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Abstract: Fuzzy multiple criteria decision-making (FMCDM) methods are techniques of finding the
trade-off option out of all feasible alternatives that are characterized by multiple criteria and where
data cannot be measured precisely, but can be represented, for instance, by ordered fuzzy numbers
(OFNs). One of the main steps in FMCDM methods consist in finding the appropriate criteria weights.
A method based on the concept of Shannon entropy is one of many techniques for the determination
of criteria weights when obtaining them from the decision-maker is not possible. The goal of the
paper is to extend the notion of Shannon entropy to fuzzy data represented by OFNs. The proposed
approach allows to obtain criteria weights as OFNs, which are normalized and sum to 1.
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1. Introduction

Fuzzy multiple criteria decision-making (FMCDM) methods are techniques used to find the
trade-off option out of all feasible alternatives that are characterized by multiple criteria and when data
cannot be measured precisely. In such situations the ratings of alternatives and the criteria weights,
whose evaluations are based on unquantifiable, incomplete, or unobtainable information, are usually
expressed by interval numbers [1–3] or fuzzy numbers (convex fuzzy numbers—CFNs) [4–6]. A new
approach consists in using an FMCDM method based on ordered fuzzy numbers (OFNs) which are
well suited to handle incomplete and uncertain knowledge and information.

This new approach to multiple criteria decision support has been considered, so far, in a few
papers only [7–9]. The first application of OFNs for the FMCDM method was presented at the Sixth
Podlasie Conference on Mathematics in Bialystok, Poland [7] by Kacprzak and Roszkowska, and
discussed in detail in [8]. In that paper, the authors evaluated alternatives with respect to criteria
using linguistic expressions, in which linguistic terms were quantified on a scale given in advance.
The scale was extended to include intermediate values, such as “more than 2” or “less than 3”, which
were expressed by trapezoidal OFNs, together with “2” and “3”. The additional property of OFNs
(i.e., orientation) was used to include information about the type of criteria (benefit or cost). The
authors showed that the Fuzzy Simple Additive Weighting (FSAW) and Fuzzy Technique for Order of
Preference by Similarity to Ideal Solution (FTOPSIS) methods based on OFNs can better distinguish
alternatives as compared with classical Simple Additive Weighting (SAW) and Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) methods, which used crisp values, and with
FSAW and FTOPSIS, which used classical fuzzy numbers. The FTOPSIS method with OFNs has also
been used in solving a real-life problem of discrete flow control in a manufacturing system [9]. The
authors have tested the FTOPSIS method with OFNs in a flow control system and compared it to
the classical TOPSIS method and to other simple control methods. As a result, they concluded that
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FTOPSIS with OFNs is better suited for the analysed case than the classical TOPSIS or than most other
methods considered.

One of the main steps in FMCDM methods is the determination of the appropriate weights (the
relative importance) of the criteria, because of their significant impact on the final result. Since each
criterion has a different meaning, we cannot assume that all of them are equally important [10,11]. In
the literature, various methods to determine criteria weights have been proposed. Most of them can be
classified into two categories: subjective and objective weights, depending on the information provided.
Subjective weights are determined according to the preferences or judgments of the decision-makers
only and can reflect the subjectivity of their knowledge and experience. This category includes:
the eigenvector method [12], the weighted least square method [13], the Delphi method [14], and
others. Objective weights are determined by solving mathematical models. They disregard subjective
preferences or judgments of the decision-makers; instead, they are based on objective information (e.g.,
decision matrix). This category includes the entropy method [15], multiple objective programming [16],
and others.

Most of FMCDM applications to real-life problems use only subjective weights. However, when
it is not possible to obtain reliable subjective weights, objective weights become useful [17]. One of
the methods of obtaining objective weights applies the notion of Shannon entropy mentioned before.
Moreover, let us note that it is reasonable and logical that when ratings of alternatives with respect
to criteria are imprecise, as is the case in FMCDM methods, the weights of criteria should also be
imprecise. Therefore, Shannon entropy should be extended to imprecise Shannon entropy.

Applications of Shannon entropy to the determination of weights in FMCDM problems have
been discussed in the literature. One of the approaches is based on the characterization of a fuzzy
number by its α-levels and by an extension of Shannon entropy to interval data [2]. The main
limitation of this approach is that the obtained weights do not have to preserve the property that
their ranges belong to [0, 1] (but can be normalized) and they do not sum up to 1. Moreover, the
empirical example with five levels {0.1, 0.3, 0.5, 0.7, 0.9} has shown that the rankings for different
α-levels can be different. The authors have concluded that the overall ranking of the criteria cannot be
easily determined. Another approach to the determination of weights in FMCDM problems uses the
concept of defuzzification [6,18–20]. This relies on the conversion of fuzzy numbers into real numbers;
afterwards, the classical Shannon entropy is used. In this approach, during defuzzification, we can lose
some important information, such as symmetry, width of the support and kernel, location on the 0x
axis of the fuzzy number, etc. Moreover, in the literature we can find many methods of defuzzification
of fuzzy numbers and OFNs. Different defuzzification methods can, therefore, generate different
rankings of criteria and their relative importance.

