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Abstract:



Kernel methods have been used for turning linear learning algorithms into nonlinear ones. These nonlinear algorithms measure distances between data points by the distance in the kernel-induced feature space. In lossy data compression, the optimal tradeoff between the number of quantized points and the incurred distortion is characterized by the rate-distortion function. However, the rate-distortion functions associated with distortion measures involving kernel feature mapping have yet to be analyzed. We consider two reconstruction schemes, reconstruction in input space and reconstruction in feature space, and provide bounds to the rate-distortion functions for these schemes. Comparison of the derived bounds to the quantizer performance obtained by the kernel [image: there is no content]-means method suggests that the rate-distortion bounds for input space and feature space reconstructions are informative at low and high distortion levels, respectively.
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1. Introduction


Kernel methods have been widely used for nonlinear learning problems combined with linear learning algorithms such as the support vector machine and the principal component analysis [1]. By the so-called kernel trick, kernel-based methods can use linear learning methods in the kernel-induced feature space without explicitly computing the high-dimensional feature mapping. Kernel-based methods measure the dissimilarity between data points by the distance in the feature space, which, in input space, corresponds to a distance measure involving the feature mapping [2]. If a kernel-based learning method is used as a lossy source coding scheme, its optimal rate-distortion tradeoff is indicated by the rate-distortion function associated with the distortion measure defined by the kernel feature map [3]. Successful applications of kernel methods in learning problems and flexibility to create various distance measures suggest that kernel-based distortion measures can be suitable for certain lossy compression problems. However, the rate-distortion function of such a distortion measure has yet to be evaluated analytically. Although there are several kernel-based approaches to vector quantization [4,5], their rate-distortion tradeoffs are still unknown.



In this paper, we derive bounds for the rate-distortion functions for kernel-based distortion measures. We consider two schemes to reconstruct inputs in lossy coding methods. One is to obtain a reconstruction in the original input space. Since kernel methods usually yield results of learning by the linear combination of vectors in feature space, we need an additional step to obtain the reconstruction in input space, such as preimaging [6]. The other is to consider the linear combination of feature vectors as the reconstruction and measure the distortion in the feature space directly. We formulate the two reconstruction schemes (Section 3.1 and Section 3.2), and prove that the rate-distortion function of input space reconstruction provides an upper bound of that of feature space reconstruction (Section 3.3). We derive lower and upper bounds to the rate-distortion function of input space reconstruction, which are computable only by [image: there is no content]-dimensional numerical integrations in the case of translation invariant and isotropic kernel functions (Section 4.1 and Section 4.2). We also provide an upper bound to the rate-distortion function of feature space reconstruction for general positive definite kernel functions (Section 4.4). In the usual applications of kernel-based quantization algorithms, one fixes the rate by determining the number of quantized points, and minimizes the average distortion for training data. The distortion-rate function, which is the inverse function of the rate-distortion function, shows the minimum achievable expected distortion (or distortion for test data) at the fixed rate. The derived bounds approximately characterize such optimal tradeoffs between the rate and expected distortion.



Furthermore, we design a vector quantizer using the kernel [image: there is no content]-means method and compare its performance with the derived rate-distortion bounds (Section 5). We also compute the preimages of the quantized points in feature space to investigate the performance of the quantizer in input space. It is suggested through the experiments using synthetic and image data that the rate-distortion bounds of reconstruction in input space are accurate at low distortion levels while the upper bound for reconstruction in feature space is informative at high distortion levels.




2. Rate-Distortion Function


Let X and Y be random variables of input and reconstruction taking values in [image: there is no content] and [image: there is no content], respectively. For the non-negative distortion measure between x and y, [image: there is no content], the rate-distortion function [image: there is no content] of the source [image: there is no content] is defined by


[image: there is no content]



(1)




where [image: there is no content] is the mutual information and E denotes the expectation with respect to [image: there is no content]. [image: there is no content] shows the minimum achievable rate R under the given distortion measure d [3,7]. The distortion-rate function is the inverse function of the rate-distortion function and denoted by [image: there is no content].



If the conditional distributions [image: there is no content] achieve the minimum of the following Lagrange functional parameterized by [image: there is no content],


[image: there is no content]








then, the rate-distortion function is parametrically given by


[image: there is no content]











The parameter s corresponds to the (negated) slope of the tangent of [image: there is no content] at [image: there is no content] and hence is referred to as the slope parameter [3]. Alternatively, if there exists a marginal reconstruction density [image: there is no content] that minimizes the functional,


[image: there is no content]








then the optimal conditional reconstruction distributions are given by


[image: there is no content]



(2)




(see, for example, [3,8]).



