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Abstract:



We review the use of binary hypothesis testing for the derivation of the sphere packing bound in channel coding, pointing out a key difference between the classical and the classical-quantum setting. In the first case, two ways of using the binary hypothesis testing are known, which lead to the same bound written in different analytical expressions. The first method historically compares output distributions induced by the codewords with an auxiliary fixed output distribution, and naturally leads to an expression using the Renyi divergence. The second method compares the given channel with an auxiliary one and leads to an expression using the Kullback–Leibler divergence. In the classical-quantum case, due to a fundamental difference in the quantum binary hypothesis testing, these two approaches lead to two different bounds, the first being the “right” one. We discuss the details of this phenomenon, which suggests the question of whether auxiliary channels are used in the optimal way in the second approach and whether recent results on the exact strong-converse exponent in classical-quantum channel coding might play a role in the considered problem.
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1. Introduction


One of the central problems in coding theory deals with determining upper and lower bounds on the probability of error when communication over a given channel is attempted at some rate R. The capacity of the channel C is defined as the highest rate at which communication is possible with probability of error that vanishes as the blocklength of the code grows to infinity (see [1,2,3]). At rates [image: there is no content], it is known that the probability of error vanishes exponentially fast in the blocklength, and a classic problem in information theory is the determination of that exponential speed or, as is it customary to say, of the error exponent. This problem was dealt with in the classical setting back in the 1960s, when most of the still strongest results were obtained [4,5,6,7,8]. Instead, for classical-quantum channels, the topic is relatively more recent; first results were obtained around 1998 ([9,10]) and new ones are still in progress.



An important bound on error exponents is the so-called sphere packing bound, a fundamental lower bound on the probability of error of optimal codes and hence an upper bound on achievable error exponents. This particular result was first derived in different forms in the 1960s for classical channels (of different types) and more recently in [11,12,13] for classical-quantum channels. The aim of this paper is to present a detailed and self-contained discussion of the differences between the classical and classical-quantum settings, pointing out connections with an important open problem first suggested by Holevo in [10] and possibly with recent results derived by Mosonyi and Ogawa in [14].




2. The Problem


We consider a classical-quantum channel with finite input alphabet [image: there is no content] and associated density operators [image: there is no content], [image: there is no content], in a finite dimensional Hilbert space [image: there is no content]. The n-fold product channel acts in the tensor product space [image: there is no content] of n copies of [image: there is no content]. To a sequence [image: there is no content], we associate the signal state [image: there is no content]. A block code with M codewords is a mapping from a set of M messages [image: there is no content] into a set of M codewords [image: there is no content], and the rate of the code is [image: there is no content]. A quantum decision scheme for such a code, or Positive-Operator Valued Measure (POVM), is a collection of M positive operators [image: there is no content] such that [image: there is no content], where I is the identity operator. The probability that message [image: there is no content] is decoded when message m is transmitted is [image: there is no content] and the probability of error after sending message m is


[image: there is no content]











The maximum error probability of the code is defined as the largest [image: there is no content]; that is,


[image: there is no content]











When all the operators [image: there is no content] commute, the channel is classical and we will use the classical notation [image: there is no content] to indicate the eigenvalues of the operators, which are the transition probabilities from inputs x to outputs [image: there is no content]. Similarly, [image: there is no content] will represent the transition probabilities from input sequences [image: there is no content] to output sequences [image: there is no content]. In the classical case, it can be proved that optimal decision schemes can always be assumed to have separable measurements which commute with the states. Hence, we will use the classical notation [image: there is no content] in place of [image: there is no content], where [image: there is no content] is the decoding region for message m.



Let [image: there is no content] be the smallest maximum error probability among all codes of length n and rate at least R. We define the reliability function of the channel as


[image: there is no content]



(1)







In this paper, we focus on the so-called sphere packing upper bound on [image: there is no content], which states that


[image: there is no content]



(2)




where


[image: there is no content]



(3)




and


[image: there is no content]



(4)






E0cc(s,P)=minQ1s−1∑xP(x)logTr(Wx1−sQs),



(5)




the minimum being over density operators Q. Here [image: there is no content] is an upper bound on the error exponent achievable by so-called constant composition codes; that is, such that in each codeword symbols appear with empirical frequency P. For classical channels, [image: there is no content] is written in the standard notation as


E0cc(s,P)=minQ1s−1∑xP(x)log∑yWx(y)1−sQ(y)s.