The main goal of this paper is to extend the concept of Shannon entropy, using OFNs, which avoid
the aforementioned drawbacks. The proposed approach allows to obtain the weights of criteria in the
form of OFNs which are normalized and sum to 1. Moreover, several theorems concerning important
mathematical properties resulting from the proposed approach, as well as numerical simulations, are
presented. An illustrative example will show that the proposed approach based on OFNs gives the
same ranking of weights for various α-levels, while the approach from [2] (with fuzzy numbers) results
in a ranking that can change from one α-level to another.

The rest of the paper is organized as follows: In Section 2 we introduce basic definitions and
notations of OFNs. In Section 3 we present the proposed method of determination of criteria weights
using extended Shannon entropy based on OFNs. A simple numerical example is shown in Section 4.
In Section 5 presents a comparison of the proposed approach with an approach using fuzzy numbers.
Conclusions end the paper.

2. Ordered Fuzzy Numbers

In this section, some definitions related to OFNs used in the paper are briefly presented. The
model of ordered fuzzy numbers (OFNs) was introduced and developed by Kosiński and his two
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co-workers, Prokopowicz and Ślęzak, in 2002 in a series of papers [21–24]. In our paper, we use
the term “ordered fuzzy numbers” which was proposed by Professor Kosiński and his colleagues
Prokopowicz and Ślęzak in 2002. After the death of Professor Kosiński, to commemorate and honour
him, these numbers are often called “Kosinski fuzzy numbers” [25]. Arithmetic operations in this
model are similar to the operations on real numbers, which are a special case of OFNs.

Definition 1. [23,26]. An ordered fuzzy number A is an ordered pair A = ( fA, gA) of continuous functions
fA, gA : [0, 1]→ R.

The set of all OFNs will be denoted by <. The elements of the OFN A are called: fA, the up part,
and gA, the down part. To conform with the classical notation of fuzzy numbers, the independent
variable of both functions fA and gA will be denoted by y, while their values, by x (Figure 1a). The
continuity of both functions fA and gA implies that their images are bounded intervals, called UPA and
DOWNA, respectively (Figure 1a). Their endpoints will be described as follows: UPA = [ fA(0), fA(1)]
and DOWNA = [gA(1), gA(0)].
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Figure 1. (a) An OFN, (b) an OFN with its membership function, and (c) an arrow denotes the order of
the inverted functions and the orientation of OFN.

In general, the functions fA and gA of the OFN A need not be invertible as functions of the
variable y; only continuity is required in Definition 1. However, if we assume, additionally, that [24]:
(A1) fA is increasing and gA is decreasing, (A2) fA ≤ gA (pointwise), we can define the membership
function of the OFN A as follows (Figure 1b):

µA(x) =


f−1
A (x) if x ∈ [ fA(0), fA(1)]

1 if x ∈ [ fA(1), gA(1)]
g−1

A (x) if x ∈ [gA(1), gA(0)]
. (1)

If the functions fA and/or gA are not invertible or assumption (A2) is not satisfied, we can obtain
so-called improper OFNs (Figure 2). Instead of the membership function, we can then define the
membership curve (or relation) in the xy-plane, consisting of the functions fA and gA (as functions
of the variable x) and a segment of the line y = 1 over the interval [ fA(1), gA(1)]. Moreover, let us
note that in general f (1) does not have to be smaller than g(1) (Figure 2), in which case we can obtain
improper intervals for [ fA(0), fA(1)] and/or [gA(1), gA(0)] (discussed in the context of extended
interval arithmetic by Kaucher [27]).



Entropy 2017, 19, 373 4 of 14

Entropy 2017, 19, 373  3 of 13 

 

Prokopowicz and Ślęzak in 2002. After the death of Professor Kosiński, to commemorate and honour 
him, these numbers are often called “Kosinski fuzzy numbers” [25]. Arithmetic operations in this 
model are similar to the operations on real numbers, which are a special case of OFNs. 

Definition 1. [23,26]. An ordered fuzzy number ܣ is an ordered pair ܣ = ( ݂, ݃) of continuous functions ݂, ݃: [0,1] → ℝ. 

The set of all OFNs will be denoted by ℜ. The elements of the OFN ܣ are called: ݂, the up 
part, and ݃ , the down part. To conform with the classical notation of fuzzy numbers, the 
independent variable of both functions ݂ and ݃ will be denoted by ݕ, while their values, by ݔ 
(Figure 1a). The continuity of both functions ݂ and ݃ implies that their images are bounded 
intervals, called ܷ ܲ and ܹܱܦ ܰ, respectively (Figure 1a). Their endpoints will be described as 
follows: ܷ ܲ = [ ݂(0), ݂(1)] and ܹܱܦ ܰ = [݃(1), ݃(0)].  

 

Figure 1. (a) An OFN, (b) an OFN with its membership function, and (c) an arrow denotes the order 
of the inverted functions and the orientation of OFN. 

