

  Information Geometry of Non-Equilibrium Processes in a Bistable System with a Cubic Damping




Information Geometry of Non-Equilibrium Processes in a Bistable System with a Cubic Damping







Entropy 2017, 19(6), 268; doi:10.3390/e19060268




Article



Information Geometry of Non-Equilibrium Processes in a Bistable System with a Cubic Damping



Rainer Hollerbach 1 and Eun-jin Kim 2,*





1



Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK






2



School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK









*



Correspondence:







Academic Editor: Geert Verdoolaege



Received: 29 April 2017 / Accepted: 6 June 2017 / Published: 11 June 2017



Abstract:



A probabilistic description is essential for understanding the dynamics of stochastic systems far from equilibrium, given uncertainty inherent in the systems. To compare different Probability Density Functions (PDFs), it is extremely useful to quantify the difference among different PDFs by assigning an appropriate metric to probability such that the distance increases with the difference between the two PDFs. This metric structure then provides a key link between stochastic systems and information geometry. For a non-equilibrium process, we define an infinitesimal distance at any time by comparing two PDFs at times infinitesimally apart and sum these distances in time. The total distance along the trajectory of the system quantifies the total number of different states that the system undergoes in time and is called the information length. By using this concept, we investigate the information geometry of non-equilibrium processes involved in disorder-order transitions between the critical and subcritical states in a bistable system. Specifically, we compute time-dependent PDFs, information length, the rate of change in information length, entropy change and Fisher information in disorder-to-order and order-to-disorder transitions and discuss similarities and disparities between the two transitions. In particular, we show that the total information length in order-to-disorder transition is much larger than that in disorder-to-order transition and elucidate the link to the drastically different evolution of entropy in both transitions. We also provide the comparison of the results with those in the case of the transition between the subcritical and supercritical states and discuss implications for fitness.






Keywords:


stochastic processes; Fokker–Planck equation; fluctuations and noise; non-equilibrium statistical mechanics




PACS:


05.70.Ln; 05.40.-a; 05.90.+m








1. Introduction


The spontaneous emergence of order out of disorder is one of the most fascinating phenomena in nature and laboratory experiments, attracting ever-increasing interest. Important examples include phase transition/critical phenomena in cosmology, elementary particle theory, condensed matter, chemistry, biology and social-economic movement [1,2,3,4,5]. Order is usually quantified by a non-zero value of a macroscopic observable (global mode). While triggered by an external parameter (such as temperature) or spontaneously, a macroscopic observable often does not simply evolve passively, but undergoes an indispensable interaction with fluctuations (microscopic variables). The self-regulation between macroscopic and microscopic variables leads to a dynamical equilibrium (self-organisation), which involves fluctuations as an essential part [6]. There has been accumulating evidence for relevance and important role of self-organisation in different systems such as shear flows or vortices in fluids or plasmas, pattern formation in chemical oscillators, homoeostasis in biosystems and even traffic flows [4,7,8,9,10,11,12,13,14,15,16]. In particular, self-organised shear (zonal) flows are now believed to play a crucial role in stabilising laboratory plasmas, beneficial for extracting fusion energy [7]. Due to large fluctuations involved in order-disorder transition or self-organising systems, it is essential to use statistical tools to describe these systems.



The aim of this paper is to understand order-disorder transition from the perspective of information change associated with transition and uncover a geometrical structure in a statistical space, which can be utilised to understand ever-increasing experimental/observational data. To this end, we investigate a bistable stochastic system that is often invoked as a canonical model of self-regulating systems, e.g., in electric circuits [17], in various cellular processes such as cycles, differentiation and apoptosis, regulation of heart, brain, etc. [18,19,20,21,22,23]. In this model, we calculate time-dependent Probability Density Function (PDF) and the total number of statistically different states that the system undergoes in time. The latter is defined by the dimensionless information length [24,25,26,27,28] (see Appendix A):


[image: there is no content]



(1)




where [image: there is no content] is a time-dependent PDF for a stochastic variable x. In Equation (1), [image: there is no content] is the time-varying “time-unit”:


[image: there is no content]



(2)







[image: there is no content] in Equation (2) has dimensions of time and quantifies the correlation time over which the (dimensionless) information changes, thereby serving as the time unit for information change. Note that in equilibrium where [image: there is no content], [image: there is no content]. Measuring the total elapsed time in units of [image: there is no content] between time [image: there is no content] and t gives the information length in Equation (1). The latter thus establishes a distance between the initial and final PDFs in the statistical space.



We note that our information length is based on Fisher information (cf. [29]) and is a generalisation of statistical distance mainly used in equilibrium or near-equilibrium systems [30,31,32,33,34,35,36,37,38,39] to non-equilibrium systems [24,25,26,27,28]. In particular, the linear geometry of a linear Ornstein-Uhlenbeck (O-U) process was captured by the linear relation [image: there is no content], while the power-law geometry of a nonlinear (cubic) stochastic process was revealed by power-law scalings [image: there is no content] ([image: there is no content] 1.5–1.9) [28], where [image: there is no content] is the peak position of an initial narrow PDF. Furthermore, interesting geodesic solutions were found [27] by time-periodic modulation of the model parameters in an O-U process, which by itself does not support a geodesic solution without the modulation of parameters. As a geodesic is a unique path along which a system undergoes the minimum number of changes in the statistical states given the initial and final conditions, it is beneficial to a system where the change is costly. It is thus important to elucidate the key characteristics of a stochastic system that permits or facilitates the existence of a geodesic in general (without the modulation of model parameters). Finally, we emphasise that Equation (1) can be applied to any data; [25] constructed time-dependent PDFs from MIDI files of music and elucidated the information change in music by [image: there is no content] and [image: there is no content].



