(p(ΣR))+H(p(ΣN))]=|m|H(p(ΣI))+|m|H(p(ΣT))+|m|H(p(ΣR))+|m|H(p(ΣN))=|m|H(ΣI)+|m|H(ΣT)+|m|H(ΣR)+|m|H(ΣN)

(14)

4.2.1. The First Part: Symbols Remaining Intact by the Substitution Function

We begin with symbols that are not part of either of the substituting words [image: there is no content] or [image: there is no content]. Suppose that the length [image: there is no content] of the message [image: there is no content] turns into some message [image: there is no content] of the size [image: there is no content]. Generally, [image: there is no content], but in a special case of context transformations, these two quantities are equal. However, when the compression or expansion of the message occurs, the part of the Shannon equation will also change due to the change in the total number of symbols.

Suppose that the symbol x is initially in the message [image: there is no content] with the probability [image: there is no content]. This probability can be expressed using the frequency [image: there is no content] and the size of the message as:

[image: there is no content]

(15)

Later, after the transformation was applied, the probability changes to:

[image: there is no content]

(16)

where [image: there is no content] is a change of the message size. In the case of context transformations where the message size remains the same size, the probability remains the same, as well as the part of entropy formed by non-transformed symbols.

When the two probabilities are placed in relation by some stretching factor [image: there is no content] we arrange them into the form:

[image: there is no content]

(17)

The factor [image: there is no content] (the introduction of [image: there is no content] is motivated by the properties of logarithms if we would actually stay with [image: there is no content] given by Equation (16), we would get logarithm [image: there is no content]. If instead, we express [image: there is no content] using (17), then the logarithm is in product form, and its arguments are single numbers [image: there is no content]) can be expressed by substitution of [image: there is no content] in Equation (17) by the terms in Equations (15) and (16), leading to:

[image: there is no content]

[image: there is no content]

(18)

Then, the relation for zero order entropy after transformation will have the form:

H(p1(ΣI))=−∑x∈ΣIc1.p0(x)log[c1.p0(x)]=−c1∑x∈ΣIp0(x)[logc1+logp0(x)]=−c1logc1∑x∈ΣIp0(x)−c1∑x∈ΣIp0(x)logp0(x)=−c1logc1∑x∈ΣIp0(x)+c1H(p0(ΣI))=c1[H(p0(ΣI))−logc1∑x∈ΣIp0(x)]

(19)

The example of the behavior of [image: there is no content] of the intact part is visualized in Figure 5. When the compression of the message occurs, i.e., [image: there is no content], then the zero order entropy of intact symbols increases. The less the probability is conveyed by symbols from [image: there is no content], the more their zero order entropy is sensitive to the change of [image: there is no content].

Figure 5. The portion of entropy [image: there is no content] given by symbols from [image: there is no content] as a function of [image: there is no content] for the constant [image: there is no content] and [image: there is no content].

[image: Entropy 19 00223 g005]

The final entropic size is given as follows:

|m1|H,ΣI=|m1|H(p1)=|m1|c1[H(p0(ΣI))−logc1∑x∈ΣIp0(x)]=|m0|H(p0(ΣI))−|m0|logc1∑x∈ΣIp0(x))=|m0|H,ΣI−|m0|∑x∈ΣIp0(x)logc1=|m0|H,ΣI−logc1∑x∈ΣIf0(x)

(20)

If we apply one of transformations, then [image: there is no content], and as a consequence, [image: there is no content]; the last term on the right will be zero due to [image: there is no content], so Equation (20) tells us that the entropic size of the message carried by these symbols does not change during transformation. When [image: there is no content] is much smaller than [image: there is no content], it is convenient to rewrite Equation (20) in terms of [image: there is no content]:

[image: there is no content]

(21)

Corollary 1.

No compression function ever increases the entropic size of the part of the message consisting of intact symbols.

Proof.

The compression function has the value of [image: there is no content] larger than one, as a consequence [image: there is no content], and so, [image: there is no content]. ☐

The equality in [image: there is no content] occurs when [image: there is no content], i.e., when there are no intact symbols. When the expansion of the message occurs, then [image: there is no content] and the second term of Equation (20) on the right will change to a positive number. Expansion of the message leads to the increase of the entropic size; meanwhile, compression leads to the decrease of the entropic size of intact symbols.