In general, the functions ݂ and ݃ of the OFN ܣ need not be invertible as functions of the 
variable ݕ ; only continuity is required in Definition 1. However, if we assume, additionally,  
that [24]: (A1) ݂ is increasing and ݃ is decreasing, (A2) ݂ ≤ ݃ (pointwise), we can define the 
membership function of the OFN ܣ as follows (Figure 1b): 

(ݔ)ߤ = ቐ ݂ି ଵ(ݔ) if ݔ ∈ [ ݂(0), ݂(1)]1 if ݔ ∈ [ ݂(1), ݃(1)]݃ିଵ(ݔ) if ݔ ∈ [݃(1), ݃(0)]. (1) 

If the functions ݂ and/or ݃ are not invertible or assumption (A2) is not satisfied, we can 
obtain so-called improper OFNs (Figure 2). Instead of the membership function, we can then define 
the membership curve (or relation) in the ݕݔ-plane, consisting of the functions ݂  and ݃  (as 
functions of the variable ݔ) and a segment of the line ݕ = 1 over the interval [ ݂(1), 	݃(1)]. 
Moreover, let us note that in general ݂(1) does not have to be smaller than ݃(1) (Figure 2), in 
which case we can obtain improper intervals for [ ݂(0), ݂(1)] and/or [݃(1), ݃(0)] (discussed in 
the context of extended interval arithmetic by Kaucher [27]). 

 

Figure 2. Improper OFN with a membership curve (or relation) instead of a membership function.  

(a) (b)

(c)

x

1

UPA

DOWNA

x

y

fA

gA

1

UPA DOWNA
x

fA-1 gA
-1

ADDED
INTERVAL

1

μ (x)

μ (x)

x

1

Figure 2. Improper OFN with a membership curve (or relation) instead of a membership function.

Figure 1c shows an OFN as a fuzzy number in the classical meaning (as a convex fuzzy number).
Its membership function has an extra arrow denoting the orientation of the OFN, e.g., the order of
the inverse functions f−1

A and g−1
A . The pair of continuous functions ( fA, gA) determines a different

OFN than the pair (gA, fA). Figure 3 shows that although the two curves have an identical shape, the
corresponding membership functions determine two different OFNs.
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Figure 3. (a) An OFN ( fA, gA) with a positive orientation, and (b) an OFN (gA, fA) with a
negative orientation.

The set of OFNs < can be divided into two subsets:

• numbers with a positive orientation, if the direction of the OFN is the same as the x-axis
(Figure 3a); and

• numbers with a negative orientation, if the direction of the OFN is opposite (Figure 3b).

Orientation can be used to present additional information, for example:

• if we describe an object’s speed, orientation tells us whether the object is moving away or
towards us;

• if we analyse the total revenue and/or the total cost of a company, orientation can describe the
dependence of the current value on the reference value (increasing or decreasing);

• if we apply FMCDM methods, orientation can show the type of the criteria (benefit or cost).

Basic arithmetic operations on OFNs are defined as pairwise operations on their functions f and
g. Let A = ( fA, gA), B = ( fB, gB), and C = ( fC, gC) be OFNs. The arithmetic operations: addition
(C = A + B), subtraction (C = A− B), multiplication (C = A·B), and division (C = A/B) on them
are defined in < as follows:

∀y ∈ [0, 1] [ fC(y) = fA(y) ∗ fB(y) and gC(y) = gA(y) ∗ gB(y) ] (2)

where “∗”∈{+, −, ·, /} and where A/B is defined when fB 6= 0 and gB 6= 0 for each y ∈ [0, 1].
Since real numbers are a special case of OFNs, they can be represented in < as follows. Let r ∈ R

and let r′ be the constant function, i.e., r′(s) = r for all s ∈ [0, 1]. Then r∗(s) = (r′, r′) is the OFN which
represents the real number r in <. Now we can define the multiplication of an OFN A = ( fA, gA) by a
real number r by the formula:

∀y ∈ [0, 1] [r·A = (r· fA(y), r·gA(y))]. (3)
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In Equation (1) of the membership function of the OFN A there are four characteristic real
numbers: fA(0), fA(1), gA(1), and gA(0). If the functions fA and gA are linear, these four numbers
uniquely describe A as follows (Figure 4):

A = ( fA(0), fA(1), gA(1), gA(0)). (4)
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Figure 4. A trapezoidal OFN A (a pair of linear functions) with characteristic points.

The number A is called a trapezoidal OFN if fA(1)<gA(1) (Figure 4) and a triangular OFN if
fA(1) = gA(1) which for simplicity is often written as follows:

A = ( fA(0), fA(1), gA(0)). (5)

A trapezoidal OFN A = ( fA(0), fA(1), gA(1), gA(0)), where 0 ≤ fA(0), fA(1), gA(1), gA(0) ≤
1 is called normalized. The representation of Equations (4) or (5) allows us to quickly perform
arithmetic operations on trapezoidal (triangular) OFNs using these characteristic points. Let A =

( fA(0), fA(1), gA(1), gA(0)) and B = ( fB(0), fB(1), gB(1), gB(0)) be trapezoidal OFNs. The arithmetic
operations on these numbers are then defined by the formula:

A♦B = ( fA(0)♦ fB(0), fA(1)♦ fB(1), gA(1))♦gB(1), gA(0))♦gB(0)). (6)

where ♦ ∈ {+,−, ∗, /}.
Figure 5a illustrates addition of two triangular OFNs A = (1, 2, 3) and B = (2, 3, 5), and the result

A + B = (3, 5, 8), whereas Figure 5b illustrates multiplication of a trapezoidal OFN C = (1, 2, 3, 5) by
a real number r = 2 and the result 2 · C = (2, 4, 6, 10).
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Figure 5. (a) A graphic illustration of addition of two triangular OFNs A = (1, 2, 3) and B = (2, 3, 5),
and the result A + B = (3, 5, 8), and (b) a graphic illustration of multiplication of a trapezoidal OFN
C = (1, 2, 3, 5) by a real number r = 2 and the result 2 · C = (2, 4, 6, 10)
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Defuzzification is a main operation in fuzzy controllers, fuzzy inference systems, and FMCDM
methods, which allows to rank OFNs.