In this paper, in order to gain a key insight, we focus on a zero-dimensional (0D) model, which has one control parameter, and propose an on-quenching experiment by a sudden change of a control parameter from the critical to subcritical and from the subcritical to critical values to trigger disorder-to-order and order-to-disorder transitions, respectively. A pair of disorder-to-order and order-to-disorder transitions with the suitable choice of initial conditions then provides a simple model in which a continuous switch between ordered and disordered states can be studied in great detail. Each pair of disorder-to-order and order-to-disorder transitions models a burst (e.g., a burst in the gene expression consisting of a pair of induction and repression). Since an initial condition represents the “resting” state of a stochastic system in between the two bursts, it is important to understand the effect of different initial conditions on information change. In particular, we aim to elucidate what might be an optimal initial “resting” state that minimizes the information change, sustaining a robust geodesic solution. To this end, we provide detailed comparison of on-quenching processes in this paper with off-quenching processes, where the control parameter changes between subcritical and supercritical, reported in [40]. While some aspects are similar between the two processes, there are also important differences that will be presented and discussed here. The remainder of this paper is organized as follows. Section 2 presents our model, and Section 3 provides details on the time evolution of PDFs. We discuss information length in Section 4 and differential entropy and Fisher information in Section 5. We conclude in Section 6. Appendices contain the derivation of equations used in the main text.




2. Models


We consider the following 0D Ginzburg-Landau model [41] for a stochastic variable x:


[image: there is no content]



(3)







Here, [image: there is no content] is a deterministic force; [image: there is no content] is a white noise with the following statistical property:


[image: there is no content]



(4)




where D is the strength of the forcing, and the angular brackets denote the average over [image: there is no content]. In our study, [image: there is no content] is a control parameter. In the numerical computations, we will fix the value of [image: there is no content] ([image: there is no content]) with no loss of generality, while keeping track of [image: there is no content] in analytical calculations for clarity. [image: there is no content] represents the deviation from the critical value (e.g., [image: there is no content] for the temperature T where [image: there is no content] is the critical temperature). That is, our system is subcritical for [image: there is no content], supercritical for [image: there is no content] and critical at [image: there is no content]. Equation (3) is the extension of our recent work [28,42] to a cyclic transition. The Fokker–Planck equation [43,44] corresponding to Equations (3) and (4) is as follows:


[image: there is no content]



(5)







In this paper, we consider the transition between the critical state and subcritical state by changing [image: there is no content] between zero and [image: there is no content] ([image: there is no content]). Here, we note that we are using [image: there is no content] to explicitly represent a positive growth rate in the subcritical state [image: there is no content]. To this end, we induce the phase transition from the initial state [image: there is no content] by a sudden change in [image: there is no content]. This mimics the “on-quenching” experiment where the quenching occurs at the critical state; disorder-to-order transition (order-to-disorder transition) represents the transition from the critical to subcritical (the subcritical to critical) states. This thus contrasts to the case of the transition from the supercritical to subcritical state studied in [40] where the quenching occurs off the critical state.



Specifically, our model is described as follows:

	
Forward Process (FP): [image: there is no content]: at [image: there is no content], a unimodal PDF with a peak at [image: there is no content], which evolves into a bimodal PDF with peaks at [image: there is no content] as [image: there is no content];



	
Backward Process (BP): [image: there is no content]: at [image: there is no content], a bimodal PDF with peaks at [image: there is no content], which evolves into a unimodal PDF with a peak at [image: there is no content] as [image: there is no content].








FP and BP have the following stationary distributions [image: there is no content] and [image: there is no content], respectively:


[image: there is no content]



(6)






[image: there is no content]



(7)







That is, FP has a stationary bimodal distribution peaked at [image: there is no content], which can be approximated as a double Gaussian for small D as follows:


[image: there is no content]



(8)




where [image: there is no content]. Equation (8) represents the sum of the two Gaussians (double Gaussian) with the peak at [image: there is no content] and variance [image: there is no content]. In comparison, BP has a unimodal quartic exponential PDF centred around [image: there is no content] in equilibrium. To model a cyclic transition between ordered and disordered states, we use [image: there is no content] as an initial distribution for FP and [image: there is no content] for BP, respectively. Consequently, the initial PDFs in both FP and BP are strongly out of equilibrium. We investigate time-dependent PDFs and information length during this transient relaxation. In particular, we are interested in how [image: there is no content] depends on the deviation from the critical value ([image: there is no content]) and the strength of the stochastic noise (D). Table 1 summarizes the value of [image: there is no content] in Equation (3) and initial conditions for FP and BP, together with the variance [image: there is no content] of the initial and final PDFs, where the angular brackets denote the average over the stochastic noise [image: there is no content]. We note that for small D, the equilibrium variance for FP, [image: there is no content], is much smaller than that for BP, 2D/μΓ34/Γ14.



Table 1. Summary of Forward Process (FP), Backward Process (BP): FP and BP have equilibrium PDFs (in the limit of [image: there is no content]), [image: there is no content] and [image: there is no content], respectively. FP and BP start with the initial PDFs, [image: there is no content] and [image: there is no content], respectively and reach the equilibrium PDFs, [image: there is no content] and [image: there is no content], respectively. [image: there is no content] and [image: there is no content] have equilibrium variances, [image: there is no content] and 2D/μΓ34/Γ14, respectively. [image: there is no content] and [image: there is no content] are the initial and final variances at [image: there is no content] and [image: there is no content], respectively, for each process.