In each iteration of the Re-Pair algorithm, the most frequent digram is selected. This corresponds to the selection of a digram with maximal value of [image: there is no content], but it does not have to be the digram minimizing the entropic size of this part of the resulting message the most. Consider two digrams [image: there is no content] and [image: there is no content], so that their frequencies are equal: [image: there is no content]; replacing them with a new symbol yields the same stretching factor [image: there is no content], but not necessarily [image: there is no content]. The larger reduction of the entropic size of a message will be achieved when compressed digrams or words consist of less frequent symbols.

4.2.2. The Second Part: Symbols Participating in the Substitution Function

In the second case, the frequencies of symbols and their total number will change. The equation for stretching factor [image: there is no content] will be derived in the following way:

[image: there is no content]

[image: there is no content]

The main difference in both cases is that [image: there is no content] is a constant; meanwhile, [image: there is no content] is a function of the particular symbol x.

[image: there is no content]

(22)

where in the last step, we made the substitution: [image: there is no content] The rest of the derivation follows the derivation of Equation (19).

[image: there is no content]

(23)

The behavior of Equation (23) for different values of [image: there is no content] is visualized in Figure 6. The substitution of less frequent symbols leads to a lower increase of zero order entropy.

Figure 6. Dependency of [image: there is no content] on different values of [image: there is no content] for three cases of [image: there is no content].

[image: Entropy 19 00223 g006]

The resulting entropic size simplifies given that:

[image: there is no content]

(24)

yields:

|m1|H=|m1|HT(p1)=−∑x∈ΣT[f0(x)+Δf(x)](logc2(x)+logp0(x))

(25)

We now analyze both terms in (25) from the perspective of different values of [image: there is no content]. We will be particularly interested in compression functions. We know that for compression function [image: there is no content], symbols with [image: there is no content], i.e., symbols whose frequency decreases, will have [image: there is no content]. The positivity or negativity of [image: there is no content] then depends on the value of product [image: there is no content].

The case when [image: there is no content] has a solution [image: there is no content], then [image: there is no content]. The term [image: there is no content] is always negative. The value of [image: there is no content] must be larger than [image: there is no content] to decrease the zero order entropy conveyed by symbol x, since then, [image: there is no content] and, as a consequence, [image: there is no content].

[image: there is no content]

(26)

The introduction of the absolute value in the middle step of the derivation of Inequality (26) is allowed since using compression functions values of [image: there is no content] and [image: there is no content] can only be negative. Suppose now that we have a digram [image: there is no content], given that [image: there is no content], and we replace it by the newly-introduced [image: there is no content], then [image: there is no content]. The left part of Inequality (26) becomes equal to one, so Inequality (26) cannot be satisfied, and [image: there is no content] in this case will be negative and will always increase the amount of information carried by the symbols [image: there is no content] and [image: there is no content].

Finally, we state the condition for the entropic size decrease:

Corollary 2.

The entropic size of the part of the message formed by symbol x decreases when:

[image: there is no content]

(27)

Proof.

|m1|H<|m0|H0(x)+Δf(x)][logc2(x)+logp0(x)]<f0(x)logp0(x)f0(x)logc2(x)+Δf(x)logp0(x)+Δf(x)logc2(x)<0Δf(x)(logp0(x)+logc2(x))<−f0(x)logc2(x)Δf(x)f0(x)<−logc2(x)logc2(x)+logp0(x)

☐

4.2.3. Third Part: Introduced and Removed Symbols

We begin with symbol x, which is completely removed from the message, so that initially, [image: there is no content], but [image: there is no content]. This case is trivial, and it has zero participation in the final value of the entropy and the entropic size of message. The remaining case we have to deal with is a case when initially symbol x has zero probability [image: there is no content], but after substitution, its probability will increase to some [image: there is no content]. The final probability is given as:

[image: there is no content]

(28)

Since the symbol x initially has zero participation in entropy and entropic size, it will always lead to the increase of both quantities. For the set [image: there is no content] of all such symbols, its portion on total entropy is then given by:

[image: there is no content]

(29)

and the corresponding final entropic size will be given by:

|m1|H=|m1|HN(p1)=−∑x∈ΣNΔf(x)[logΔf(x)−log(|m0|+Δm)]

(30)

It is important to remark that it does not make much sense to introduce more than one symbol in one substitution function, because both quantities would then add themselves twice.