Definition 2. [28]. A map φ from the space < of all OFNs to reals is called a defuzzification functional if it
satisfies:

• φ(r∗) = r
• φ(A + r∗) = φ(A) + r
• φ(r∗·A) = r·φ(A)

for any r ∈ R and A ∈ <, where r∗ represents a crisp number.

Let A = ( fA, gA) be an OFN. In <, the most frequently used defuzzification methods for A
are [28]:

- FOM (first of maximum)
φFOM( fA, gA) = fA(1). (7)

- LOM (last of maximum)
φLOM( fA, gA) = gA(1). (8)

- MOM (middle of maximum)

φMOM( fA, gA) =
1
2
( fA(1) + gA(1)). (9)

- RCOM (random choice of maximum)

φRCOM( fA, gA) = λ fA(1) + (1− λ)gA(1), λ ∈ [0, 1]. (10)

- GM (geometric mean)

φGM( fA, gA) =
gA(1)gA(0) − fA(0) fA(1)

gA(1) + gA(0) − fA(0) − fA(1)
. (11)

- KKCOM (KK choice of maximum)

φKKCOM( fA, gA) =


fA(1) + gA(1)

2 if fA and gA are constant∣∣∣ fA(1) −
∫ 1

0 fA(s)ds
∣∣∣· fA(1) +

∣∣∣∫ 1
0 gA(s)ds − gA(1)

∣∣∣·gA(1)∣∣∣ fA(1) −
∫ 1

0 fA(s)ds
∣∣∣ + ∣∣∣∫ 1

0 gA(s)ds − gA(1)
∣∣∣ if otherwise

.

(12)
- COG (centre of gravity)

φCOG( fA, gA) =

∫ 1
0

fA(s)+gA(s)
2 ( fA(s) − gA(s))ds∫ 1

0 ( fA(s) − gA(s))ds
. (13)

3. Fuzzy Criteria Weights Based on Fuzzy Shannon Entropy

In this section, we propose an extension of Shannon entropy to a fuzzy environment which will
be used to obtain the fuzzy criteria weights for an FMCDM method based on OFNs.

Let us consider a multi-criteria problem which consists of the set of alternatives {A1, A2, . . . , Am}
and the set of criteria {C1, C2, . . . , Cn}. In general, the criteria can be classified into two types: benefit
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(B) and cost (C). For a benefit criterion, a higher value is better, while for a cost criterion, a smaller
value is better. A multi-criteria problem is usually expressed in matrix form, as follows:

X =


x11 x12

x21 x22

· · · x1n
· · · x2n

...
...

xm1 xm2

. . .
...

· · · xmn

, (14)

where xij is the rating of the ith alternative with respect to the jth criterion. Additionally, the relative
importance of criteria is given by a vector of weights:

w = (w1, w2, . . . , wn) (15)

where wj ∈ R+ is the weight of criterion Cj, satisfying the condition w1 + w2+, . . . ,+wn = 1.
Most of the MCDM applications to real-life decision-making problems use only subjective weights

defined by the decision-maker. However, when it is not possible to obtain reliable subjective weights,
objective weights become useful [17]. One of the methods of obtaining objective weights is the
application of the concept of Shannon entropy.

Entropy is a term from information theory which is also known as the average (expected) amount
of information [29] contained in each criterion (each column of the decision matrix Equation (14)).
The greater the value of entropy in a specific criterion, the smaller the differences in the ratings
of alternatives with respect to this criterion. This, in turn, means that this criterion provides less
information and has a smaller weight. It follows that this criterion becomes less important in the
decision-making process.

Let us consider the decision matrix (Equation (14)), where xij ∈ R+. Then criteria weights can be
determined as follows:

1. Construct the normalized decision matrix Z =
(
zij
)
, where:

zij =
xij

∑m
i=1 xij

. (16)

2. Construct the vector of Shannon entropy e = (e1, e2, . . . , en), where:

ej = −
1

ln m

m

∑
i=1

zij ln zij, (17)

and zij ln zij is defined as 0 if zij = 0.

3. Calculate the vector of diversification degrees d = (d1, d2, . . . , dn), where:

dj = 1− ej. (18)

The higher the degree dj, the more important the corresponding criterion Cj.

4. Calculate the vector of criteria weights w = (w1, w2, . . . , wn), where:

wj =
dj

∑n
j = 1 dj

. (19)

It is reasonable and logical that when the ratings of alternatives with respect to criteria are
represented by OFNs, the weights of criteria should be also represented by OFNs. This means that the
concept of Shannon entropy needs to be extended to fuzzy Shannon entropy based on OFNs.
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We will present a method of determining the weights of criteria based on OFNs using triangular
OFNs (the proposed method can be easily extended to trapezoidal OFNs). The orientation of OFNs will
be used to distinguish between types of criteria. Namely, to represent the value of a benefit criterion we
use positive triangular OFN A = ( fA(0), fA(1), gA(0)), i.e., an OFN such that 0 ≤ fA(0) ≤ fA(1) ≤
gA(0), while for a cost criterion, negative triangular OFN A = ( fA(0), fA(1), gA(0)), i.e., an OFN
such that 0 ≤ gA(0) ≤ fA(1) ≤ fA(0). Then the calculation of criteria weights based on triangular
OFNs can be described in the following steps.