(6)








3. Binary Hypothesis Testing


3.1. Classical Case


We start by recalling that in classical binary hypothesis testing between two distributions [image: there is no content] and [image: there is no content] on some set [image: there is no content], based on n independent extractions, the trade-off of the achievable exponents for the error probabilities of the first and second kind can be expressed parametrically, for [image: there is no content], as (e.g., [7])


[image: there is no content]



(7)






  −1nlogPe|1=−μ(s)−(1−s)μ′(s)+o(1)



(8)




where


μ(s)=log∑v∈VP0(v)1−sP1(v)s.



(9)







The quantity [image: there is no content] defined above is actually a scaled version of the Rényi divergence, usually defined as


Dα(P∥Q)=1α−1log∑v∈VP(v)αQ(v)1−α.



(10)







We have in fact [image: there is no content]. A key role in the derivation of the above result is played by the tilted mixture [image: there is no content], defined as


[image: there is no content]



(11)







Roughly speaking, the probability of error for the optimal test is essentially due to the set of those sequences in [image: there is no content] with empirical distribution close to [image: there is no content].



A graphical representation relating the above equations suggested in [7] is shown in Figure 1. Figure 2 shows an interpretation of the role of the Rényi divergence. Note that one has the well-known property


[image: there is no content]



(12)






    =DKL(P∥Q),



(13)




which explains the endpoints of the curve in Figure 2. In particular (though some technicalities would be needed for a rigorous derivation), the quantity [image: there is no content] governs the “Stein regime”; if in the binary hypothesis test [image: there is no content] is only required to be bounded away from 1 as [image: there is no content], then [image: there is no content] is asymptotically upper-bounded by [image: there is no content]. This can be stated equivalently as saying that regions [image: there is no content] for which [image: there is no content] satisfy [image: there is no content].


Figure 1. Interpretation of the error exponents in binary hypothesis testing from [7].
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Figure 2. Error exponents in binary hypothesis testing.
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An explicit computation of the derivatives [image: there is no content], or just a different way of deriving the bound, shows that equivalent expressions for the error exponents are (see for example [2])


[image: there is no content]



(14)






[image: there is no content]



(15)




where [image: there is no content] is the tilted mixture already defined in (11). This second representation gives another interpretation of the result. As said for the previous approach, the error events essentially occur in the set of sequences in [image: there is no content] with empirical distribution close to [image: there is no content], whose total probabilities under [image: there is no content] and [image: there is no content] vanish, according to Stein’s lemma as mentioned above, with exponents given by [image: there is no content] and [image: there is no content], respectively. One can notice that the problem of determining the trade-off of the error exponents in the test between [image: there is no content] and [image: there is no content] is essentially reduced to the problem of testing [image: there is no content] against [image: there is no content], [image: there is no content] in the Stein regime where [image: there is no content] is bounded away from 1.




3.2. Quantum Case


In a binary hypothesis testing between two density operators [image: there is no content] and [image: there is no content], based on n independent extractions (but with global measurement), the error exponents of the first and second kind can be expressed parametrically as (see [15]):


[image: there is no content]



(16)






[image: there is no content]



(17)




where, in complete analogy with the classical case,


[image: there is no content]



(18)







Upon differentiation, one finds for example for (16):


−1nlogPe|σ0=−logTr(σ01−sσ1s)+Trσ01−sσ1sTrσ01−sσ1slogσ1s−logσ0s+o(1).











When [image: there is no content] and [image: there is no content] commute (i.e., in the classical case), we can define the density operator


[image: there is no content]



(19)




and use the property [image: there is no content] to obtain


[image: there is no content]



(20)






  =DKL(σs∥σ0)+o(1).



(21)







In a similar way, we find


[image: there is no content]



(22)







This is indeed the second form of the bound as already mentioned in Section 3.1. However, if [image: there is no content] and [image: there is no content] do not commute, the above simplification is not possible. Hence, the two error exponents cannot be expressed in terms of the Kullback–Leibler divergence. So, unlike in the classical binary hypothesis testing, the problem of determining the trade-off of the error exponents in the test between [image: there is no content] and [image: there is no content] cannot be reduced to the problem of testing some [image: there is no content] against [image: there is no content], [image: there is no content] in the Stein regime.