4.3. Calculation of [image: there is no content]

At first glance, it seems that we need to evaluate all symbols to predict zero order entropy, but instead, it is possible to predict the exact change of the entropic size of the message after the application of the compression function by the evaluation of entropic sizes given by Equations (21), (25) and (30) dealing only with symbols [image: there is no content]. In the particular case of the Re-Pair algorithm, there are only two symbols whose frequency knowledge is sufficient to evaluate the change of the entropic size of the message; suppose a compression function [image: there is no content] so that [image: there is no content], [image: there is no content] and [image: there is no content], then the resulting entropic size is given as:

Δ|m|H=|m0|logc1−logc1∑x∈{α,β}f0(x)+∑x∈{α,β}f0(x)logc2(x)+Δf0(x)logp0(x)+Δf0(x)logc2(x)−Δf(γ)[logΔf(γ)−log(|m0|+Δm)]

(31)

finally, for the Re-Pair, it holds that if [image: there is no content], then [image: there is no content], and all [image: there is no content]’s in (31) turn into [image: there is no content]. If [image: there is no content], then [image: there is no content].

5. Conclusions

We described three types of transformations for the preprocessing of messages so that the zero order entropy of messages drops so the resulting message can be more efficiently encoded using zero order entropy compression algorithms like Huffman or arithmetic coding.

We presented relations that govern the change of the message size for transformations and compression functions. Transformations have the advantage that they do not modify the size of the alphabet, especially in the case of digram substitution used by Re-Pair and our proposal of the MinEnt strategy; the resulting size of the alphabet significantly grows, and it brings additional complexity in the storage of the entropy coding model, i.e., the storage of the output alphabet.

The MinEnt strategy selects digrams to be replaced by the minimal entropic size of the resulting message, and it is shown that in most cases, the resulting message size is smaller than the one achieved by Re-Pair. We also showed that the two algorithms follow slightly different execution paths, as MinEnt prefers digrams that consist of less frequent symbols; meanwhile, Re-Pair does not take this into consideration.

The compression functions take advantage of transformations as they achieve a better resulting compression ratio. In future work, we will focus on the storage of the dictionary that will be used in transformation algorithms, because this area can significantly improve the resulting compression ratio. Further, we will focus on the description of the relation between the entropy coding model of the final message and the size of the final alphabet.

Acknowledgments

This work was supported by the project SP2017/100 Parallel processing of Big Data IV, of the Student Grant System, VSB-Technical University of Ostrava. The costs for open access were covered.

Author Contributions

Michal Vasinek realized this work, proposed and developed the implementation of the [image: there is no content], [image: there is no content], [image: there is no content] and MinEnt algorithms. Jan Platos provided the guidance during the writing process and revised the paper.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

The following sections present properties of transformations. Specifically for each type of transformation we will provide a proof of the inverse transformation existence. Further we will describe how the frequencies of symbols will be altered if the particular transformation is going to be applied.

Appendix A.1. CT—Proof of the Correctness

This theorem defines the inverse transformation of the context transformation:

Theorem A1.

The context transformation [image: there is no content] is inverse transformation of the context transformation [image: there is no content].

Proof.

Let [image: there is no content], if [image: there is no content] is inverse then the following must be true for any message m: [image: there is no content]. Suppose that we are passing message m from the end to the beginning and suppose that in positions i and [image: there is no content] digram [image: there is no content] is located, this digram is replaced by [image: there is no content], the next pair of positions explored are [image: there is no content] and i, but their value is independent of the preceding replacement, because the replacement has taken place in position [image: there is no content], so when [image: there is no content] is applied in position i it will find there the digram [image: there is no content] and reverts it back to [image: there is no content]. ☐

Other combinations of directions do not form a pair of transformation and its inverse. We give an example for each case showing this property: [image: there is no content] and [image: there is no content] over the message [image: there is no content]: [image: there is no content] but [image: there is no content]. Next consider [image: there is no content] and [image: there is no content] over the message [image: there is no content]: [image: there is no content] but [image: there is no content]. And in the last case let’s consider [image: there is no content] and [image: there is no content] over the message [image: there is no content]: [image: there is no content] but [image: there is no content].