STEP 1: Construct the fuzzy decision matrix X =
(
xij
)
, where:

xij =
(

fxij(0), fxij(1), gxij(0)
)

(20)

is the rating of alternative Ai with respect to criterion Cj represented by a triangular OFN.

STEP 2: Construct the normalized fuzzy decision matrix Z =
(
zij
)
, where:

zij =

(
fxij(0)

∑m
i=1 fxij(0)

,
fxij(1)

∑m
i=1 fxij(1)

,
gxij(0)

∑m
i=1 gxij(0)

)
. (21)

If, for all i = 1, . . . , m we have fxij(0) = 0 or fxij(1) = 0 or gxij(0) = 0, we define
fxij (0)

∑m
i=1 fxij (0)

or
fxij (1)

∑m
i=1 fxij (1)

or
gxij (0)

∑m
i=1 gxij (0)

to be 0, respectively.

Remark 1: The orientation of OFNs is used for input data to distinguish between the types of criteria. Let us
note that during the calculations using Equation (21) the orientation of the resulting OFNs can change (from
positive to negative, and vice versa) and even improper OFNs can occur. This is shown in the numerical example
presented below.

Let us consider the following three OFN-rated alternatives with respect to j-th benefit criterion:
x1j = (3, 5, 7), x2j = (7, 9, 10), and x3j = (3, 4, 5). The normalized OFNs, calculated using Equation
(14), are: z1j = (0.231, 0.278, 0.318), z2j = (0.538, 0.500, 0.455), and z3j = (0.231, 0.222, 0.227). Note
that after normalization, z1j has the same orientation as the input data, z2j has the opposite orientation,
and z3j is an improper OFN.

STEP 3: Construct the vector of fuzzy Shannon entropy e = (e1, e2, . . . , en), where:

ej =
(
− 1

ln m ∑m
i=1 fzij(0) ln fzij(0),− 1

ln m ∑m
i=1 fzij(1) ln fzij(1),− 1

ln m ∑m
i=1 gzij(0) ln gzij(0)

)
, (22)

and fzij(0) ln fzij(0) or fzij(1) ln fzij(1) or gzij(0) ln gzij(0) is defined as 0 if fzij(0) = 0 or
fzij(1) = 0 or gzij(0) = 0, respectively.

STEP 4: Calculate the vector of fuzzy diversification d = (d1, d2, . . . , dn), where:

dj =
(

1− fej(0), 1− fej(1), 1− gej(0)
)

. (23)

STEP 5: Calculate the vector of fuzzy criteria weights w = (w1, w2, . . . , wn), where:

wj =

(
fdj(0)

∑n
j=1 fdj(0)

,
fdj(1)

∑n
j=1 fdj(1)

,
gdj(0)

∑n
j=1 gdj(0)

)
. (24)
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If for all j = 1, . . . , n we have fdj(0) = 0 or fdj(1) = 0 or gdj(0) = 0, we define
fdj

(0)

∑n
j=1 fdj

(0) or
fdj

(1)

∑n
j=1 fdj

(1) or

gdj
(0)

∑n
j = 1 gdj

(0) to be 0, respectively.

Theorem 1. The criteria weights (Equation (24)) are normalized.

Proof. Let us note that for all j = 1, . . . , n we have 0 ≤ fdj(0) ≤ ∑n
j=1 fdj(0), 0 ≤ fdj(1) ≤ ∑n

j=1 fdj(1)

and 0 ≤ gdj(0) ≤ ∑n
j=1 gdj

(0). Hence, it follows that 0 ≤
fdj

(0)

∑n
j=1 fdj

(0) ≤ 1, 0 ≤
fdj

(1)

∑n
j=1 fdj

(1) ≤ 1, and

0 ≤
fgj (0)

∑n
j=1 fgj (0)

≤ 1, which means that 0 ≤ fwj(0), fwj(1), gwj(0) ≤ 1. �

Theorem 2. If all the ratings of alternatives with respect to criteria are crisp data then the proposed method
of determining the weights of criteria using the fuzzy Shannon entropy based on OFNs leads to the classical
method of determining the weights of the criteria using the classical Shannon entropy.

Proof. Let us note that if all the ratings of alternatives with respect to criteria are crisp data, then in
Equation (20) we have fxij(0) = fxij(1) = gxij(0) and also fzij(0) = fzij(1) = gzij(0) in Equation (21).
This means that from Equation (22) we have fej(0) = fej(1) = gej(0) and, therefore, fdj(0) = fdj(1) =
gdj(0) in Equation (23). Finally, from Equation (24) we have fwj(0) = fwj(1) = gwj(0). �

Theorem 3. If at least one of the ratings of any alternative with respect to any criterion is an OFN, all the
criteria weights are also OFNs.

