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Abstract:



Space plasmas are frequently described by kappa distributions. Non-extensive statistical mechanics involves the maximization of the Tsallis entropic form under the constraints of canonical ensemble, considering also a dyadic formalism between the ordinary and escort probability distributions. This paper addresses the statistical origin of kappa distributions, and shows that they can be connected with non-extensive statistical mechanics without considering the dyadic formalism of ordinary/escort distributions. While this concept does significantly simplify the usage of the theory, it costs the definition of a dyadic entropic formulation, in order to preserve the consistency between statistical mechanics and thermodynamics. Therefore, the simplification of the theory by means of avoiding dyadic formalism is impossible within the framework of non-extensive statistical mechanics.
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1. Introduction


Kappa distributions were employed to describe numerous space plasma populations in: (i) the inner heliosphere, including solar wind [1,2,3,4,5,6,7,8,9,10,11,12,13], solar spectra [14,15], solar corona [16,17,18,19], solar energetic particles [20,21], corotating interaction regions [22], and related solar flares [23,24,25,26]; (ii) the planetary magnetospheres including the magnetosheath [27,28], near the magnetopause [29], magnetotail [30], ring current [31], plasma sheet [32,33,34], ionosphere [35], magnetospheric substorms [36], magnetospheres of giant planets, such as Jovian [37,38], Saturnian [39,40,41], Uranian [42], Neptunian [43], magnetospheres of planetary moons, such as Io [44] and Enceladus [45], or cometary magnetospheres [46,47]; (iii) the outer heliosphere and the inner heliosheath [7,8,9,10,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62]; (iv) beyond the heliosphere, including HII regions [63], planetary nebula [64,65], and supernova magnetospheres [66]; or other space plasma-related analyses [53,54,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90]. Maxwell distributions have also been used in space science [91], especially due to their simplicity; for example, they are often used to fit the “core” of the observed distributions, that is, the part of the distribution around its maximum.



A breakthrough in the field came with the connection of kappa distributions with statistical mechanics, and specifically with the concept of non-extensive statistical mechanics. This topic has been examined by several authors [67,92,93,94,95,96]. The empirical kappa distribution and the theoretical q-exponential distribution (that results from non-extensive statistical mechanics) are accidentally of the same form under the transformation of indices: [image: there is no content]. Livadiotis & McComas [94] showed that the consistent connection of the theory and formalism of kappa distributions with non-extensive statistical mechanics is based on four fundamental physical notions and concepts: (i) q-deformed exponential and logarithm functions [97,98]; (ii) escort probability distribution [99]; (iii) Tsallis entropy [100]; and (iv) physical temperature [101,102,103] (that is, the actual temperature of the system). Understanding the statistical origin of kappa distributions led to further theoretical developments and applications, including the (a) foundation theory; (b) plasma formalism; and (c) space plasma applications (for more details, see: [96]).



Non-extensive statistical mechanics was introduced by Tsallis [100] as a generalization of the classical Boltzmann Gibbs (BG) statistical mechanics. The well-known q-exponential function was deduced as a result of the maximization of Tsallis entropy under the constraints of the canonical ensemble. However, this result was facing some fundamental problems: In particular, the canonical distribution of energy ε was not invariant for an arbitrary selection of the ground level of energy, and the internal energy (mean energy), [image: there is no content], was not extensive as it should be for uncorrelated distributions. These inconsistencies as well as other problems were corrected by the later work of Tsallis et al. [104] that considers the escort-expectation values. The modern theory of non-extensive statistics is based on the generalization of two elements, fundamental for statistical mechanics, (i) the classical formulation of Boltzmann-Gibbs entropy, and (ii) the notion of canonical distribution via the formalism of ordinary/escort probabilities; (see: [99,105,106]; see also: [94,95,96]).



The purpose of this paper is to show that the statistical framework of non-extensive statistical mechanics can be deduced as it is without the consideration of the dyadic formalism of ordinary/escort distributions. This concept can significantly simplify the usage of the theory, and make it accessible by the new generation of researchers that struggle to understand and apply it in exotic particle systems out of thermal equilibrium, such as the space plasmas. However, the cost of this simplification is the necessity of having two types of entropic functions. This dyadic entropic formulation preserves the basic fundamental thermodynamic formulae, which is necessary for the consistent connection of statistical mechanics with thermodynamics.