Let [image: there is no content] is a number of occurrences of particular digram [image: there is no content] in a message m, then the following corollary tells us how many digrams [image: there is no content] is introduced by context transformation [image: there is no content]:

Corollary A1.

Under assumption that [image: there is no content] the number of occurrences of digrams [image: there is no content] and [image: there is no content] after application of transformation [image: there is no content] is [image: there is no content] and [image: there is no content].

Proof.

A proof is a consequence of Theorem A1, since each replacement is independent of each other and so each digram [image: there is no content] is replaced by [image: there is no content] leaving [image: there is no content] and [image: there is no content]. ☐

The corollary allows us to precisely predict not only the frequencies of the interchanged digrams [image: there is no content] and [image: there is no content] but also as a consequence the frequencies of individual symbols after transformation. The special case of transformations on a diagonal (see Definition A1) will be discussed in the next paragraph.

Appendix A.2. Diagonal Context Transformation

Diagonal transformation is a transformation where one of the digrams participating in the transformation is of the form [image: there is no content]. The resulting frequency of such a digram is unpredictable without knowledge of the distribution of all n-grams of the form [image: there is no content], where [image: there is no content], but we show that for any diagonal [image: there is no content], it is possible to predict frequencies of symbols [image: there is no content] and [image: there is no content]. The problems with predictability arise from the repetition of symbols.

Definition A1.

Diagonal context transformation is a context transformation of the form [image: there is no content].

Consider two transformations, [image: there is no content] and [image: there is no content], if Corollary A1 would also be valid for diagonal transformations, then for instance in the case of [image: there is no content], the frequency [image: there is no content] but this obviously is not true, instead we see that the new frequency [image: there is no content] of symbol [image: there is no content] is [image: there is no content].

Suppose we have a message [image: there is no content], then [image: there is no content], we clearly see that the frequency [image: there is no content] and [image: there is no content], because the number of digrams in a message is given by the length of the message minus one. We can now express the frequency [image: there is no content] of the newly introduced occurrences of digram [image: there is no content] as a sum of all sub-messages enclosed in m in the form [image: there is no content], where [image: there is no content] for all [image: there is no content]. So we see that it is possible to precisely predict the change of frequency of [image: there is no content], but it demands knowledge of the distribution of all enclosed sub-messages s.

From the other perspective, since each occurrence of digram [image: there is no content] in the former message is transformed into [image: there is no content] we can see that the frequency [image: there is no content] and [image: there is no content].

Very similar behavior is observed in the second case of [image: there is no content]. The problem is in the repetition of the pattern [image: there is no content], then [image: there is no content] and [image: there is no content]. Again without knowledge of all sub-messages t enclosed in m we cannot predict the exact change of frequency of neither digram [image: there is no content] nor [image: there is no content], but since we know that each pair [image: there is no content] in the former message will be transformed to [image: there is no content], we can again precisely predict frequencies of individual symbols [image: there is no content] and [image: there is no content].

With the knowledge of the preceding discussion and of Corollary A1 we conclude that for any context transformation [image: there is no content] we are able to compute the frequency and corresponding probability of arbitrary symbol after application of any [image: there is no content] from the knowledge of initial distribution of symbols and digrams. In [26] we showed that under certain conditions it is possible to process several context transformations simultaneously.

Appendix A.3. GCT—Frequencies Alteration

Corollary A2.

Under assumption that [image: there is no content], [image: there is no content] and [image: there is no content] the number of occurrences of digrams [image: there is no content] and [image: there is no content] after application of transformation [image: there is no content] is [image: there is no content] and [image: there is no content].

Proof.