	
Case

	
λ

	
p(x,0)
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[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
2D/μΓ34/Γ14

	
[image: there is no content]




	
BP

	
0
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2D/μΓ34/Γ14











3. Time-Evolution of PDFs


To solve Equation (5) numerically, we note first that [image: there is no content], D and t can always be rescaled such that [image: there is no content], thereby reducing the number of parameters that need to be explored to only [image: there is no content] and D. Any numerical solution also requires x to be restricted to a finite interval, which can always be rescaled to [image: there is no content] without any loss of generality. If [image: there is no content] and D are chosen such that [image: there is no content] is restricted well away from the boundaries [image: there is no content], then this finite interval in x is an excellent match to the analytically more convenient infinite extent. Taking [image: there is no content] and [image: there is no content] ensures that the bimodal peaks at [image: there is no content] are still sufficiently far from the boundaries, and sufficiently narrow, that [image: there is no content] can simply be imposed as the boundary condition at [image: there is no content]. The details of the numerical implementation then involve second-order finite-differencing in x and t, using up to [image: there is no content] grid-points in space, and time-steps as small as [image: there is no content]. This spatial resolution allows D to be reduced down to [image: there is no content] while still fully resolving the bimodal peaks of width [image: there is no content].



3.1. Overall Comparison of FP and BP


One of the most significant differences between FP and BP is the time scale on which the process evolves and settles in. There are many diagnostic quantities that could be used to quantify this, but a useful one is simply the ratio [image: there is no content]. This can be evaluated analytically for the two end states, yielding 1.48 for [image: there is no content] and 1 for [image: there is no content] (taking [image: there is no content]). The evolution in time must therefore be that FP is [image: there is no content] and BP is [image: there is no content], and the question is on what time scales this happens.



As shown in Figure 1a, for FP the dependence on D is such that every reduction in D by a factor of 100 shifts the curves by a constant amount in t. That is, the ratio does not deviate significantly from 1.48 until a time [image: there is no content] has elapsed, but except for this shift the three curves are essentially identical. The numerically determined value of c is 0.355 and is very close to the factor of [image: there is no content] in [image: there is no content] in Equation (23), discussed later. It is interesting that this value of c is exactly half of that in [40], but otherwise, the scaling with D is the same. The reason for the faster adjustment in this case is because the initial condition already starts out much broader, with a width [image: there is no content] here, as opposed to [image: there is no content] in [40]. We recall that [image: there is no content] is an unstable equilibrium point when [image: there is no content], and the instability slowly builds up due to [image: there is no content] (e.g., see [45,46]) and a finite width of the initial PDF until [image: there is no content]. If the initial condition is already broader, then it is not surprising that the instability can develop sooner. However, this factor of half in the settling time does not mean that the evolution of PDFs in on- and off-quenching processes has any similarity. In fact, we will show that they are quite different and that the off-quenching cannot simply be made up of the two phases where effectively [image: there is no content] and [image: there is no content] (as for the on-quenching case here).


Figure 1. The ratio [image: there is no content] as a function of t, for the three values [image: there is no content] (red), [image: there is no content] (blue) and [image: there is no content] (black). (a) shows FP with t on a linear scale; (b) shows BP with t on a logarithmic scale. All six curves are for [image: there is no content]. The three dots on each curve correspond to the solutions shown in Figure 2 and Figure 3. The central dot is always when [image: there is no content]. In (a), the other two dots are at [image: there is no content] relative to the central one; in (b), they are at [image: there is no content] and [image: there is no content] relative to the central one.



[image: Entropy 19 00268 g001]






Figure 1b shows that for BP the dependence on D is very different, with every reduction in D by a factor of 100 shifting the curves by a factor of 10; that is, time scales as [image: there is no content]. The backward process is initially driven by the movement of the two peaks towards [image: there is no content] before diffusion becomes crucial in forming a single peak at [image: there is no content]; it is this final diffusive adjustment process that requires an [image: there is no content] time to happen. This is in sharp contrast with the results in [40], where FP and BP both exhibited the same [image: there is no content] scaling (and even with the same value of c). In comparison with the off-quenching in [40], the on-quenching considered here thus has a forward process that is faster by a factor of two, but a backward process that is much slower, with a completely different [image: there is no content] as opposed to [image: there is no content] scaling.




3.2. PDF of Forward Process


Figure 2 shows the structure of [image: there is no content] for FP. The particular times are chosen to take the shift [image: there is no content] into account; that is, different values of D are shown at the times where they have the same ratios [image: there is no content]. The results are seen to be identical for the three different values of D. The initial condition obviously does depend on D (as indicated also by the red curves), but once a certain broadening has occurred, in this time frame [image: there is no content], the subsequent evolution is independent of D, relying only on the instability process (as measured by [image: there is no content]). It is only in the last stages of the evolution (not shown in Figure 2), when the solution settles in to the final bimodal structure, that diffusion plays a role again and determines the [image: there is no content] width of the peaks. Comparing with results in [40], it is interesting to note also that here a double-peak emerges essentially immediately, whereas in [40] a finite time had to elapse before the central peak split into two separate peaks. The reason for this is that here the initial condition is at a critical state with a much broader profile than the Gaussian profile at the supercritical state considered in [40].


Figure 2. The PDFs for FP, for (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]. The initial condition is indicated by the red central peak. Subsequent times are indicated in green, black and blue, taking the [image: there is no content] shift into account. For (a) these are [image: there is no content], 2.25 and 3.25; for (b) [image: there is no content], 3.79 and 4.79; for (c) [image: there is no content], 5.43 and 6.43. The middle time (the black line) is always when the ratio [image: there is no content]; the green line is always [image: there is no content] relative to that, and the black line is [image: there is no content]. See also the three dots on each curve in Figure 1a.