To verify that this is actually a property of the quantum binary hypothesis testing and not an artificial effect of the procedure used, it is useful to consider the case of pure states; that is, when operators [image: there is no content] and [image: there is no content] have rank 1, say [image: there is no content] and [image: there is no content], with non-orthogonal [image: there is no content] and [image: there is no content] . In this case, [image: there is no content] and [image: there is no content], so one simply has


[image: there is no content]



(23)






     =log|⟨ψ0|ψ1⟩|2,



(24)




and at least one of the two error exponents is not larger than [image: there is no content]. These quantities cannot be expressed as [image: there is no content], [image: there is no content] for any [image: there is no content], because


DKL(ρ∥σi)=0ρ=σi+∞ρ≠σi,i=0,1,



(25)




since [image: there is no content] and [image: there is no content] are pure.





4. Classical Sphere-Packing Bound


Two proofs are known for the classical version of the bound, which naturally lead to two equivalent yet different analytical expressions for the function [image: there is no content]. The first was developed at the Massachusetts Institute of Technology (MIT) ([5,7]) while the other is due to Haroutunian [16,17]. A preliminary technical feature common to both procedures is that they both focus on some constant-composition sub-code which has virtually the same rate as the original code, but where all codewords have the same empirical composition P. In both cases, then, the key ingredient is binary hypothesis testing (BHT).



4.1. The MIT Proof


The first proof (see [5,7]) is based on a binary hypothesis test between the output distributions [image: there is no content] induced by the codewords [image: there is no content] and an auxiliary output product distribution [image: there is no content] on [image: there is no content]. Let [image: there is no content] be the decision region for message m. Since [image: there is no content] is a distribution, for at least one m, we have


[image: there is no content]



(26)






  =e−nR.



(27)







Considering a binary hypothesis test between [image: there is no content] and [image: there is no content], with [image: there is no content] as decision region for [image: there is no content], Equation (26) gives an exponential upper bound on the probability of error under hypothesis [image: there is no content], which implies a lower bound on the probability of error under hypothesis [image: there is no content], which is [image: there is no content], the probability of error for message m. Here the BHT is considered in the regime where both probabilities decrease exponentially. The standard procedure uses the first form of the bound mentioned in the previous section based on the Rényi divergence. The bound can be extended to the case of testing products of non-identical distributions; for the pair of distributions [image: there is no content] and [image: there is no content], it gives the performance of an optimal test in the form


[image: there is no content]



(28)






[image: there is no content]



(29)




where now


[image: there is no content]



(30)







At this point, the arguments in [5,7] diverge a bit; while the former is not rigorous, it has the advantage of giving the tight bound for the arbitrary codeword composition P. The latter is instead rigorous, but only gives the tight bound for the optimal composition P. In [13], we proposed a variation which we believe to be rigorous and that at the same time gives the tight bound for an arbitrary composition P. The need for this variation will be clear in the discussion of classical-quantum channels in the next section.



For the test based on the decoding region [image: there is no content], the left hand side of (29) is lower-bounded by R due to (26). So, if we choose s and Q in such a way that the right hand side of (29) is roughly [image: there is no content], then [image: there is no content] must be smaller than the right hand side of (28) computed for those same s and Q (for otherwise the decision region [image: there is no content] would give a test strictly better than the optimal one). This is obtained by choosing Q, as a function of s, as the minimizer of [image: there is no content] and then selecting s which makes the right hand side of (29) equal to [image: there is no content] (whenever possible). Extracting [image: there is no content] from (29) in terms of [image: there is no content] and R and using it in (28), the probability of error for message m is bounded in terms of R. After some tedious technicalities, cf. [13] (Appendix A), we get


[image: there is no content]



(31)




where


[image: there is no content]



(32)






  =minQs1−s∑xP(x)D1−s(Wx∥Q)



(33)






=s1−sI1−s(P,W),  



(34)




the minimum being over distributions Q and [image: there is no content] being the [image: there is no content]-mutual information as defined by Csiszár [18]. We thus find the bound, valid for codes with constant composition P


[image: there is no content]



(35)







It is worth pointing out that the chosen Q, which achieves the minimum in the definition of [image: there is no content], satisfies the constraint (cf. [5] (Equations (9.23), (9.24), and (9.50)), [19] (Corollary 3))


Q(y)=∑xP(x)Vx(y),∀y∈Y,



(36)




where we define [image: there is no content] as


[image: there is no content]



(37)




note the analogy with the definition of [image: there is no content] in (11). So, the chosen Q is such that its tilted mixtures with the distributions [image: there is no content] induce Q itself on the output set [image: there is no content]. Using the second representation of the error exponents in binary hypothesis testing mentioned in Section 3.1 (extended for independent extractions from non-identical distributions), we observe thus that the chosen Q induces the construction of an auxiliary channel V such that the induced mutual information with input distribution P, say [image: there is no content], equals [image: there is no content]. The second proof of the sphere packing bound, which is summarized in the next section, takes this line of reasoning as a starting point.