Since each digram [image: there is no content] resp. [image: there is no content] is replaced by [image: there is no content] resp. [image: there is no content], and neither of the digrams influence the transformation of the other, their frequencies must interchange. ☐

Appendix A.4. Generic Transformation—Proof of Correctness

Generic transformation [image: there is no content] exchanges any two digrams. In the design of algorithms, we prefer [image: there is no content] over [image: there is no content] since the space from which generic transformations are selected is in this case of order the [image: there is no content] and when alphabets of the large size are dealt with, the search in such a space would be computationally very expensive.

Definition A2.

Generic transformation (GT) is the mapping [image: there is no content], Σ is the alphabet of the input message w and n is the length of the input message, that exchanges all digrams [image: there is no content] for digram [image: there is no content] and vice-versa.

The inverse transformation of [image: there is no content] and [image: there is no content] is defined by the following theorem:

Theorem A2.

Generic transformation [image: there is no content] resp. [image: there is no content] is the inverse of generic transformation [image: there is no content] resp. [image: there is no content]

Proof.

First, we show that it is sufficient to prove that for any string [image: there is no content], it holds that [image: there is no content], where [image: there is no content] and [image: there is no content]. Suppose that x is located in position p then for digrams d in positions [image: there is no content] and [image: there is no content] it holds that [image: there is no content]. So the first possible application of GT can occur in positions [image: there is no content] and [image: there is no content] and these are independent, i.e., non-overlapping.

Next, we show that each replacement made in the forward transformation will be reverted back by inverse transformation. Take for example transformation [image: there is no content] the transformation is applied in the right to left direction. The last applied forward transformation in positions [image: there is no content] replaces for instance digram [image: there is no content] for [image: there is no content] leaving [image: there is no content], the inverse transformation, by definition the same transformation applied in the opposite direction, reverts digram [image: there is no content] back to [image: there is no content]. Now consider any triplet of positions [image: there is no content] in a transformed message, the input of the inverse transformation in [image: there is no content] is dependent on the result of the inverse transformation in the preceding pair of positions, but as we saw the first applied inverse reverted digram back correctly so the state in positions [image: there is no content] is exactly like the one of the state left by forward transformation in these positions, so any other digram will be reverted back correctly, because every preceding application of the inverse leaves the state of the digram in the state that was left by the forward transformation and this digram is trivially reverted back to initial state. The same rules are valid for [image: there is no content] in the opposite direction, since the transformation [image: there is no content], where [image: there is no content] is a mirror message of m. ☐

Appendix A.5. HOCT—Proof of the Correctness

The following trivial Lemma will help us to formulate a theorem about inverse transformation to [image: there is no content]:

Lemma A1.

Let [image: there is no content] is a higher order context transformation over the input message m, given that we possess the knowledge of w and positions [image: there is no content], then [image: there is no content].

Proof.

Because we don’t have to pass through the whole message either in the forward or inverse transformation case, but only through the set of positions [image: there is no content], then the symbol in position [image: there is no content], for instance [image: there is no content] will switch by [image: there is no content] to [image: there is no content] and by repeated application of [image: there is no content] it reverts back to [image: there is no content]. ☐

The Lemma A1 is trivial but comes into play when [image: there is no content] is a product of some other higher order context transformation, i.e., the one with an order lower by one.

Theorem A3.

Let [image: there is no content] and [image: there is no content] are two higher order context transformations. Let [image: there is no content] be a transformation composition of two higher order context transformations over input message m. Then [image: there is no content], such that [image: there is no content] then the transformation composition [image: there is no content] is the inverse transformation of T.

Several remarks to the formulation of Theorem A3: Transformations [image: there is no content] and [image: there is no content] are applied over two consecutive states of the message. The positions [image: there is no content] correspond to the positions [image: there is no content], since sub-messages [image: there is no content] have been replaced by [image: there is no content] in the application of [image: there is no content]. The inverse transformation by [image: there is no content] is applied instead over positions [image: there is no content], since these positions have already been reverted back by [image: there is no content].

