

  The KCOD Model on (3,4,6,4) and (34,6) Archimedean Lattices




The KCOD Model on (3,4,6,4) and (34,6) Archimedean Lattices







Entropy 2017, 19(9), 459; doi:10.3390/e19090459




Article



The KCOD Model on (3, 4, 6, 4) and (34, 6) Archimedean Lattices



Francisco W. De Sousa Lima





Dietrich Stauffer Computational Physics Lab, Departamento de Física Universidade Federal do Piauí, Teresina 64049-550, Brazil; Tel.: +55-86-9414-4591







Received: 23 July 2017 / Accepted: 30 August 2017 / Published: 31 August 2017



Abstract:



Through Monte Carlo simulations, we studied the critical properties of kinetic models of continuous opinion dynamics on ([image: there is no content]) and ([image: there is no content]) Archimedean lattices. We obtain [image: there is no content] and the critical exponents’ ratio from extensive Monte Carlo studies and finite size scaling. The calculated values of the critical points and Binder cumulant are [image: there is no content] and [image: there is no content]; and [image: there is no content] and [image: there is no content] for ([image: there is no content]) and ([image: there is no content]) lattices, respectively, while the exponent ratios [image: there is no content], [image: there is no content] and [image: there is no content] are, respectively: [image: there is no content], [image: there is no content], and [image: there is no content] for ([image: there is no content]); and [image: there is no content], [image: there is no content], and [image: there is no content] for ([image: there is no content]) lattices. Our new results agree with majority-vote model on previously studied regular lattices and disagree with the Ising model on square-lattice.
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1. Introduction


The study of the behavior of individuals in a society by physicists is known as sociophysics, having as the main contributor in this new research area Serge Galam who introduced the use of local majority rules to study voting systems as bottom-up democratic voting in hierarchical structures [1,2,3,4]. Although sociophysics was rejected by some physicists in the eighties [5], it has today become an active field of research among physicists all over the world [3,6,7].



In this same context and based on the criterion of Grinstein et al. [8] (where a nonequilibrium model presenting up–down symmetry in two-state dynamic systems implies the same critical behavior (same universality class) as the equilibrium Ising model), Oliveira [9] proposed a nonequilibrium version of Ising model called majority vote model (MVM). On two-dimensional regular lattices, this presents a second-order phase transition with critical exponents [image: there is no content], [image: there is no content], [image: there is no content], as for [10,11] the equilibrium Ising model [12,13].



Lima and Malarz [14] studied the MVM on ([image: there is no content]) and ([image: there is no content]) Archimedean lattices (ALs). On these lattices, they found a second-order phase transition with exponent ratios [image: there is no content], [image: there is no content], [image: there is no content] for ([image: there is no content]) and [image: there is no content], [image: there is no content], [image: there is no content] for ([image: there is no content]), see Table 1.



Table 1. Critical parameter ([image: there is no content]), exponents, and effective dimension for majority vote model (MVM) on [image: there is no content] and [image: there is no content] [14]. For completeness, we cite data for Ising model on [image: there is no content] as well [18].
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A multiagent model for opinion formation in society by modifying kinetic exchange dynamics studied in the context of income, money, or wealth distributions in a society where a spontaneous symmetry-breaking transition to polarized opinion states starting from nonpolarized opinion states was proposed by M. Lallouache et al. [15].



A model of continuous opinion dynamics (KCOD) was proposed by Biswas et al. [16] in 2012. In the KCOD model, the mutual interactions can be both positive and negative and a single parameter p denoting the fraction of negative interactions was considered in order to characterize the different types of distributions for the mutual interactions. Numerical simulations of the continuous version of this model indicate the existence of a universal continuous phase transition at [image: there is no content] with exponents of mean field ([image: there is no content], [image: there is no content], and [image: there is no content]) (see also [17]).



The KCOD model on square and cubic lattices (2D and 3D) was studied by Mukherjee and Chatterjee [19]. Their numerical results indicate that the critical behavior of the KCOD model is the same as that of the Ising model in the corresponding dimensions.



Recently, C. Anteneodo and N. Crokidakis [20] studied a model of like KCOD model in the presence of a social temperature. The critical behavior of this model showed three different kinds of collective states (symmetric, asymmetric, and neutral) and nonequilibrium transitions between them (see also [21,22]).



In this work, we studied the KCOD on two Archimedean lattices—namely, [image: there is no content] and [image: there is no content]—through extensive Monte Carlo simulations. The topologies of [image: there is no content], and [image: there is no content] AL are presented in Figure 1. The AL are vertex transitive graphs that can be embedded in a plane such that every face is a regular polygon. Kepler showed that there are exactly eleven such graphs. The AL are labeled according to the sizes of faces incident to a given vertex. The face sizes are sorted, starting from the face for which the list is the smallest in lexicographical order. In this way, the square lattice gets the name [image: there is no content] (abbreviated to [image: there is no content]), honeycomb is called [image: there is no content], and Kagome is [image: there is no content]. Here, we also compared our results with those of the MVM made on [image: there is no content] and [image: there is no content] AL.