Proof. Assume that for i = 1, . . . , m and j = 1, . . . , n we have xij ∈ <, which means that xij is an OFN.
Then from Equation (21) we have zij ∈ < for all i = 1, . . . , m. Next, from Equation (22) we have ej ∈ <
and from Equation (23) dj ∈ <. Finally, from Equation (24) we have wj ∈ < for all j = 1, . . . , n. �

Theorem 4. The obtained weights from Equation (24) satisfy the condition ∑n
j=1 wj = 1.

Proof. From Equation (24) we have:

∑n
j=1 wj = ∑n

j=1

(
fdj

(0)

∑n
j=1 fdj

(0) ,
fdj

(1)

∑n
j=1 fdj

(1) ,
gdj

(0)

∑n
j=1 gdj

(0)

)
=(

∑n
j=1

fdj
(0)

∑n
j=1 fdj

(0) , ∑n
j=1

fdj
(1)

∑n
j=1 fdj

(1) , ∑n
j=1

gdj
(0)

∑n
j=1 gdj

(0)

)
= (1, 1, 1).

�

Theoremf 5. If all alternatives Ai (i = 1, 2, . . . , m) are evaluated identically with respect to a criterion, for
example, jth criterion Cj, then wj = 0.

Proof. Assume that for each alternative Ai (i = 1, 2, . . . , m) the evaluations with respect to j-th criterion
Cj are the same and equal to xij = (a, b, c). Therefore, using Equation (21), after the normalization

for all i = 1, . . . , m, we have zij =
(

1
m , 1

m , 1
m

)
. Since − 1

ln m ∑m
i=1

1
m ln 1

m = 1 and using Equation (22),
we have ej = (1 , 1, 1). From Equation (23) we have dj = (0, 0, 0) and from Equation (24) we obtain
wj = (0, 0, 0). �

Theorem 6. If all alternatives Ai (i = 1, 2, . . . , m) are evaluated identically with respect to a criterion, for
example, k-th criterion Ck and j-th criterion Cj, e.g., xik = xij for i = 1, 2, . . . , m, then wk = wj.
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Proof. Assume that for each alternative Ai (i = 1, 2, . . . , m) the evaluations with respect to k-th
criterion Ck and j-th criterion Cj are the same, e.g., xik = xij for i = 1, 2, . . . , m. Then, using Equation
(21), we have zik = zij for i = 1, 2, . . . , m and when we calculate the entropy using Equation (22), we
obtain ek = ej. Hence, from Equation (23) we have dk = dj and, finally, using Equation (24), we obtain
wk = wj. �

4. An Illustrative Example

In this section, we present a simple numerical example of the proposed method. Let us consider
the multi-criteria problem of selecting a provider of medical equipment to a medical centre. Four
bidders A1, A2, A3, and A4 responded to the invitation to bid. They are rated with respect to the
following criteria: C1: price, C2: length of warranty, C3: conditions of service, C4: multifunctionality
of the equipment, that is, the capability for extension and modification, C5: payment term, C6:
comprehensiveness of the offer, that is, training, delivery, installation, and possibility of leasing.

For the ratings of the alternatives with respect to the criteria the linguistic variables from Table 1
are used. The results of the ratings are shown in Table 2. The linguistic variables from Table 2 are
converted into triangular OFNs; the corresponding fuzzy decision matrix is presented in Table 3. Next,
this matrix is normalized using Equation (21) and presented in Table 4. Based on the data from Table 4
and using Equations (22)–(24), the vector of fuzzy Shannon entropy, the vector of fuzzy diversification,
and the vector of fuzzy criteria weights are calculated and shown in Table 5. To determine the ranking
of the criteria we can use one of the defuzzification methods of Equations (7)–(13) presented in Section 2.
The simplest defuzzification method for triangular OFNs consists in selecting a central value which is
equivalent to using one of the Equations (7)–(12). Table 6 presents the results of defuzzification; the
last row shows the rank of each criterion C3<C5<C4<C6<C2<C1.

Table 1. Linguistic variables for the ratings of the alternatives.

Linguistic Variables OFNs for Benefit Criterion OFNs for Cost Criterion

Very poor (VP) (0, 0, 1) (1, 0, 0)
Poor (P) (0, 1, 3) (3, 1, 0)

Medium poor (MP) (1, 3, 5) (5, 3, 1)
Fair (F) (3, 5, 7) (7, 5, 3)

Medium good (MG) (5, 7, 9) (9, 7, 5)
Good (G) (7, 9, 10) (10, 9, 7)

Very good (VG) (9, 10, 10) (10, 10, 9)

Table 2. Decision matrix expressed by linguistic variables.

Alt.
Criteria

C1 C2 C3 C4 C5 C6

A1 VG F G VG MG MG
A2 F MP MG F F F
A3 G MG G G F MP
A4 MP MP VG G MG F

Table 3. Decision matrix expressed by OFNs.

Alt.
Criteria

C1 C2 C3 C4 C5 C6

A1 (10, 10, 9) (3, 5, 7) (7, 9, 10) (9, 10, 10) (5, 7, 9) (5, 7, 9)
A2 (7, 5, 3) (1, 3, 5) (5, 7, 9) (3, 5, 7) (3, 5, 7) (3, 5, 7)
A3 (10, 9, 7) (5, 7, 9) (7, 9, 10) (7, 9, 10) (3, 5, 7) (1, 3, 5)
A4 (5, 3, 1) (1, 3, 5) (9, 10, 10) (7, 9, 10) (5, 7, 9) (3, 5, 7)
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Table 4. The normalized decision matrix.