From the properties of the rate-distortion function [image: there is no content], we know that [image: there is no content] for [image: there is no content], where


[image: there is no content]



(3)




and [image: there is no content] for [image: there is no content] [3] (p. 90). Hence, [image: there is no content].




3. Kernel-Based Distortion Measures


In kernel-based learning methods, data points in input space [image: there is no content] are mapped into some high-dimensional feature space H by a feature mapping [image: there is no content]. Then, the similarity between the two points x and y in [image: there is no content] is measured by the inner product [image: there is no content] in H.



The inner product is directly evaluated by a nonlinear function in input space


[image: there is no content]



(4)




which is called the kernel function. Mercer’s theorem ensures that there exists some [image: there is no content] such that Equation (4) holds if K is a positive definite kernel [1]. This enables us to avoid explicitly computing the feature map [image: there is no content] in the potentially high-dimensional space H, which is called the kernel trick. A lot of learning methods that can be expressed by only the inner products between data points have been kernelized [1].



We identify the feature space H with the reproducing kernel Hilbert space (RKHS) associated with the kernel function K by the canonical feature map, [image: there is no content] [9] (Lemma 4.19). We assume that the input space [image: there is no content] is a subset of [image: there is no content], and the kernel function K is continuous [9] (Lemma 4.29). We focus on the squared norm in feature space as the distortion measure, and consider two reconstruction schemes in the following respective subsections.



3.1. Reconstruction in Input Space


If we restrict ourselves to the reconstruction in input space, that is, the reconstruction [image: there is no content] is computed for each input [image: there is no content], the distortion measure is naturally defined by


dinp(x,y)=||ϕ(x)−ϕ(y)||2=K(x,x)+K(y,y)−2K(x,y).



(5)







Note that the reconstruction [image: there is no content] of [image: there is no content] is restricted to the subset of the feature space, [image: there is no content]. To obtain a reconstruction in input space, we need a technique such as preimaging [6].



This is a difference distortion measure if and only if the kernel function is translation invariant, that is, [image: there is no content] for any [image: there is no content]. In this case, the distortion measure is expressed as


[image: there is no content]



(6)




where [image: there is no content] and [image: there is no content]. The rate-distortion function (distortion-rate function, resp.) for this distortion measure is denoted by [image: there is no content] ([image: there is no content], resp.) and the maximum distortion [image: there is no content] in Equation (3) is denoted by [image: there is no content], that is,


[image: there is no content]



(7)




which is in the translation invariant case, [image: there is no content].




3.2. Reconstruction in Feature Space


Suppose we have a sample of length n in input space, [image: there is no content] so that [image: there is no content] spans a linear subspace in feature space. If we compute the reconstruction by the linear combination [image: there is no content] for [image: there is no content], and consider it as the reconstruction in feature space, the distortion can be measured by


dfea(x,α)=dfea[S](x,α)=ϕ(x)−∑i=1nαiϕ(xi)2=K(x,x)−2αTk(x)+αTKα,



(8)




where [image: there is no content],


[image: there is no content]








and [image: there is no content] is the Gram matrix. Note that the reconstruction is identified with the coefficients [image: there is no content] whose domain is not identical to the input space [image: there is no content]. Although the distortion measure [image: there is no content] depends on the sample S, we omit the dependence in the notation since we consider a fixed design of S for a sufficiently large n. The sample does not have to be distributed according to the source distribution, while it is required to overspread the support of the source.



The rate-distortion function (distortion-rate function, resp.) for this distortion measure is denoted by [image: there is no content] ([image: there is no content], resp.) and the maximum distortion [image: there is no content] in Equation (3) is given by


[image: there is no content]



(9)




which is derived from the direct minimization of the quadratic function of [image: there is no content], [image: there is no content].




3.3. [image: there is no content] and [image: there is no content]


The following theorem claims that [image: there is no content] provides an upper bound of [image: there is no content] when n is sufficiently large.

Theorem 1.

If the input space [image: there is no content] is bounded, and there exists a conditional density achieving the infimum in the definition of [image: there is no content], for any [image: there is no content], [image: there is no content], and sufficiently large n, the following inequality holds:


[image: there is no content]















The proof is given in Appendix A. This theorem shows that the feature space reconstruction gives better rates since a single feature vector [image: there is no content] can be approximated by a linear combination [image: there is no content] when n is sufficiently large.