Next, we first expose the existing formalism of non-extensive statistical mechanics, then, in Section 2, we briefly present the above two elements (i) and (ii), and in Section 3, we present the maximization of the entropy under the constraint of canonical ensemble. Then, in Section 4, we present an alternative formalism that skips the consideration of ordinary/escort formalism. In Section 5, we show the consistency of the introduced formalism with thermodynamics, but with a dyadic formalism of entropy that is needed. Finally, in Section 6, we briefly summarize the conclusions.




2. Tsallis Entropy and Ordinary/Escort Formalism


Consider a system described by a discrete energy spectrum [image: there is no content], which is associated with a discrete probability distribution [image: there is no content]. Non-extensive statistical mechanics generalizes the classical formulation of BG entropy and uses the dyadic formalism of ordinary/escort probabilities. For the discrete energy spectrum [image: there is no content] and the associated distribution [image: there is no content], the non-extensive entropy is given by:


S(q)=1q−1⋅(1−∑k=1Wpkq) or S(q)=1q−1⋅[1−(∑k=1WPk1/q)−q],



(1a)




or in terms of the kappa index:


S(κ)=κ⋅(1−∑k=1Wpk κ+1κ) or S(κ)=κ⋅[1−(∑k=1WPk κκ+1)−κ+1κ],



(1b)




leading to the BG formulation for κ→∞ (or q→1):


[image: there is no content]



(1c)




Note that all the entropic formulations are given in units of the Boltzmann’s constant, that is, setting [image: there is no content] for simplicity; this will be restored further below.



On the other hand, the formalism of non-extensive statistical mechanics is built together with the concept of escort probabilities [99]. The escort probability distribution [image: there is no content] is constructed from the ordinary probability distribution, [image: there is no content], as Pk∝pkq, [image: there is no content], coinciding thus, with [image: there is no content] for [image: there is no content]. In fact, there is a duality between the ordinary [image: there is no content] and escort probabilities [image: there is no content], such as [image: there is no content] and [image: there is no content], [image: there is no content], given by:


Pk=pkq∑k=1Wpkq⇔pk=Pk1/q∑k=1WPk1/q,∀k=1,…,W



(2)







According to the Tsallis statistical interpretation of the internal energy [image: there is no content], this is given by the escort expectation value of energy [image: there is no content], that is:


U=⟨ε⟩esc=∑k=1WPk εk=∑k=1Wpkq εk∑k=1Wpkq,



(3)




where the symbol [image: there is no content] denotes the escort expectation value. (Hereafter, the subscript “esc” will be ignored, since the expectation value will be taken associated with the escort distributions by default, unless it is stated otherwise.)



It is noted that the ordinary and escort distributions have differences in their meaning and usage. The ordinary distribution is rather an auxiliary mathematical tool related to the information arrangement and its dynamics, while the escort distribution is related to the observed stationary states and measurements (statistical moments).




3. The Entropy Maximization in the Framework of Non-Extensive Statistical Mechanics


In order to obtain the probability distribution [image: there is no content], associated with the conservative physical system of energy spectrum [image: there is no content], we follow along the famous Gibbs’ path [107], where the entropy [image: there is no content] is maximized under the constraints of canonical ensemble.



The maximum of entropy is derived from:


[image: there is no content]



(4)




On the other hand, the “variables” [image: there is no content] are not independent, because of the two constraints: (i) Normalization of the probability distribution; (ii) Fixed value of internal energy; i.e.,


[image: there is no content]



(5)




Then, the Lagrange method applies, which involves maximizing a functional form where unknown Lagrange multipliers [image: there is no content] are linearly expressed in terms of the constraints:


[image: there is no content]



(6)




where the maximization follows by setting [image: there is no content], [image: there is no content].



In the case of non-extensive statistical mechanics, the interpretation for the internal energy U is given by the escort expectation value as shown in Equation (3), thus, we maximize the functional form:


G(p1,p2,…,pW)=1q−1⋅(1−∑k=1Wpkq)+λ1∑k=1Wpk+λ2∑k=1WPk({pk′}k′=1W) εk.



(7)







The maximization of this functional gives:


−qq−1⋅pjq−1+λ1+λ2∑k=1Wεk∂∂pjPk({pk′}k′=1W),



(8)




leading to:


[image: there is no content]



(9)




where we set the auxiliary partition function [image: there is no content]; the inverse-temperature [image: there is no content] relates the Lagrangian one, [image: there is no content], defined by the negative value of the second Lagrange multiplier, [image: there is no content], that is:


β≡βL/φq⇔T≡TL⋅φq, with φq≡∑k=1Wpkq.