Alt.
Criteria

C1 C2 C3 C4 C5 C6

A1 (0.313, 0.370, 0.450) (0.300, 0.278, 0.269) (0.250, 0.257, 0.256) (0.346, 0.303, 0.270) (0.313, 0.292, 0.281) (0.417, 0.350, 0.321)
A2 (0.219, 0.185, 0.150) (0.100, 0.167, 0.192) (0.179, 0.200, 0.231) (0.115, 0.152, 0.189) (0.188, 0.208, 0.219) (0.250, 0.250, 0.250)
A3 (0.313, 0.333, 0.350) (0.500, 0.389, 0.346) (0.250, 0.257, 0.256) (0.269, 0.273, 0.270) (0.188, 0.208, 0.219) (0.083, 0.150, 0.179)
A4 (0.156, 0.111, 0.050) (0.100, 0.167, 0.192) (0.321, 0.286, 0.256) (0.269, 0.273, 0.270) (0.313, 0.292, 0.281) (0.250, 0.250, 0.250)

Table 5. The vector of fuzzy Shannon entropy—ej , the vector of fuzzy diversification—dj, and the
vector of fuzzy criteria weights—wj.

Criteria

C1 C2 C3 C4 C5 C6

ej (0.973, 0.931, 0.838) (0.843, 0.952, 0.977) (0.985, 0.994, 0.999) (0.954, 0.978, 0.992) (0.977, 0.990, 0.994) (0.913, 0.970, 0.985)
dj (0.027, 0.069, 0.162) (0.157, 0.048, 0.023) (0.015, 0.006, 0.001) (0.046, 0.022, 0.008) (0.023, 0.010, 0.006) (0.087, 0.030, 0.015)
wj (0.075, 0.376, 0.758) (0.443, 0.259, 0.107) (0.042, 0.031, 0.003) (0.129, 0.117, 0.035) (0.064, 0.055, 0.026) (0.247, 0.162, 0.070)

Table 6. Fuzzy criteria weights—wj , defuzzified fuzzy criteria weights—φ, and the ranking of
criteria—R.

Criteria

C1 C2 C3 C4 C5 C6

wj (0.075, 0.376, 0.758) (0.443, 0.259, 0.107) (0.042, 0.031, 0.003) (0.129, 0.117, 0.035) (0.064, 0.055, 0.026) (0.247, 0.162, 0.070)
φ 0.376 0.259 0.031 0.117 0.055 0.162
R 1 2 6 4 5 3

5. A Comparison of the Proposed Approach with the Approach Based on CFN

In this section, the approach to the determination of fuzzy criteria weights presented in Section 3
is compared with the approach based on fuzzy numbers described in [2]. To show differences in
these approaches we use the illustrative example presented in Section 4 and the concept of α-levels.
To compare the α-levels and create a ranking of criteria we will use the method proposed by Hu
and Wang [30]. This method used another characterization of an α-level Aα =

[
Aα, Aα

]
, using its

centre c(Aα) = Aα+Aα

2 and its radius w(Aα) = Aα−Aα

2 . Thus, any α-level can be written in the form
Aα = 〈c(Aα); w(Aα)〉 . If Bα = 〈c(Bα); w(Bα)〉 is another α-level, the method proposed by Hu and
Wang can be written as:

Aα ≺= Bα ⇔
{

c(Aα)<c(Bα) if c(Aα) 6= c(Bα)

w(Aα) ≥ w(Bα) if c(Aα) = c(Bα)
(25)

and:
Aα ≺ Bα ⇔ Aα ≺ = Bα ∧ A 6= B. (26)

Table 7 presents weights and rankings of criteria for selected values of α, both for classical fuzzy
numbers and for OFNs. Calculations have shown that for CFNs and α from 0 to α ∈ (0.75, 0.76) the
ranking of criteria is the same, namely C1<C3<C4<C5<C6<C2. For greater values of α the ranking of
criteria is different. Starting from α ∼= 0.968 the ranking is as follows C3<C5<C4<C6<C2<C1, which
is the same as the ranking presented in Table 6. This shows that, for different values of α, different
rankings are obtained. It is, therefore, difficult to determine the overall ranking of the criteria. On the
other hand, the application of the approach proposed in Section 3 gives the same ranking for α ∈ [0, 1],
which is compatible with the rankings obtained in Table 7 for CFNs and α > 0.968.
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Table 7. Interval criteria weights (wj) and the ranking of criteria (R) for different α-levels, for CFNs
and OFNs.