4. Rate-Distortion Bounds


Since the rate-distortion problem (Section 2) is rarely solved in a closed form [8], we derive bounds to [image: there is no content] and [image: there is no content].



4.1. Lower Bound to [image: there is no content]


Although the Shannon lower bound to [image: there is no content] is defined for difference distortion measures in general [3] (p. 92), it diverges to [image: there is no content] for the distortion measure in Equation (6) since [image: there is no content] diverges to ∞. Hence, we consider an improved lower bound, which was introduced by [3] (p. 140). Let [image: there is no content] be the probability that [image: there is no content]. Then, [image: there is no content] is lower-bounded as


[image: there is no content]



(10)




where h denotes the differential entropy,


[image: there is no content]



(11)




and u is the step function. [image: there is no content] is the set of all probability densities [image: there is no content] for which [image: there is no content] for [image: there is no content] and [image: there is no content].



In the case of the distortion measure in Equation (6), the maximum in Equation (10) is explicitly given by


[image: there is no content]



(12)




where [image: there is no content] for s related to D by [image: there is no content]. Since its differential entropy is


[image: there is no content]



(13)




we arrive at the following theorem.

Theorem 2.

The rate distortion function [image: there is no content] is parametrically lower-bounded as


[image: there is no content]



(14)











If we further assume that the kernel function is radial, that is, [image: there is no content] for some function k, the integrations above reduce to [image: there is no content]-dimensional ones,


[image: there is no content]








and


∂logCB,s∂s=2∫∥z∥≤BK(z,0)e2sK(z,0)dz=2A(m)∫0Brm−1k(r)e2sk(r)dr,



(15)




where [image: there is no content] is the area of the m-dimensional unit sphere, and [image: there is no content] is the gamma function.




4.2. Upper Bound to [image: there is no content]


If [image: there is no content] in Equation (5) is a difference distortion measure, that is, K is translation invariant, by choosing [image: there is no content] for the density [image: there is no content] in Equation (12), the following upper bound is obtained,


[image: there is no content]



(16)






Ds=2C−∂logCB,s∂s,



(17)




where [image: there is no content] is given by Equation (13) and [image: there is no content] is the convolution between [image: there is no content] and p. This type of upper bound was used to prove the asymptotic tightness of the Shannon lower bound (as [image: there is no content]) for a class of general sources and distortion measures [3,10,11,12]. However, this upper bound requires the evaluation of the differential entropy of the convolution.



The following theorem is derived from the facts that the spherical Gaussian distribution maximizes the entropy under the constraint that [image: there is no content] is no greater than a constant, and that [image: there is no content] holds for [image: there is no content].

Theorem 3.

If the kernel function is translation invariant and radial, [image: there is no content], then [image: there is no content] is parametrically upper-bounded as 


[image: there is no content]








where


vp=1m∫∥x−μ∥2p(x)dx,μ=∫xp(x)dx,vs=1m∫∥x∥2gs(x)dx=A(m)mCB,s∫0Brm+1e2sk(r)dr,



(18)




and [image: there is no content] is given by Equation (17) (and Equation (15)).








4.3. Rate-Distortion Dimension


In this section, we evaluate the rate-distortion dimension [13] of the kernel-based distortion measure in Equation (5) to investigate its property. We focus on the radial kernel, [image: there is no content], also in this section, and assume that


[image: there is no content]



(19)




holds for some [image: there is no content] and [image: there is no content]. For example, the Gaussian kernel, [image: there is no content], satisfies Equation (19) for [image: there is no content] and [image: there is no content].



To examine the limit [image: there is no content] of [image: there is no content], we consider the asymptotic case of [image: there is no content]. Since [image: there is no content], it follows that


CB,s=A(m)∫0Be2sk(r)rm−1dr=A(m)e2sk(0)1α1sβm/αΓmα+o(1),










[image: there is no content]








and


∂logCB,s∂s=∫0B2k(r)e2sk(r)rm−1dr∫0Be2sk(r)rm−1dr=2k(0)−msαβ+o1s.








Thus, we have from Equations (14) and (17),


[image: there is no content]








for both the lower and upper bounds, and from Equation (13),


h(gs)=−mαlogs+O(1)=mαlogDs+O(1).