(10)




Note that T (also known as physical temperature, e.g., [102]) represents the actual temperature of the system, thus it does not depend on the q-index. On the other hand, the Lagrangian “temperature” [image: there is no content] is a thermal parameter that depends on the actual temperature T and the q-index, [image: there is no content]. At the classical limit of q→1, [image: there is no content] coincides with the system’s temperature [96].



The system is described by the escort distribution, defined by [image: there is no content], i.e.,


[image: there is no content]



(11)







We can rewrite this, using the Q-deformed exponential function [97,98] and its inverse, the Q-logarithm function, defined by:


[image: there is no content]



(12a)







We also use the q-deformed “unity function” [94], defined by:


[image: there is no content]



(12b)




The subscript “+” denotes the cut-off condition, where [image: there is no content] becomes zero if its base is non-positive.



Setting Q = q, the ordinary/escort distributions are written as:


[image: there is no content]



(13)







In the above, the escort distribution [image: there is no content] is expressed by the q-exponential function, in terms of the q-index, but it can be transformed to its equivalent, the kappa distribution, under the transformation of the kappa and q indices:


[image: there is no content]



(14)




Namely, we derive the discrete kappa distribution:


[image: there is no content]



(15)




In the continuous description, the kappa distribution attains its well-known form:


[image: there is no content]



(16)




(e.g., see [96], Chapter 1, and reference therein).




4. Avoiding Ordinary/Escort Formalism


First, we start with a classical case of BG entropy:


[image: there is no content]



(17)




The maximization of the entropy under the constraints of canonical ensemble requires [image: there is no content], with:


[image: there is no content]



(18)




leading to [image: there is no content], i.e.,


[image: there is no content]



(19)




We consider the “mean-less” energies, [image: there is no content]:


[image: there is no content]



(20)






[image: there is no content]



(21a)






[image: there is no content]



(21b)




where we used the auxiliary partition function [image: there is no content]. The inverse-temperature [image: there is no content] is now given by the Lagrangian one [image: there is no content], defined via the Lagrange multiplier (with opposite sign), [image: there is no content].



Next, we proceed with the Tsallis entropy:


S=S(p1,p2,…,pW)=1q−1⋅(1−∑k=1Wpkq)=1q−1⋅∑k=1W(pk−pkq).



(22)




Again, the maximization of the entropy under the constraints of the canonical ensemble involves maximizing the functional:


G(p1,p2,…,pW)=1q−1⋅∑k=1W(pk−pkq)+λ1∑k=1Wpk+λ2∑k=1Wpkεk.



(23)




Hence, [image: there is no content], gives:


1q−1−qq−1pjq−1+λ1+λ2εj=0, hence,










[image: there is no content]










[image: there is no content]



(24)




where we used the q-deformed unity and exponential functions for [image: there is no content].



We enter again the mean-less energies, [image: there is no content]:


[image: there is no content]



(25a)




which may be rewritten using the Q-deformed exponential function, Equation (12), by setting [image: there is no content]; hence:


[image: there is no content]



(25b)




Also, we use again the notions of the auxiliary partition function [image: there is no content] and the inverse-temperature β:


[image: there is no content]



(26a)






[image: there is no content]



(26b)




where now the actual (inverse) temperature β does not coincide with the Lagrangian [image: there is no content]:


[image: there is no content]



(27)




It can be easily shown that for the argument φq≡∑j=1Wpjq, we have [image: there is no content] (next section), and:


[image: there is no content]



(28)




Finally, the distributions can be expressed in terms of the kappa index:


[image: there is no content]



(29a)






[image: there is no content]



(29b)




where we set:


[image: there is no content]



(30)







It must be mentioned that in the previous developments, the entropy and the deduced q-exponential distribution (in the framework of the canonical ensemble) are not characterized by the same q-index, but they are inverse to each other. Namely:


S(p1,p2,…,pW)=kB⋅1q−1⋅∑k=1W(pk−pkq)→Q=q−1pj(εj)=1Z¯⋅[ 1+(Q−1)⋅β(εj−U)]− QQ−1



(31)








5. Connection to Thermodynamics


First, we show the following relations:


[image: there is no content]



(32a)






[image: there is no content]



(32b)




The identity (32a) is derived from:


φq=∑j=1Wpjq=∑j=1Wpj⋅pjq−1=Z¯1−q⋅∑j=1Wpj⋅[ 1+(q−1−1)⋅β(εj−U)]=Z¯1−q⋅∑j=1Wpj=Z¯1−q.