The proof is based on the restriction that [image: there is no content], [image: there is no content], it can be viewed as we would split the input message m to sub-messages [image: there is no content] separated by [image: there is no content]. For instance, suppose that [image: there is no content] is a space character in ordinary text, since, by Definition 3, no other character in w can be a space character, it follows that the possible transformations are being applied on words following the space character. Now using the fact that [image: there is no content] is enclosed by [image: there is no content], i.e., they do not overlap, allows us to handle each sub-message [image: there is no content] independently.

Proof.

For the two sets of positions, it holds that [image: there is no content], because elements of the former are predecessors of the latter and s does not overlap. The locations of w in m and [image: there is no content] are identical as they were not modified during [image: there is no content], i.e., [image: there is no content]. When we apply [image: there is no content] again it will simply revert the symbols in positions given by [image: there is no content] back according to Lemma A1 yielding the message state [image: there is no content]. In the forward transformation [image: there is no content] was applied over positions of [image: there is no content], but these are the former positions of [image: there is no content], that are already transformed back by the application of [image: there is no content], so [image: there is no content] is equal to [image: there is no content] and when [image: there is no content] is applied over positions [image: there is no content] it exchanges symbols [image: there is no content] and [image: there is no content] and eventually yields m. ☐

The recursive application of Theorem A3 leads to the conclusion that this process can be repeated until there is no other pair of symbols then these containing [image: there is no content] as one of the symbols [image: there is no content] or [image: there is no content] or we simply reach the end of the message.

Corollary A2 about the prediction of frequencies in the case of [image: there is no content] is also applicable in the case of [image: there is no content], because the principle that the exact number of replacements is known is also valid and we are able to precisely compute the future probabilities of symbols before the arbitrary [image: there is no content] is applied.

If we implement the inverse algorithm as a sequential algorithm operating in the left-right manner, it is possible to have one of the transformation symbols if [image: there is no content] is equal to [image: there is no content]. Suppose the following example: [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] yielding the output message [image: there is no content]. Now applying inverse transformation sequentially from left to right, we first replace [image: there is no content] by [image: there is no content] yielding [image: there is no content], then applying replacement [image: there is no content] for [image: there is no content] yielding [image: there is no content], now because there is no other transformation that is induced from [image: there is no content] we know that the next a symbol is [image: there is no content] and we can repeat the preceding process again starting from this a. The sufficient condition for the introduction of [image: there is no content] as the transformation symbol [image: there is no content] or [image: there is no content] is that w contains no other [image: there is no content] in [image: there is no content], [image: there is no content], because the inverse process removes all introduced [image: there is no content] symbols from the transformed message during left to right sequential inverse transformation.

References

	1.
Cover, T.M.; Thomas, J.A. Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing); Wiley-Interscience: New York, NY, USA, 2006. [Google Scholar]

	2.
Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]

	3.
Huffman, D.A. A Method for the Construction of Minimum-Redundancy Codes. Proc. Inst. Radio Eng. 1952, 40, 1098–1101. [Google Scholar] [CrossRef]

	4.
Witten, I.H.; Neal, R.M.; Cleary, J.G. Arithmetic Coding for Data Compression. Commun. ACM 1987, 30, 520–540. [Google Scholar] [CrossRef]

	5.
Charikar, M.; Lehman, E.; Lehman, A.; Liu, D.; Panigrahy, R.; Prabhakaran, M.; Sahai, A.; Shelat, A. The Smallest Grammar Problem. IEEE Trans. Inf. Theory 2005, 51, 2554–2576. [Google Scholar] [CrossRef]

	6.
Nevill-Manning, C.G. 1996. Inferring Sequential Structure. Ph.D. Thesis, University of Waikato, Hamilton, New Zealand, May 1996. [Google Scholar]

	7.
Nevill-Manning, C.G.; Witten, I.H. Identifying Hierarchical Structure in Sequences: A Linear-time Algorithm. J. Artif. Int. Res. 1997, 7, 67–82. [Google Scholar]

	8.
Kieffer, J.C.; Yang, E.-H. Grammar Based Codes: A New Class of Universal Lossless Source Codes. IEEE Trans. Inf. Theory 2000, 46, 737–754. [Google Scholar] [CrossRef]