(20)







Since [image: there is no content] in Equation (5) is a norm squared for a valid RKHS kernel K, the rate-distortion dimension of the source distribution p is defined by [13],


[image: there is no content]



(21)







From Theorems 2 and 3 and Equation (20), we conclude the following.

Theorem 4.

If the source has a finite differential entropy, positive and finite [image: there is no content] defined in Equation (18), and a bounded support, that is, there exists a finite [image: there is no content] such that [image: there is no content] in Equation (11), and the radial kernel, [image: there is no content] satisfies Equation (19) for [image: there is no content] and [image: there is no content], then the rate-distortion dimension Equation (21) of [image: there is no content] is given by


[image: there is no content]



(22)











This theorem shows that the rate-distortion dimension is dependent only on the dimensionality of the input space and independent of the dimensionality of the feature space. In the case of the linear kernel, [image: there is no content], with [image: there is no content], the distortion measure in Equation (5) reduces to the usual squared distortion measure, [image: there is no content]. It can be shown that under norm-based distortion measures including the squared distortion measure, the rate-distortion dimension of a source with an m-dimensional density is m [11,12]. From the preceding theorem, this is also the case for a general radial kernel if the kernel function has the order [image: there is no content] as the Gaussian kernel. Expression (22) of the rate-distortion dimension will be examined through a numerical experiment in Section 5.1.




4.4. Upper Bound to [image: there is no content]


We construct an upper bound to the rate-distortion function [image: there is no content]. We choose the conditional distribution of the reconstruction by


[image: there is no content]



(23)




where [image: there is no content],


[image: there is no content]








and [image: there is no content] denotes the n-dimensional normal density with mean [image: there is no content] and covariance matrix [image: there is no content]. Here, we have introduced the regularization constant [image: there is no content] with the [image: there is no content] identity matrix [image: there is no content]. The conditional distribution in Equation (23) is implied by Equation (2) and the approximation [image: there is no content]. This reconstruction distribution yields the following upper bound:


[image: there is no content]



(24)






[image: there is no content]



(25)




where [image: there is no content],


[image: there is no content]



(26)




which is independent of the input x, and


[image: there is no content]








If [image: there is no content], [image: there is no content] is the mean of the variance of the prediction by the associated Gaussian process [14].



Further upper-bounding the differential entropy [image: there is no content] by the Gaussian entropy, we have the following theorem.

Theorem 5.

The rate distortion function [image: there is no content] is upper-bounded as


[image: there is no content]



(27)




where


[image: there is no content]



(28)











The proof is put in Appendix B. In the simplest case where [image: there is no content], [image: there is no content], and the source is the Gaussian, [image: there is no content], the upper bound in Equation (27) reduces to


[image: there is no content]








which is an asymptotically (as [image: there is no content]) tight upper bound of the well-known rate distortion function for the Gaussian source under the squared distortion measure, [image: there is no content] [3,7].





5. Experimental Evaluation


We numerically evaluate the rate-distortion bounds obtained in the previous section. Designing a quantizer by the kernel [image: there is no content]-means algorithm, we compare its performance with the bounds.



We focus on the case of the Gaussian kernel,


[image: there is no content]



(29)




with the kernel parameter [image: there is no content].



5.1. Synthetic Data


As a source, we first assumed the uniform distribution on the union of the two regions, [image: there is no content] and [image: there is no content], where [image: there is no content] and [image: there is no content] have equal volumes and [image: there is no content] has volume 1. This suggests that [image: there is no content] and [image: there is no content] in Equation (10) and succeeding equations in Section 4.1 and Section 4.2.



We used the trapezoidal rule to compute the [image: there is no content]-dimensional integrations in the lower bound [image: there is no content] and the upper bound [image: there is no content]. We generated i.i.d sample of the size [image: there is no content] from the source to compute [image: there is no content] and [image: there is no content] for [image: there is no content] in Equation (27). Generating another 4000 data points, we approximated the required expectations. We optimized the regularization coefficient c to minimize the upper bound [image: there is no content] for each D.



Using the same data set of the size 4000 as a training data set, we run the kernel [image: there is no content]-means algorithm 10 times with random initializations to obtain the minimum distortion for each rate. Varying the number [image: there is no content] of quantized points from [image: there is no content] to [image: there is no content], for each [image: there is no content], we counted the effective number [image: there is no content] of quantized points which have at least one assigned data point and computed the rate by [image: there is no content] as the quantizer is first order, that is, the block length is one. The kernel parameter [image: there is no content] was chosen so that the clear separation of [image: there is no content] and [image: there is no content] is obtained when [image: there is no content].