Then, we observe that:


[image: there is no content]



(33a)




because:


[image: there is no content]



(33b)




Hence, we show (32b):


[image: there is no content]








We define the “actual” partition function, as follows:


[image: there is no content]



(34)




As we will see, Equation (32a, b), together with the definition of the partition function Z in (34), lead to the relations required for the connection of statistical mechanics with thermodynamics. First, the entropy is related with the auxiliary partition function [image: there is no content]:


[image: there is no content]



(35)




Then, from Equation (32b), we obtain:


[image: there is no content]



(36)




Hence, Equation (35) leads to:


[image: there is no content]










[image: there is no content]



(37a)




Next, using again Equation (36):


[image: there is no content]








and the actual partition function Z defined in Equation (34), we obtain:


[image: there is no content]



(37b)




Equation (34) can be rewritten as [image: there is no content], and taking into account Equation (35), we arrive at:


[image: there is no content]



(37c)




and the Helmholtz free energy:


[image: there is no content]



(37d)




(Equations (37a–d) constitute the basic formulae connecting statistical mechanics with thermodynamics; e.g., see other similar cases in [108,109].)



Next, we define an alternative entropic formula. Let the standard Tsallis entropy involved in Equation (22) be denoted by [image: there is no content]. An associated auxiliary formulation of entropy [image: there is no content] is defined by:


[image: there is no content]



(38a)






[image: there is no content]



(38b)




(where we have again set [image: there is no content]). The actual temperature of the system, T, is given by the physical temperature (Equation (10)), and can be related to the entropy via:


[1+(1−q)Sq]−1∂Sq∂U=φq−1TL−1=T−1.



(39)




Both entropic formulations, [image: there is no content] and [image: there is no content], are associated with the same physical temperature T, which means that both quantities are equivalently related to the actual temperature of the system. Indeed, starting from Equation (38a), we obtain:


[image: there is no content]








hence:


[image: there is no content]



(40)




Then, the entropy must increase when the system transits through the stationary states toward thermal equilibrium (κ0→∞); in other words:


[image: there is no content]



(41)




As we will see below, in the continuous description, the entropy Sq does not follow the above condition, i.e., [image: there is no content]. However, the dyadic entropy does, i.e., [image: there is no content].



In the continuous description, the kappa distribution of particle velocity is written as:


[image: there is no content]



(42)




(for f kinetic degrees of freedom). The argument [image: there is no content], which is related with the entropy as shown in Equation (35), is given by:


φq≡∫−∞+∞[p(u→)⋅σuf] qdu1 du2 … dufσuf=σuf(q−1)​⋅ ∫−∞+∞p(u→)qdu1 du2 … duf=σuf(q−1)​⋅ ∫−∞+∞p(u→)q−1p(u→)du1 du2 … duf=σuf(q−1)Z¯1−q​⋅ ∫−∞+∞[ 1+1κ⋅ε(u→)−UkBT]p(u→)du1 du2 … duf=σuf(q−1)⋅Z¯1−q=(Z¯/σuf)1−q,








where the speed scale [image: there is no content] is used, in order to derive the number of the possible states that the system can attain in the velocity space, i.e., du1 du2 … duf/σuf (see: [24,53,96], Chapter 2).



We can define the dimensionless probability distribution density and partition function:


pσ(u→)=1Z¯⋅[ 1+1κ⋅ε(u→)−UkBT]−κ−1,Z¯σ≡∫−∞+∞ [ 1+1κ⋅ε(u→)−UkBT]−κ−1du1 du2 … dufσuf



(43)




Hence:


φq=(Z¯/σuf)1−q=Z¯σ1−q,



(44)




which reads the continuous version of Equation (32a). We calculate [image: there is no content] as follows:


φq≡∫−∞+∞[p(u→)⋅σuf] qdu1 du2 … dufσuf=σuf(q−1)​⋅ ∫−∞+∞p(u→)qdu1 du2 … duf=σu−fκ+1⋅∫−∞∞p(u→) κκ+1 du→,



(45)




where we set [image: there is no content]. Then, we have:


φq=[(​σ2π e)12d⋅NC⋅Γ(κ0+d2⋅NC)(κ0+d2⋅NC)κ0+12d⋅NC⋅κ0κ0 Γ(κ0)⋅e12d⋅NC] − 1κ+1=[(​σ2π e)12d⋅NC⋅Γ(κ0+d2⋅NC)(κ0+d2⋅NC)κ0+12d⋅NC⋅κ0κ0 Γ(κ0)⋅e12d⋅NC] 1−q,