4.2. Haroutunian’s Proof


In the second proof (see [16,17]), one considers the performance of the given coding scheme for channel W when used for an auxiliary channel V with same input and output sets such that [image: there is no content]. The converse to the coding theorem implies that the probability of error for channel V is bounded away from zero at rate R, which means that there exists a fixed [image: there is no content] such that for any blocklength n, [image: there is no content] for at least one m. Using the Stein lemma mentioned before, we deduce that


[image: there is no content]



(38)




where now


DKL(V∥W|P)=∑xP(x)∑yV(y)logV(y)W(y).



(39)







After optimization over V, we deduce that the error exponent for channel W is bounded as


[image: there is no content]



(40)







We observe that a slightly different presentation (e.g., [17]) avoids the use of the Stein lemma by resorting to the strong converse rather than a weak converse. Indeed, for channel V, the coding scheme will actually incur an error probability [image: there is no content], which means that for at least one codeword m we must have [image: there is no content]. Applying the data processing inequality for the Kullback–Leibler divergence, one thus finds that


[image: there is no content]



(41)




from which


[image: there is no content]



(42)




So, strong converse can be traded for Stein’s lemma, and this fact (which appears as a detail here) will be seen to be related to a less trivial question.



The bound derived is precisely the same as in the previous section, and for the optimal choice of the channel V, if we define the output distribution [image: there is no content] as in (36), then (37) is satisfied for some s (see Equation (19) in [16]). So, we notice that the two proofs actually rely on a comparison between the original channel and equivalent auxiliary channels/distributions. In the first procedure, we start with an auxiliary distribution Q, but we find that the optimal choice of Q is such that the tilted mixtures with the [image: there is no content] distributions are the [image: there is no content] which give [image: there is no content]. In the second procedure, we start with the auxiliary channel V, but we find that the optimal V induces an output distribution Q whose tilted mixtures with the [image: there is no content] are the [image: there is no content] themselves. It is worth noting that in this second procedure we use a converse for channel V; hidden in this step we are using the output distribution Q induced by V, which we directly use for W in the MIT approach.



These observations point out that while the MIT proof follows the first formulation of the binary hypothesis testing bound in terms of Rényi divergences, Haroutunian’s proof exploits the second formulation based on Kullback–Leiblrer divergences, but the compared quantities are equivalent. There seems to be no reason to prefer the first procedure given the simplicity of the second one.





5. Classical-Quantum Sphere-Packing Bound


The different behavior of binary hypothesis testing in the quantum case with respect to the classical has a direct impact on the sphere packing bound for classical-quantum channels. Both the MIT and Haroutunian’s approaches can be extended to this setting, but the resulting bounds are different. In particular, since the binary hypothesis testing is correctly handled with the Rényi divergence formulation, the MIT form of the bound extends to what one expects as the right generalization (in particular, it matches known achievability bounds for pure-state channels), while Haroutunian’s form extends to a weaker bound. It was already observed in [20] that the latter gives a trivial bound for all pure state channels, which is a direct consequence of what has already been shown for the simple binary hypothesis testing in the previous section.



It is useful to investigate this weakness at a deeper level in order to clearly see where the problem truly is. Let now [image: there is no content], [image: there is no content] be general non-commuting density operators, the states of the channel to be studied. Consider then an auxiliary classical-quantum channel with states [image: there is no content] and with capacity [image: there is no content]. Again, the converse to the channel coding theorem holds for channel V, which implies that for any decoding rule, for at least one message the probability of error is larger than some fixed positive constant [image: there is no content]. In particular for the given POVM, for at least one m,


[image: there is no content]



(43)







Using the quantum Stein lemma, we deduce


[image: there is no content]



(44)




and hence, again as in the classical case,


[image: there is no content]



(45)







In this case as well, one can use a strong converse to replace the Stein lemma with a simpler data processing inequality.



The problem we encounter in this case is that if W is a pure state channel, at rates [image: there is no content], any auxiliary channel [image: there is no content] gives [image: there is no content], so that the bound is trivial for all pure state channels. It is important to observe that this is not due to a weakness in the use of the Stein lemma or of the data processing inequality. In a binary hypothesis test between the pure state [image: there is no content] and a state [image: there is no content] built from a different channel V, one can notice that the POVM [image: there is no content] with [image: there is no content] satisfies


Tr(I−A)Vxm=1+o(1),Tr(I−A)Wxm=0.