[image: Entropy 19 00268 g002]






To understand these results better, it is of value to perform analytical analysis in the limiting cases. To this end, we transform the nonlinear term in Equation (3) into a linear (anti)damping term [47] by seeking a variable y such that Equation (3) becomes [image: there is no content] where [image: there is no content] is a function of y. We then easily show that [image: there is no content] which has the solution [image: there is no content] ([image: there is no content]). Specifically, y satisfies:


[image: there is no content]



(9)







Equation (9) provides a convenient way of computing the PDF of x through y by approximating [image: there is no content] for small y [45]. Thus, to leading order y is a Gaussian process, simply given by the Ornstein-Uhlenbeck process [44] with a negative damping. The transition probability is thus Gaussian:


[image: there is no content]



(10)




where [image: there is no content] and [image: there is no content].



By using the conservation of the probability [image: there is no content] and Equation (10), we obtain the transition probability of x as follows:


[image: there is no content]



(11)




which recovers the previous results [45,46] when [image: there is no content] and [image: there is no content].



To obtain a (marginal) PDF of x, we recall that FP has an initial PDF given by a quartic exponential:


[image: there is no content]



(12)







Here, [image: there is no content]; [image: there is no content] is a normalisation constant where [image: there is no content] is the Gamma function. Equations (10) and (12) then give:


p(x,t)=Mβ014β1π∫-∞∞dx01(1-αx2)32exp-β1x1-αx2-x01-αx02eγt2e-β0x04.



(13)







Here, [image: there is no content].



We now show that the initial quartic exponential PDF (12) undergoes roughly two stages of the time evolution: stage (i) driven by diffusion/advection with the continuous movement of the PDF peak from [image: there is no content] towards [image: there is no content], and then stage (ii) of settling into an equilibrium PDF with the adjustment of the PDF shape. To this end, we examine the behaviour of [image: there is no content] in Equation (13) for a sufficiently large [image: there is no content] such that:


[image: there is no content]



(14)







Equation (14) will later be shown to be valid in stage (i) (e.g., for [image: there is no content] where [image: there is no content] is defined in Equation (23)). By using Equation (14), we can approximate the exponential function in Equation (13):


β1πexp-β1x1-αx2-x01-αx02eγt2∼δx1-αx2-x01-αx02eγt=e-γt(1-αx2)32(1-α¯x2)-32δx0-xe-γt1-α¯x2,



(15)




where:


[image: there is no content]



(16)







Then, using Equation (15) in Equation (13) gives us:


[image: there is no content]



(17)




where [image: there is no content] is defined by


[image: there is no content]



(18)







By using [image: there is no content] at [image: there is no content], we can easily show that Equation (17) matches the initial PDF [image: there is no content] at [image: there is no content] in Equation (12). From [image: there is no content], we find the value of [image: there is no content] where the PDF takes its local maximum or minimum:


x1=0,4β0e-4γtx22=3α¯(1-α¯x22)2.



(19)







Since [image: there is no content] at [image: there is no content], [image: there is no content] is a local minimum of [image: there is no content] for all [image: there is no content]. On the other hand, two values of [image: there is no content] (note [image: there is no content]) represent the location of the local maximum in [image: there is no content] and [image: there is no content], respectively. Thus, [image: there is no content], the (global) maximum at [image: there is no content], becomes a local minimum for any infinitesimal time [image: there is no content], two peaks forming at [image: there is no content]. For instance, for [image: there is no content], we can show that:


[image: there is no content]



(20)







This reveals the diffusive nature of the peak movement from [image: there is no content] due to instability [image: there is no content] towards the equilibrium value [image: there is no content]. In the limit of a very small time [image: there is no content], Equation (20) gives [image: there is no content] by using [image: there is no content] and [image: there is no content], showing that the initial movement of the two peaks is via random walk. Our numerical solutions confirmed the predicted scaling of [image: there is no content] in Equation (20), as well as [image: there is no content] for small time, followed by almost exponential increase (no figure is shown here).



To examine the evolution in more detail, we consider the characteristic time [image: there is no content] where the width of the PDF in Equation (17) becomes comparable to the peak position [image: there is no content] in Equation (20). To estimate the PDF width R in Equation (17), we use the variance of the quartic exponential function (e.g., [42]):


[image: there is no content]



(21)




for [image: there is no content]. By using [image: there is no content], we simplify Equation (21) as:


[image: there is no content]



(22)







By equating R in Equation (22) and [image: there is no content] in Equation (20) and using [image: there is no content] for [image: there is no content], we find the characteristic time [image: there is no content] as follows:


[image: there is no content]



(23)




where [image: there is no content] was used. For [image: there is no content] and D=10-3,10-5,10-7, t2=2.7,4.35,6.0. Notably, the value of [image: there is no content] will later be shown to be very close to the other time scales [image: there is no content] signifying order formation. [image: there is no content] in Equation (23) marks the time when the peak position becomes comparable to the rms (Gaussian) fluctuation. For [image: there is no content], PDF in settling into the final equilibrium PDF is approximated by the Gaussian [45]. We have confirmed this prediction from our numerical solutions (as discussed in more detail later). Finally, we have checked that Equation (14) is valid for [image: there is no content] given in Equation (23).




3.3. PDF of Backward Process


We recall that BP starts with a bimodal PDF [image: there is no content], which has two peaks at [image: there is no content], which is the final equilibrium PDF of FP. For sufficiently small D, the distance between these two peaks is much larger than the width of the PDFs and are thus well separated so that PDF is approximated as the sum of the two Gaussian (double Gaussian) PDFs given by Equation (8). The latter evolve almost independently in [image: there is no content] and [image: there is no content], respectively, until [image: there is no content] when PDFs undergo significant change in the shape with large fluctuation. Since the Gaussian evolution is completely determined by mean value and variance, we now compute mean value and variance in [image: there is no content] or [image: there is no content] separately by taking advantage of small fluctuations compared to mean value. Specifically, we let [image: there is no content] where [image: there is no content] is the mean component averaged over [image: there is no content] and the initial PDF in [image: there is no content] (or [image: there is no content]) while [image: there is no content] is the fluctuation [image: there is no content]. This gives us:


[image: there is no content]



(24)






[image: there is no content]



(25)







The solutions to Equations (24) and (25) are as follows (c.f. [48]):


[image: there is no content]



(26)




where [image: there is no content] and G=∫0tG′(t)dt, [image: there is no content] and [image: there is no content] (see Equation (8) and Table 1). Equations (25) and (26) will be used for computing [image: there is no content] in the next section.