After the training, we computed the distortion and rate for the test data set, by assigning each of 20,000 test data generated from the same source to the nearest quantized points in the feature space.



For each quantized point, we obtained its preimage. That is, if the kth quantized point is expressed as [image: there is no content], its preimage is


yk=argminyϕ(y)−∑i=1nαkiϕ(xi)2=argmaxy∑i=1nαkiK(y,xi).











We used the mean shift procedure for the maximization, although this procedure only guarantees the convergence to a local maximum [15,16].



The obtained bounds and the quantizer performances are displayed in Figure 1a,b and for [image: there is no content] and [image: there is no content], respectively, in the forms of distortion-rate functions. The values of [image: there is no content] in Equations (7) and (9) are also indicated in the figures.


Figure 1. Rate-distortion bounds and quantizer performances for (a) [image: there is no content] and (b) [image: there is no content] [17].



[image: Entropy 19 00336 g001]






In both dimensions, the upper bound [image: there is no content] is smaller than [image: there is no content] at low rates while the bound is above the quantizer performance. However, the value of [image: there is no content] suggests that the bound is informative at low rates. As the rate becomes higher, the lower and upper bounds of the input space reconstruction, [image: there is no content] and [image: there is no content], approach each other. In fact, they sandwich the quantizer performance tightly in the [image: there is no content]-dimensional case, which suggests that the rate-distortion function for the feature space reconstruction, [image: there is no content] is close to the rate-distortion function of the input space reconstruction [image: there is no content] at high rates.



We see that the quantizer performances for [image: there is no content] and those for [image: there is no content] approach each other as the rate R grows. The upper bound [image: there is no content] reasonably approximates the quantizer performance by the preimages, and it indicates that, in the [image: there is no content]-dimensional case (Figure 1a), the results for [image: there is no content] and 3 bits can be improved by at least about 1 bit.



At low distortion levels, each source output should be reconstructed within a small neighborhood in the feature space where we can find another point y in the input space whose feature map [image: there is no content] is sufficiently close to the reconstruction. This suggests that the rate-distortion function of feature space reconstruction is well approximated by the rate-distortion function of input space reconstruction. In other words, combining multiple input points to make a reconstruction in feature space does not do any good for reducing distortion and only a single input point is enough when it is mapped into feature space. Hence, the rate-distortion bounds of input space reconstruction may be informative at low distortion levels.



In the 10-dimensional case (Figure 1b), the distortion in the test data set is close to [image: there is no content] or above it at high rates. This may be due to overfitting of the kernel [image: there is no content]-means to the training data set of the size, 4000. That is, as the the rate grows, the distortion in the training data set decreases and the discrepancy between the distortions in the training and test sets increases.



To examine the asymptotic behavior of [image: there is no content] discussed in Section 4.3, we computed [image: there is no content] and [image: there is no content] for small D, that is, for large s. As well as the Gaussian kernel Equation (29), which has [image: there is no content] in Equation (19), we applied the Laplacian kernel,


[image: there is no content]








which corresponds to [image: there is no content]. The kernel parameter of the Laplacian kernel was set to the square root of the value used in the Gaussian kernel.



The rate-distortion bounds, [image: there is no content] and [image: there is no content] divided by [image: there is no content] for small distortion levels are shown in Figure 2a,b and for [image: there is no content] and [image: there is no content], respectively. We can see that, in each case, the ratio tends to [image: there is no content], that is, the rate-distortion dimension evaluated in Equation (22) as [image: there is no content]. For the distortion levels smaller than those presented in Figure 2, the ratios start oscillating due to the errors of numerical integrations.


Figure 2. The ratios between the rate-distortion bounds and [image: there is no content] for (a) [image: there is no content] and (b) [image: there is no content]. The bounds are for the Laplacian kernel ([image: there is no content]) and the Gaussian kernel ([image: there is no content]).