(46)







So, it is actually impossible to deduce a positive lower bound for [image: there is no content] using only the fact that [image: there is no content] is bounded away from zero, or even approaches one.



It is also worth checking what happens with the MIT procedure. All the steps can be extended to the classical-quantum case (see [13] for details) leading to a bound which has the same form as (31) where [image: there is no content] is defined in analogy with (32) as


[image: there is no content]



(47)






    =minQs1−s∑xP(x)D1−s(Wx∥Q),



(48)




the minimum being over all density operators Q, and [image: there is no content] being the quantum Rényi divergence. However, as far as we know there is no analog of Equations (36) and (37), and the optimizing Q does not induce an auxiliary V such that [image: there is no content].




6. Auxiliary Channels and Strong Converses


We have presented the two main approaches to sphere packing as different procedures which are equivalent in the classical case but not in the classical-quantum case. However, it is actually possible to consider the two approaches as particular instances of one general approach where the channel W is compared to an auxiliary channel V, since the auxiliary distribution/state Q can be considered as a channel with constant [image: there is no content]. This principle is very well described in [21], where it is shown that essentially all known converse bounds in channel coding can be cast in this framework.



According to this interpretation, the starting point in Haroutunian’s proof is general enough to include the MIT approach as a special case. So, the weakness of the method in the classical-quantum case must be hidden in one of the intermediate steps. It is not difficult to notice that the key point is how the (possibly strong) converse is used in Haroutunian’s proof. The general auxiliary channel V is only assumed to have capacity [image: there is no content], and the strongest possible converse for V which can used is of the simple form [image: there is no content], which is good enough in the classical case. In the MIT proof, instead, the auxiliary channel is such that [image: there is no content], so that the strong converse takes another simple form, [image: there is no content]. The critical point is that in the classical-quantum setting a converse of the form [image: there is no content] for V does not lead to a lower bound on [image: there is no content] for W in general. What is needed is a sufficiently fast exponential convergence to 1 of [image: there is no content] for channel V, which essentially suggests that V should be chosen with capacity not too close to R, and that the exact strong converse exponent for V should be used.



The natural question to ask at this point is what the optimal (here we mean optimal memoryless channel for bounding the error exponent in the asymptotic regime) auxiliary channel is when the exact exponent of the strong converse is used. At high rates, the question is not really meaningful for all those cases where the known versions of the sphere packing bound coincide with achievability results; that is, for classical channels and for pure state channels [9]. However, in the remaining cases (i.e., in the low rate region for the mentioned channels or in the whole range of rates [image: there is no content] for general non-commuting mixed-state channels), the question is legitimate. In the classical case, since the choice of an (optimal) auxiliary channel with [image: there is no content] or [image: there is no content] leads to the same result, one might expect that any other intermediate choice would give the same result. This can be indeed be proved by noticing that any version of the sphere packing derived with the considered scheme, independently of the used auxiliary channel, will always hold also when list decoding is considered for any fixed list-size L (see [7] for details or notice that the converse to the coding theorem for V would also hold in this setting). Since the bound obtained with the mentioned choices of auxiliary Q and V is achievable at any rate R when list-size decoding is used with sufficiently large list-size L (see [3] (Prob. 5.20)), no other auxiliary channel can give a better bound.



For classical-quantum channels, instead, the question is perhaps not trivial; it is worth pointing out that even the exact strong converse exponent has been determined only very recently [14]. What is very interesting is that while in the classical case the strong converse exponent for [image: there is no content] is expressed in terms of Rényi divergence [22,23] ( similarly as error exponents for [image: there is no content]), for classical-quantum channels, the strong converse exponents are expressed in terms of the so-called “sandwiched” Rényi divergence defined by


[image: there is no content]



(49)







The problem to study would thus be more or less as follows: Consider an auxiliary channel V with capacity [image: there is no content] and evaluate its strong converse exponent in terms of sandwiched Rényi divergences. Fix this exponent as the probability of error under hypothesis [image: there is no content] in a test between [image: there is no content] and [image: there is no content], where [image: there is no content] is the operator in favor of [image: there is no content] and [image: there is no content] is the one in favor of [image: there is no content]. Then, deduce a lower bound for the probability of error under hypothesis [image: there is no content] using the standard binary hypothesis testing bound in terms of Rényi divergences. It is not entirely clear to this author that the optimal auxiliary channel should necessarily always be one such that [image: there is no content], as used up to now. Since for non-commuting mixed-state channels the current known form of sphere packing bound is not yet matched by any achievability result, one cannot exclude the possibility that it is not the tightest possible form.
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