We show [image: there is no content] for BP in Figure 3. We choose the particular times again to take the [image: there is no content] scaling into account, and show results at the times where they have the same ratios [image: there is no content]. The initial evolution (not shown in Figure 3) consists simply of a motion toward the origin, with the width of the peaks remaining [image: there is no content]. The scaling of this movement is found to be consistent with the prediction in Equation (26).


Figure 3. The PDFs for BP, for (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]. The times are indicated in green, black and blue, taking the [image: there is no content] shift into account. For (a), these are [image: there is no content], 12.8 and 25.6; for (b), [image: there is no content], 134 and 268; for (c), [image: there is no content], 1350 and 2700. The middle time (the black line) is always when the ratio [image: there is no content]; the green line is always [image: there is no content] relative to that, and the black line is [image: there is no content]. See also the three dots on each curve in Figure 1b. Note finally how x and p have been rescaled according to [image: there is no content].



[image: Entropy 19 00268 g003]






Once the peaks get within a distance [image: there is no content] of the origin they start to sense the presence of the potential well, and diffusion starts to collapse them to a single peak. As seen in Figure 3, if x is rescaled as [image: there is no content], and p correspondingly rescaled as [image: there is no content], then the results again look the same for all three values of D. This final diffusive adjustment to the single central peak is very slow though, resulting in the [image: there is no content] scaling in time.




3.4. Energy Diagnostics


We now elucidate the role of the linear growth term (positive feedback) and cubic damping (negative feedback) in FP in energy balance and geodesic. To this end, we multiply Equation (3) by x and take the average over [image: there is no content] and initial condition to obtain the following equation:


[image: there is no content]



(27)







Here, the last term D, representing the rate of energy injection by [image: there is no content], was calculated as [image: there is no content] (also confirmed by the numerical calculations). The middle term [image: there is no content] represents the energy into the system or environment, depending on the sign. When [image: there is no content], the energy goes into the system, contributing to the increase in [image: there is no content]; when [image: there is no content], the energy is dissipated in the system, increasing heat in the environment.



Figure 4a shows [image: there is no content] for D=10-3,10-5,10-7. Unlike [image: there is no content] and [image: there is no content], which each increase monotonically in time, H reaches a peak at some time [image: there is no content], and then decreases to the negative value [image: there is no content] in settling in to the equilibrium PDF. The maximum H signifies when the positive feedback by the linear growth rate most dominates over the negative feedback by the nonlinear damping. It is notable that the times tm=2.6,4.25,5.9 in Figure 4a for the maximum H are similar to the times t2=2.7,4.35,6.0 given in Equation (23), with both exhibiting the same [image: there is no content] ([image: there is no content]) scaling. [image: there is no content] will also be shown to be very close to the time for the maximum entropy in Section 5.


Figure 4. (a) [image: there is no content] as a function of time for FP; (b) [image: there is no content] as a function of time for FP; (c) [image: there is no content] as a function of time for BP; (d) [image: there is no content] as a function of time for BP.
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Physically, [image: there is no content] signifies the start of order formation. Another diagnostic for the latter is [image: there is no content], also shown in Figure 4b, where similar non-monotonic behaviour is prominent, with [image: there is no content] peaking at the same times as H. This large fluctuation [image: there is no content] signifies the phase transition from disordered to ordered states due to the development of the two peaks, which occurs on time scales increasing with [image: there is no content] as discussed above.



For BP, [image: there is no content] and [image: there is no content] in Figure 4c,d are monotonic during the return to the disordered state. The monotonic evolution of H and [image: there is no content] for BP is also reflected in the evolution of the differential entropy in Section 5.





4. Information Length


We calculate information length in Equation (1) and explore geometric structure during phase transition. Figure 5 and Figure 6, for FP and BP respectively, show how [image: there is no content] and [image: there is no content] evolve in time, as well as how the total [image: there is no content] depends on [image: there is no content]. Since FP and BP switch between [image: there is no content] and [image: there is no content], [image: there is no content] in Figure 5 and Figure 6 always refer to the non-zero value. We are especially interested also in comparing the on-quenching results computed here with the previous off-quenching results from [40], shown as the dashed lines in Figure 5 and Figure 6.


Figure 5. (a,b) show [image: there is no content] and [image: there is no content], respectively, as functions of time, for [image: there is no content]; (c) shows [image: there is no content] as a function of [image: there is no content]. All three panels are for FP only. The solid lines are the on-quenching process considered here; the dashed lines are for the off-quenching process considered in [40]. [image: there is no content] to [image: there is no content] as indicated. Note the different combinations of linear and logarithmic scales to emphasize different features in different quantities.
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Figure 6. (a,b) show [image: there is no content] and [image: there is no content], respectively, as functions of time, for [image: there is no content]. (c) shows [image: there is no content] as a function of [image: there is no content]. All three panels are for BP only. The solid lines are the on-quenching process considered here; the dashed lines are for the off-quenching process considered in [40]. [image: there is no content] to [image: there is no content] as indicated.
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4.1. Forward Process


For FP, it is useful to consider times less than or greater than [image: there is no content] in Equation (23) separately, by approximating the time-dependent PDF as a quartic exponential and Gaussian in [image: there is no content] and [image: there is no content], respectively. First, for [image: there is no content], by ignoring the contribution from the mean value [image: there is no content] compared with that from the variance, we obtain [image: there is no content] in Equation (2) (see Appendix B):