α Criteria
CFNs OFNs

α Criteria
CFNs OFNs

wj R wj R wj R wj R

0.0

C1 [0.017, 3.380] 6 [0.075, 0.758] 1

0.6

C1 [0.073, 1.050] 6 [0.225, 0.537] 1
C2 [0.015, 5.247] 1 [0.443, 0.107] 2 C2 [0.052, 1.319] 1 [0.334, 0.195] 2
C3 [0.000, 1,548] 5 [0.042, 0.003] 6 C3 [0.005, 0.359] 5 [0.040, 0.017] 6
C4 [0.005, 1.923] 4 [0.129, 0.035] 4 C4 [0.022, 0.516] 4 [0.136, 0.082] 4
C5 [0.004, 3.339] 3 [0.064, 0.026] 5 C5 [0.012, 0.757] 3 [0.064, 0.045] 5
C6 [0.010, 4.433] 2 [0.247, 0.070] 3 C6 [0.033, 1.071] 2 [0.202, 0.124] 3

0.2

C1 [0.026, 2.363] 6 [0.114, 0.691] 1

0.8

C1 [0.142, 0.652] 5 [0.297, 0.455] 1
C2 [0.021, 3.525] 1 [0.406, 0.134] 2 C2 [0.100, 0.675] 1 [0.297, 0.227] 2
C3 [0.001, 1.026] 5 [0.043, 0.006] 6 C3 [0.010, 0.163] 6 [0.036, 0.024] 6
C4 [0.008, 1.308] 4 [0.137, 0.049] 4 C4 [0.044, 0.279] 4 [0.128, 0.100] 4
C5 [0.005, 2.213] 3 [0.066, 0.032] 5 C5 [0.022, 0.331] 3 [0.060, 0.050] 5
C6 [0.014, 2.962] 2 [0.234, 0.087] 3 C6 [0.063, 0.519] 2 [0.183, 0.143] 3

0.4

C1 [0.042, 1.605] 6 [0.164, 0.617] 1

0.99

C1 [0.353, 0.387] 1 [0.372, 0.380] 1
C2 [0.032, 2.246] 1 [0.370, 0.164] 2 C2 [0.243, 0.275] 2 [0.261, 0.257] 2
C3 [0.002, 0.639] 5 [0.042, 0.011] 6 C3 [0.029, 0.037] 6 [0.032, 0.031] 6
C4 [0.013, 0.850] 4 [0.139, 0.065] 4 C4 [0.110, 0.124] 4 [0.118, 0.117] 4
C5 [0.007, 1.369] 3 [0.066, 0.039] 5 C5 [0.052, 0.066] 5 [0.055, 0.055] 5
C6 [0.020, 1,866] 2 [0.219, 0.105] 3 C6 [0.152, 0.175] 3 [0.163, 0.161] 3

Remark 2. A fuzzy number w = (a, b, c) can be approximated by a triangular fuzzy number using α-levels.
Then its central value b is determined by setting α = 1, while its support [a, c] is obtained by setting α = 0
[[31]].

Using the above remark and the approach proposed in [2], fuzzy numbers representing weights
of criteria can be determined. Table 8 presents fuzzy criteria weights wj, fuzzy criteria weights φ

defuzzified by the centre of gravity (Equation (13)), and the ranking of criteria R. The resulting ranking
of criteria weights is: C3<C4<C5<C1<C6<C2; this is different from the rankings presented in Table 7
for CFNs and for different values α. Table 9 presents OFN-based fuzzy criteria weights wj, fuzzy
criteria weights φ defuzzified by the centre of gravity (Equation (13)), and the ranking of criteria R. The
obtained ranking of criteria weights is: C3<C5<C4<C6<C2<C1, compatible with the ranking obtained
in Tables 6 and 7 for OFNs.

Table 8. CFN-based fuzzy criteria weights wj , defuzzified (centre of gravity) fuzzy criteria weights φ,
and the ranking of criteria R.

Criteria

C1 C2 C3 C4 C5 C6

CFN (0.017, 0.376, 3.380) (0.015, 0.259, 5.247) (0.000, 0.031, 1.548) (0.005, 0.117, 1.923) (0.004, 0.055, 3.339) (0.010, 0.162, 4.433)
φ 1.258 1.840 0.526 0.682 1.133 1.535
R 3 1 6 5 4 2

Table 9. OFN-based fuzzy criteria weights wj , defuzzified (centre of gravity) fuzzy criteria weights φ,
and the ranking of criteria R.

Criteria

C1 C2 C3 C4 C5 C6

OFN (0.075, 0.376, 0.758) (0.443, 0.259, 0.107) (0.042, 0.031, 0.003) (0.129, 0.117, 0.035) (0.064, 0.055, 0.026) (0.247, 0.162, 0.070)
φ 0.403 0.270 0.025 0.094 0.048 0.160
R 1 2 6 4 5 3
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6. Conclusions

Considering that in some real-life decision-making problems it is difficult to determine the exact
values of the ratings of alternatives and the criteria weights, these values can be expressed as OFNs.
Moreover, most FMCDM applications use only subjective weights. However, when it is not possible to
obtain reliable subjective weights, objective weights become useful. One of the methods for obtaining
objective criteria weights for an MCDM method is a technique based on the concept of Shannon
entropy. It is logical that when the ratings of alternatives are represented as OFNs, the criteria weights
should be also OFNs.

In this paper, a method for obtaining criteria weights based on the concept of Shannon entropy
has been extended to OFNs. The proposed approach allows to obtain, for each criterion, its weight
in the form of an OFN. It has also been shown that the obtained criteria weights are normalized and
sum to 1. Moreover, when all the ratings of an alternative with respect to the criteria are crisp data,
the proposed method leads to the classical method of determining the weights of criteria using the
classical Shannon entropy.

Let us note that all weights determined in the illustrative example (Table 5) are proper OFNs.
In this paper, we have not considered a situation in which the obtained weights are improper OFNs
(Figure 2). This problem will be considered in future research.
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