[image: Entropy 19 00336 g002]







5.2. Image Data


We carried out a similar evaluation of the rate-distortion bounds and quantizer performances for a grayscale image data set extracted from the COIL20 data set [18]. We used the first category from 20 categories of images, which consisted of 72 images of size [image: there is no content]. Dividing each [image: there is no content] image into small patches of size [image: there is no content] ([image: there is no content]), we obtained 256 data from each image, and 18,432 data in total. Removing duplicate data points, we finally obtained 13,368 data. We used first 2048 data as the training data and the remaining 11,320 data as the test data. The training data set was also used for approximating expectations of kernel functions required to compute [image: there is no content], and the first [image: there is no content] data points were used as the sample data in the definition of [image: there is no content]. We evaluated only the upper bounds, [image: there is no content] and [image: there is no content], since the lower bound [image: there is no content] requires estimating the source entropy from empirical data, which depends heavily on the estimation method, and hence is to be addressed more in detail.



Each dimension was normalized so that it has mean 0 and variance 1. Hence, [image: there is no content] in [image: there is no content] was approximated by the empirical variance, 1. The boundary B in [image: there is no content] was approximated by the maximum norm of the training data points.



The upper bounds and quantizer performances are presented in Figure 3. Although the upper bounds are loose and above the respective quantizer performances, the upper bound [image: there is no content] is roughly predictive of the quantizer performance in the input space, and so does [image: there is no content] for the reconstruction in the feature space.


Figure 3. Upper bounds of the rate-distortion functions and quantizer performance for image data.



[image: Entropy 19 00336 g003]








6. Conclusions


In this paper, we have shown upper and lower bounds for the rate-distortion functions associated with kernel feature mapping. As suggested in Section 5, the upper bound for the reconstruction in feature space is informative at high distortion levels while the bounds for the reconstruction in input space are informative at low distortion levels. We have also evaluated the rate-distortion dimension of sources with bounded support under kernel-based distortion measures, which shows the asymptotic behavior of the rate-distortion function. Our future directions include deriving tighter bounds and exact evaluation of the rate-distortion function in some special cases. In particular, it is an important undertaking to derive a lower bound to the rate-distortion function of the reconstruction in feature space.







Acknowledgments


The author would like to thank the anonymous reviewers for their helpful comments and suggestions. This work was supported in part by the Japan Society for the Promotion of Science (JSPS) grants 25120014, 15K16050, and 16H02825.




Conflicts of Interest


The author declares no conflict of interest.





Appendix A. Proof of Theorem 1


Proof. 

Let [image: there is no content] be the conditional density for [image: there is no content] that achieves the infimum of [image: there is no content]. Then, for [image: there is no content], it holds that [image: there is no content] and


[image: there is no content]



(A1)







Since the input space [image: there is no content] is bounded and separable, and the kernel function K is continuous, for any [image: there is no content] and [image: there is no content], there exist coefficients [image: there is no content] such that


[image: there is no content]



(A2)




holds when n is sufficiently large.



Let [image: there is no content] and


[image: there is no content]








where [image: there is no content] is Dirac’s delta function. Then, for [image: there is no content], it follows from the triangle inequality that


Edfea(X,A)=Eϕ(X)−∑i=1nαi(Y)ϕ(xi)2≤Eϕ(X)−ϕ(Y)2+2Eϕ(X)−ϕ(Y)ϕ(Y)−∑i=1nαi(Y)ϕ(xi)+Eϕ(Y)−∑i=1nαi(Y)ϕ(xi)2,








and hence


[image: there is no content]



(A3)






≤D+ε.



(A4)




To obtain Inequality (A3), we used Equations (A1) and (A2), and Jensen’s inequality,


Eϕ(X)−ϕ(Y)2≤Eϕ(X)−ϕ(Y)2≤D.











Thus, from Equation (A4) and the data-processing inequality [7], we have


[image: there is no content]








which completes the proof.   ☐






Appendix B. Proof of Theorem 5


Proof. 

The mean and covariance matrix of the random vector [image: there is no content] are


E[A]=K˜−1∫k(x)p(x)dxCov[A]=EAAT−EAEAT=12sI+K˜−1∫k(x)k(x)Tp(x)dxK˜−1−K˜−1∫k(x)p(x)dx∫k(x)Tp(x)dxK˜−1=12sI+K˜−1CK˜−1,








where [image: there is no content] is defined by Equation (28).



Thus, the maximum entropy principle of the Gaussian distribution implies that the differential entropy [image: there is no content] is upper-bounded by


[image: there is no content]








Combining this inequality with Equations (24) and (26), we have


[image: there is no content]











Solving Equation (25) with respect to [image: there is no content] and substituting it into the above expression, we obtain the upper bound in Equation (27).   ☐
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