[image: there is no content]



(28)







Equations (2), (23) and (28) then give [image: there is no content] between the time [image: there is no content] and [image: there is no content]:


[image: there is no content]



(29)







On the other hand, during the time between [image: there is no content] and [image: there is no content], the PDF settles into the double Gaussians so that we can estimate the total [image: there is no content] between [image: there is no content] and [image: there is no content] by using Equation (A13) (see Appendix C) as:


L∞-L(t∼t2)∼12lnσ(t2)σ(t→∞)∼12ln2γ2Γ343μDΓ14,



(30)




where [image: there is no content] for FP (see above), [image: there is no content] and [image: there is no content] were used. Equations (29) and (30) have the same dependence on D, [image: there is no content] and [image: there is no content]. The sum of Equations (29) and (30) gives the total:


[image: there is no content]



(31)




when [image: there is no content] and numerical values for the [image: there is no content] functions are inserted.



Figure 5 shows the numerically computed [image: there is no content] and [image: there is no content] for FP. We see how [image: there is no content] starts out essentially constant, corresponding to a geodesic solution [27]. This constant plateau continues until the [image: there is no content] equilibration time scale previously also seen in Figure 1. After this time [image: there is no content] decreases exponentially. Comparing [image: there is no content] here with the previous off-quenching results, we notice three differences: (a) the previous initial adjustment before the plateau regime is absent here, and the curves are essentially flat from the initial condition onward; (b) the plateau here is higher than before; (c) the equilibration and, hence, the exponential decrease in [image: there is no content], happen sooner.



Turning to [image: there is no content] next, the combination that the plateau is higher, but ends sooner, has the interesting consequence that initially [image: there is no content] is greater than in the off-quenching case, but the final values [image: there is no content] are always lower. Figure 5c shows the variation of [image: there is no content] with [image: there is no content], and the same pattern persists throughout; [image: there is no content] is consistently [image: there is no content] less than before, with the resulting best-fit formula:


[image: there is no content]



(32)







The coefficients of [image: there is no content] and [image: there is no content] are both in generally good agreement with the analytic predictions from Equation (31), which has [image: there is no content] and [image: there is no content]. The constant terms, zero versus [image: there is no content], match less well, but this term is also strongly affected by the best fit to the [image: there is no content] term, since, e.g., [image: there is no content] is already as large as the largest [image: there is no content] values. (Note finally that the deviation from straight lines for large D and small [image: there is no content] has the same origin as before in [40]: the “initial” and “final” states are then so broad (large D) and so close to each other (small [image: there is no content]) that they overlap, causing the dynamics to be different, but also not very interesting in this regime.)




4.2. Backward Process


Figure 6 shows corresponding results for BP. [image: there is no content] now starts off lower than in the off-quenching case, but the final equilibration is much slower, again as seen previously in Figure 1. The result of the initially smaller [image: there is no content] is that for small times [image: there is no content] is a factor of two less than in the off-quenching case. See also Equation (33) below, which confirms this analytically. Because the equilibration is so slow though, there is an additional contribution to [image: there is no content] that is not present before. Curiously, this seems to result in the final [image: there is no content] values always being a factor of 1.5 less than in the off-quenching case. The precise origin of this particular factor, or indeed why it is always the same, independent of D, is not fully understood. As seen in Figure 6c, the results are summarized by the formula [image: there is no content].



To quantify this scaling, we use Equation (A13) with Equation (A24) and [image: there is no content]:


[image: there is no content]



(33)




where [image: there is no content] for BP (see Table 1) was used. The variation with [image: there is no content] and D is exactly as in the numerical results, whereas the constant factor is an under-estimate, 0.5 versus 0.9. Given that Equation (33) only represents the early-time contribution to [image: there is no content] though, we would expect the true [image: there is no content] to be larger.





5. Differential Entropy and Fisher Information


Entropy is most commonly used to describe complexity. In a continuous system, it is given by the (Gibbs) differential entropy (e.g., see [49]) defined by:


S(t)=-∫dxp(x,t)lnp(x,t).



(34)







Here, we use units in which the Boltzmann constant [image: there is no content]. Unlike the usual entropy, the absolute value of the differential entropy does not have a physical meaning, only the difference between two values of the differential entropy being meaningful.



To elucidate the difference in S between the critical and subcritical states, we use equilibrium PDFs of FP and BP ([image: there is no content] and [image: there is no content] in Equations (7) and (8), respectively) and quantify the difference between [image: there is no content] and [image: there is no content] in FP and BP. For the equilibrium of FP [image: there is no content] in Equation (8), we can show that the entropy Equation (34) takes the following form [49]:


[image: there is no content]



(35)







Here, erf(x)=2π∫0xduexp(-u2) is the error function; [image: there is no content]; [image: there is no content] is a function of [image: there is no content] and [image: there is no content], taking the value [image: there is no content]. For a sufficiently narrow PDF with [image: there is no content], [image: there is no content] takes the maximum value [image: there is no content] (see [49]). Since in this limit [image: there is no content], [image: there is no content], Equation (35) is simplified as:


[image: there is no content]



(36)







For small values of D as used in our numerical computations, [image: there is no content] is negative, signifying a strongly localised PDF.



For BF, for simplicity we use the final equilibrium [image: there is no content] in Equation (7) or (12) and [image: there is no content] to obtain the differential entropy [image: there is no content]:


SB=-∫-∞∞dxpBlnpB=14lnΓ142+1+ln4Dμ.