	9.
Ziv, J.; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 1978, 24, 530–536. [Google Scholar] [CrossRef]

	10.
Yang, E.; He, D. Efficient universal lossless data compression algorithms based on a greedy sequential grammar transform 2. With context models. IEEE Trans. Inf. Theory 2003, 49, 2874–2894. [Google Scholar] [CrossRef]

	11.
Gage, P. A New Algorithm for Data Compression. C Users J. 1994, 12, 23–38. [Google Scholar]

	12.
Nakamura, H.; Marushima, S. Data Compression by Concatenation of Symbol Pairs. In Proceedings of the IEEE International Symposium on Information Theory and Its Applications, Paris, France, 13–17 September 1996; pp. 496–499. [Google Scholar]

	13.
Larsson, N.J.; Moffat, A. Off-line dictionary-based compression. Proc. IEEE 2000, 88, 1722–1732. [Google Scholar] [CrossRef]

	14.
Claude, F.; Farina, A.; Navarro, G. Re-Pair Compression of Inverted Lists. arXiv 2009. [Google Scholar]

	15.
Masaki, T.; Kida, T. Online Grammar Transformation Based on Re-Pair Algorithm. In Proceedings of the Data Compression Conference (DCC), Snowbird, UT, USA, 29 March–1 April 2016; pp. 349–358. [Google Scholar]

	16.
Grassberger, P. Data Compression and Entropy Estimates by Non-sequential Recursive Pair Substitution. Physics 2002. [Google Scholar]

	17.
Calcagnile, L.M.; Galatolo, S.; Menconi, G. Non-sequential recursive pair substitutions and numerical entropy estimates in symbolic dynamical systems. arXiv 2008. [Google Scholar]

	18.
Navarro, G.; Russo, L. Re-pair Achieves High-Order Entropy. In Proceedings of the Data Compression Conference, DCC 2008, Snowbird, UT, USA, 25–27 March 2008; p. 537. [Google Scholar]

	19.
Vasinek, M.; Platos, J. Entropy Reduction Using Context Transformations. In Proceedings of the Data Compression Conference (DCC), Snowbird, UT, USA, 26–28 March 2014; p. 431. [Google Scholar]

	20.
Vasinek, M.; Platos, J. Generalized Context Transformations—Enhanced Entropy Reduction. In Proceedings of the Data Compression Conference (DCC), Snowbird, UT, USA, 7–9 April 2015; p. 474. [Google Scholar]

	21.
Vasinek, M.; Platos, J. Higher Order Context Transformations. arXiv 2017. [Google Scholar]

	22.
Kida, T.; Matsumoto, T.; Shibata, Y.; Takeda, M.; Shinohara, A.; Arikawa, S. Collage System: A Unifying Framework for Compressed Pattern Matching. Theor. Comput. Sci. 2003, 298, 253–272. [Google Scholar] [CrossRef]

	23.
González, R.; Navarro, G. Compressed Text Indexes with Fast Locate. In Proceedings of the 18th Annual Conference on Combinatorial Pattern Matching, CPM’07, London, ON, Canada, 9–11 July 2007; Springer: Berlin/Heidelberg, Germany, 2007.; pp. 216–227. [Google Scholar]

	24.
Claude, F.; Farina, A.; Navarro, G. Re-Pair compression of inverted lists. arXiv 2009. [Google Scholar]

	25.
Vasinek, M. 2013. Kontextove Mapy a Jejich Aplikace. Master’s Thesis, Vysoka Skola Banska—Technicka Univerzita Ostrava, Ostrava, Czech Republic, 2013. [Google Scholar]

	26.
Vasinek, M.; Platos, J. Parallel Approach to Context Transformations. Available online: http://ceur-ws.org/Vol-1343/paper4.pdf (accessed on 11 May 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

nav.xhtml

 entropy-19-00223

 		
 entropy-19-00223

media/file8.jpg

media/file11.png

media/file6.jpg

media/file1.png

media/file10.jpg

media/file7.png

media/file9.png

media/file5.png

media/file12.png

media/file3.png

media/file4.jpg

media/file0.jpg

media/file2.jpg