(46)




where we set [image: there is no content] and [image: there is no content]; NC is the number of particles and d denotes the per-particle kinetic and potential degrees of freedom. Hence:


φq=Z¯σ 1−q, Z¯σ=σ˜12d⋅NC⋅Γ(κ0+d2⋅NC)(κ0+d2⋅NC)κ0+12d⋅NC⋅κ0κ0 Γ(κ0)⋅e12d⋅NC,



(47)




where we modified the speed scale parameter to:


[image: there is no content]



(48)




The entropy is associated with [image: there is no content] similar to Equation (35), according to:


S=kB⋅1−φqq−1=kB⋅1−Z¯σ1−qq−1=kB⋅lnq(Z¯σ), or



(49)






[image: there is no content]



(50)




In terms of the kappa index, Equation (49) is written as:


Sq=−kB⋅(κ+1)⋅(1−Z¯σ− 1κ+1)⇔Sq−1=kB⋅κ⋅(1−Z¯σ1κ)



(51)




Figure 1 plots both the entropic formulations [image: there is no content] and [image: there is no content], as a function of the (invariant) kappa index κ0. We observe that the entropy [image: there is no content] decreases monotonically when the kappa index increases, while [image: there is no content] increases when the kappa index increases for stationary states near thermal equilibrium (κ0→∞). For large values of the kappa index tending to infinity, both entropic formulations tend to be equal to each other, recovering BG entropy. The two functional behaviors are summarized as:


[image: there is no content]



(52)




where [image: there is no content] with [image: there is no content].


Figure 1. The entropic formulations [image: there is no content] (red) and [image: there is no content] (blue) are plotted as a function of the (invariant) kappa index, for number of particles NC and d=3 kinetic degrees of freedom per particle. We set the number of correlated particles to NC = 10 (left) and NC = 100 (right), and the modified speed scale parameter to [image: there is no content] (up) and [image: there is no content] (down) (the Boltzmann constant [image: there is no content] is set to 1.) For large kappa indices, both the entropic formulations tend to be equal to each other, recovering the Boltzmann Gibbs (BG) entropy.



[image: Entropy 19 00285 g001]







6. Conclusions


This paper shows that the maximization of Tsallis entropy can directly lead to the canonical probability distribution expressed by a q-exponential or kappa distribution, without using the dyadic formalism of ordinary/escort probability distributions. In particular, it was shown (using discrete description for simplicity) that the derived distribution is:


Sq(p1,p2,…,pW)=kB⋅1q−1⋅∑k=1W(pk−pkq)→Q=q−1pj(εj)=1Z⋅[ 1+(Q−1)⋅β(εj−U)]−QQ−1



(53)




The above distribution depends on the Q-index; it leads to the kappa distribution by the standard transformation between kappa and the Q index: [image: there is no content]. The Q index, however, is not exactly the same as the entropic index q, but is its inverse, [image: there is no content]. The derived kappa distribution is applicable for positive kappa indices, i.e., κ>0 or Q>1, that is, the entropic index q<1. However, the standard entropic formulation is associated with the kappa distribution is characterized by q>1.



This inconsistency has some unphysical result: The entropy does not increase with the increase of the kappa index for stationary states near thermal equilibrium (large kappa indices). As it was shown for the continuous description, for example, it appears that entropy monotonically decreases with the kappa index. In order to avoid this undesired result, a dyadic entropic formulation with index [image: there is no content] instead of q, must be defined:


[image: there is no content]



(54)







In summary, the escort expectation approach is the proper way to formulate non-extensive statistical mechanics. If we erroneously attempt to avoid the use of escort probability, then we will run into a physically inconsistent situation that involves the connection of statistical mechanics with thermodynamics. In such a case, a double entropic formulation must be defined to resolve the inconsistency. More precisely, it is shown that if the known dyadic distribution formalism is used then the entropic formulation is unique; however, if a unique distribution formulation is used then a dyadic entropic formulation is necessary, according to the scheme in Figure 2. Therefore, we conclude that simplification by means of avoiding dyadic formalism (either of distributions or entropic formulations) is impossible within the framework of non-extensive statistical mechanics (in order to be consistent with thermodynamics).


Figure 2. (a) Dyadic distribution and unique entropic formalisms; (b) Unique distribution and dyadic entropic formalisms.



[image: Entropy 19 00285 g002]
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