(37)







For small D, [image: there is no content] while [image: there is no content]. Thus, the difference in differential entropy between [image: there is no content] and [image: there is no content] is:


[image: there is no content]



(38)




which is negative for small D. That is, the quartic exponential PDF at the critical state has much larger entropy than the bimodal PDF at the subcritical state.



Figure 7 shows the time evolution of (Gibbs) differential entropy defined by Equation (34). As theoretically predicted above, we see much larger difference between the initial and final states compared with the off-quenching case [40]. It is interesting to observe that for the forward process, S takes its maximum values at times 2.4, 4.0, and 5.5, very close to where H took its maximum values, and both broadly following the [image: there is no content] scaling from Equation (23).


Figure 7. (a) Entropy [image: there is no content] for FP; (b) Fisher information [image: there is no content] for FP; (c) entropy [image: there is no content] for BP; (d) Fisher information [image: there is no content] for BP. Note how S and I are essentially opposites of each other. Again also note how the equilibration time scale is [image: there is no content] for FP, and [image: there is no content] for BP.
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To complement [image: there is no content], we also show in Figure 7 the Fisher information defined by:


I(t)=∫1p∂p(x,t)∂x2dx.



(39)







As the Fisher information measures the degree of “order”, increasing as the PDF develops large gradients, it shows the opposite tendency to [image: there is no content], which increases with the degree of “disorder”. In particular, the Fisher information [image: there is no content] in Figure 7b for FP takes the minimum value around [image: there is no content] where the entropy [image: there is no content] is maximum and starts increasing beyond [image: there is no content]. These results thus confirm that [image: there is no content] marks the start of the formation of order, as noted previously.




6. Conclusions


We investigated information geometry associated with order-to-disorder and disorder-to-order transitions in a 0D Ginzburg–Landau model where the formation (disappearance) of an ordered state is modelled by the transition from a unimodal (bimodal) to bimodal (unimodal) PDF of a stochastic variable x. Our 0D model permitted us to perform a detailed statistical analysis. We considered on-critical quenching with a pair of forward and backward processes FP and BP for disorder-to-order (critical to subcritical) and order-to-disorder (subcritical to critical) transitions, respectively by selecting the initial PDF of FP/BP the same as the final equilibrium PDF of BP/FP. A pair of disorder-to-order and order-to-disorder transitions models a burst, for example, in the gene expression consisting of a pair of induction and repression (e.g., see [50]). In such bistable systems, a continuous switching between ordered and disordered states is often observed, the transition occurring in bursts interspersed by a quiescent period (e.g., see [50]). For our cyclic order-disorder transition, an initial condition represents the “resting” state between the two bursts. We thus paid particular attention to the effect of initial conditions on information change by comparing on-quenching and off-quenching cases.



We showed that FP and BP exhibit strikingly different evolution of time-dependent PDFs during transient relaxation due to non-equilibrium initial PDFs. In particular, FP driven by instability undergoes the broadening of the PDF with a large increase in (anomalous) fluctuations before the transition to the ordered state accompanied by narrowing the PDF width/decreased fluctuation. This large fluctuation essentially facilitates the existence of a geodesic solution in FP. This geodesic solution is a result of the self-regulation between the positive feedback ([image: there is no content]) and the negative feedback ([image: there is no content]), which regulate each other, minimising the information change. In a biological context, this minimal geodesic path could be understood in terms of “fitness” in the growth phase (e.g., gene expression). This suggests that the predator-prey type self-regulation with a nonlinear interaction facilitates a geodesic. In comparison, BP is mainly driven by the macroscopic motion due to the movement of the PDF peak, with much less prominent appearance of a geodesic solution. Specifically, the information length [image: there is no content] was found to be much larger in BP than in FP, scaling as [image: there is no content] for BP, but only [image: there is no content] for FP, where D is the strength of an additive stochastic noise with a short correlation time. These results demonstrate a great advantage of [image: there is no content] in revealing different physical processes (diffusion/advection) and the different role of diffusion D in transition.



To elucidate the importance of the initial condition between two bursts in cyclic transition, we summarise the striking differences between on-quenching and off-quenching as follows: (i) for FP, double-peaks emerge essentially immediately in on-quenching compared to their appearance only after a finite time in off-quenching; (ii) for FP, the on-quenching has a equilibration time shorter by a factor of two and information length [image: there is no content] slightly less than in off-quenching; (iii) for BP, the equilibration time is much longer in on-quenching than in off-quenching, because the final state is at critical; (iv) for BP, the information length [image: there is no content] is nevertheless reduced by a factor of 1.5 than in off-quenching. It is worth noting that from the perspective of a system’s “fitness”, the result (ii) could be advantageous when adjusting to a changing environment is costly, and thus, the minimum total change (measured by [image: there is no content]) and the minimum equilibration time are beneficial (see below). We highlight that [image: there is no content] is a “Lagrangian” measure that quantifies the total change in information content in the system over time. We discuss this further in the following.



We note that our control parameter models the effect of environment (e.g., the temperature of the heat bath, etc.), and thus, a sudden change in the control parameter represents a sudden change in the environment. The time-evolution of PDFs occurs in order for the system to reach a new equilibrium state as the equilibrium state is optimal for the given new parameter (for the new environment). On the other hand, the smaller information length represents the smaller number of different states that a system undergoes to reach this new equilibrium state. Intriguingly, these seem to be closely related to the novel concept in microbial metabolism that states evolve under the trade-off between two principles: optimality under one given condition and minimal adjustment between conditions [51]. That is, when an environment changes, the initial state (optimal for the old environment) should change to the new optimal state (the final equilibrium) by undergoing time-evolution. Additionally, the smaller the information length, the less change in the system in adjustment. Thus, our results suggest that the initial “critical” state would be more advantageous for the system in changing environment.



Finally, in future work, it is planned to extend this model to more realistic cases (e.g., 1D or 2D models, a system of coupled equations, etc.).
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Appendix A. Relation between 𝓛 and Relative Entropy


We first show the relation between [image: there is no content] in Equation (2) and the second derivative of the relative entropy (or Kullback–Leibler divergence) D(p1,p2)=∫dxp2ln(p2/p1) where [image: there is no content] and [image: there is no content] as follows:


[image: there is no content]



(A1)






[image: there is no content]



(A2)






[image: there is no content]



(A3)






[image: there is no content]



(A4)







By taking the limit where [image: there is no content] ([image: there is no content]) and by using the total probability conservation (e.g., [image: there is no content]), Equations (A1) and (A3) above lead to


[image: there is no content]











While Equations (A2) and (A4) give


[image: there is no content]











See also [37] for similar derivation.



To link this to information length [image: there is no content], we then express [image: there is no content] for small [image: there is no content] as


[image: there is no content]



(A5)




where [image: there is no content] is higher order term in [image: there is no content]. We define the infinitesimal distance (information length) [image: there is no content] between [image: there is no content] and [image: there is no content] by


[image: there is no content]



(A6)







The total change in information between time 0 and t is then obtained by summing over [image: there is no content] and then taking the limit of [image: there is no content] as


L(t)=limdt→0dl(0)+dl(dt)+dl(2dt)+dl(3dt)+···dl(t-dt)=limdt→0D(p(x,0),p(x,dt))+D(p(x,dt),p(x,2dt))+···D(p(x,t-dt),p(x,t))∝∫0tdt1∫dx(∂t1p)2p.



(A7)








Appendix B. Derivation of Equation (28)


For small [image: there is no content], we approximate [image: there is no content] in Equation (17)


p(x,t)∼Mβ014e-γt(1-α¯x2)32e-β0e-4γtx21-α¯x22∼Mβ(t)14e-β(t)x4,



(A8)




where the normalisation factor M and [image: there is no content] are


M=2Γ14-1,β(t)=β0e-γt,β0=μ4D.



(A9)







Then,


[image: there is no content]



(A10)







Thus, Equation (2) becomes


1[τ(t)]2=∫dx1p(x,t)∂p(x,t)∂t2=β˙2116β2-12β⟨x4⟩+⟨x8⟩=β˙24β2.



(A11)







Here, we used [image: there is no content] and [image: there is no content]; the dot denotes the time derivative. Thus, using Equations (A10) and (A11) in [image: there is no content] in Equation (1) gives us


L(t)=∫0tdt112βdβ(t)dt=12lnβ(t)β(t=0).



(A12)








Appendix C. Properties of the Sum of Two Gaussian PDFs


We recall that for a single Gaussian PDF with mean value [image: there is no content] and variance [image: there is no content], [image: there is no content] in Equation (2) is given by (e.g., [26,27])


1[τ(t)]2=12β(t)2dσdt2+2βdzdt2=12σ(t)2dσdt2+1σdzdt2.



(A13)







Here, [image: there is no content].



We now show the information length for double Gaussian PDFs which are well-separated is approximately the same as that for a single Gaussian PDF. To this end, for a double Gaussian, we let


[image: there is no content]



(A14)







Here, N is the normalisation constant (e.g., [image: there is no content]) and [image: there is no content] and [image: there is no content].



To show Equation (28), we assume [image: there is no content] is constant given by the peak location [image: there is no content] in [image: there is no content] while [image: there is no content] depending on time. Then, we can show


[image: there is no content]



(A15)







Now, we compute the various quantities in Equation (A15) as follows:


[image: there is no content]



(A16)







Similarly,


[image: there is no content]



(A17)







Thus, by using Equations (A16) and (A17), we calculate the last term in Equation (A15) as follows:


[image: there is no content]



(A18)






[image: there is no content]



(A19)






[image: there is no content]



(A20)




where [image: there is no content] and [image: there is no content] are terms involving the product of [image: there is no content] and [image: there is no content]. For the PDF peaks that are well-separated and thus independent, there is no overlap between [image: there is no content] and [image: there is no content] in x, leading to [image: there is no content]. That is, in this case, ∫dxG1=∫dxG2=0. Thus, these terms [image: there is no content] and [image: there is no content] do not contribute to Equation (2). By using these results in Equation (2), we obtain


[image: there is no content]



(A21)







By using [image: there is no content], we simplify Equation (A21) as


[image: there is no content]



(A22)







Thus, Equation (A22) is the same as Equation (A13) in the limit [image: there is no content]. We note that Equation (28) is obtained by the time integral of Equation (A22) by using the results in Appendix B.



Next to show Equation (30), we need to consider the case where [image: there is no content] is constant in Equation (A14) while [image: there is no content] depends on time. In this case, we have


(p˜˙1+p˜˙2)2=4β2x0˙2N2x2(p˜1+p˜2)2+2xx0(p˜12-p˜22)+x02(p˜1-p˜2)2=4β2x0˙2N2x2(p˜1+p˜2)2+2xx0(p˜12-p˜22)+x02(p˜1+p˜2)2+G3,



(A23)




where [image: there is no content] is a function depending on the product of [image: there is no content] and [image: there is no content], which vanishes upon integral over x when [image: there is no content] and [image: there is no content] are well-separated with negligible overlap. In this case,


∫dx1p(x,t)∂p(x,t)∂t2=4β2x0˙2N∫dx(x+x0)2p˜1+(x-x0)2p˜2=-4β2x0˙2N∂β∫dx(p˜1+p˜2)=-4β2x0˙2N∂β1N=2βx0˙2,



(A24)




where we used [image: there is no content] and thus [image: there is no content]. Equation (A24) is the same as Equation (A13) in the opposite limit where [image: there is no content] and [image: there is no content].
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