Figure 1. Picture of the [image: there is no content] (left) and [image: there is no content] (right) AL.
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2. Model and Simulations


The KCOD [16] model is defined as follows: A set of agents (individuals) with continuous opinion variables [image: there is no content] is situated on every node of the ([image: there is no content]) and ([image: there is no content]) AL with [image: there is no content] sites. The opinion of an individual i at time t takes the values in the range [image: there is no content], in a system of N agents. Here, the opinions change out of pair-wise interactions via mutual influences/couplings [image: there is no content] as:


[image: there is no content]



(1)




where the [image: there is no content] interactions are pair-wise interactions between nearest neighbors, which implies no sum over the index j, and [image: there is no content] are real random variables. In the above dynamics (Equation (1)), an agent i updates his opinion by interacting with agent j and is influenced by the mutual influence term [image: there is no content] . Here, j is selected randomly from one of the nearest neighbors. Unlike other models (such as Ising model and MVM) that present up–down symmetry [23], in the KCOD model the opinions are bounded (i.e., [image: there is no content]). If the opinion value of an agent becomes higher (lower) than +1 (−1), then it is made equal to +1 (−1) to preserve this bound. This bound, along with Equation (1), defines the dynamics of the model. Here, [image: there is no content] is a continuous random variable defined in the range [−1, +1]. The ordering in the system is measured by the quantity [image: there is no content] , the average opinion. Changing the fraction p of negative interactions, one can observe a symmetry breaking transition between an ordered and a disordered phase below a particular value [image: there is no content] of the parameter p, the system orders (giving a non-zero, finite value of the order parameter O (opinion), defined in the following), while a disordered phase exists above [image: there is no content] ([image: there is no content]).



To study the critical behavior of the model, we are interested in the average opinion O, order parameter fluctuations OF, and the reduced fourth-order cumulant of the O (herein named as O4), defined as


[image: there is no content]



(2a)
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(2b)
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(2c)




where [image: there is no content] stands for time averages, computed at the steady states. The results are averaged over the [image: there is no content] independent simulations.



The above-mentioned quantities are functions of the disorder parameter p, and obey the finite-size scaling relations
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(3a)
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where [image: there is no content], [image: there is no content], and [image: there is no content] are the usual critical exponents, [image: there is no content] are the finite-size scaling functions with


[image: there is no content]



(3d)




being the scaling variable. Therefore, from the size dependence of O and OF, we obtained the exponent ratios [image: there is no content] (O) and [image: there is no content] (OF). The maximum value of susceptibility also scales as [image: there is no content]. Moreover, the value of [image: there is no content] for which OF has a maximum is expected to scale with the system size as


p*=pc+bL−1/νwithb≈1.



(4)







Therefore, the relations (3c) and (4) may be used to get the exponent [image: there is no content]. We also evaluate the effective dimensionality, [image: there is no content], from the hyperscaling hypothesis


[image: there is no content]



(5)







Monte Carlo simulations were performed on [image: there is no content] and ([image: there is no content]) AL with various systems of size [image: there is no content] 384, 1536, 6144, 24, 576, and 98, 304 for [image: there is no content] and [image: there is no content] AL. It takes [image: there is no content] Monte Carlo steps (MCS) to let the system reach the steady state, and then the time averages are calculated over the next [image: there is no content] MCS. One MCS is accomplished after N attempts to update the opinions of agents i and j, considering the evolution Equations (1) and (2). The results are averaged over [image: there is no content][image: there is no content] independent simulation runs for each lattice and for given set of parameters [image: there is no content].




3. Results and Discussion


In all simulations described in the previous section, we used sequential Monte Carlo steps and considered continuous [image: there is no content] values within the interval [−1,+1]. Here, we only discuss the case when [image: there is no content] are annealed (i.e., they change with time).



Figure 2 displays the dependence of the opinion O, OF, and O4 on the disorder parameter p, obtained from simulations on [image: there is no content] and [image: there is no content] AL with L ranging from [image: there is no content] to [image: there is no content]. The shape of [image: there is no content], [image: there is no content], and [image: there is no content] curves for a given value of L indicate the occurrence of a second-order phase transition in the system. The phase transition occurs at the value of the critical disorder parameter [image: there is no content]. This critical disorder parameter [image: there is no content] is estimated as the point where the curves of the Binder cumulant [image: there is no content] for different system sizes N intercept each other [24]. The corresponding value of [image: there is no content] is represented by [image: there is no content]. Then, we obtained [image: there is no content] and [image: there is no content]; [image: there is no content] and [image: there is no content] for [image: there is no content], and [image: there is no content] AL, respectively.


Figure 2. (Color online). The opinion O, [image: there is no content], and [image: there is no content], as a function of the parameter p, for lattice size [image: there is no content], 16, 32, 64, and 128, and [image: there is no content] sites for [image: there is no content] (a–c) and [image: there is no content] Archimedean lattice (AL) (d–f).
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To make the critical point on the x-axis more qualitatively visible than the traditional plot of [image: there is no content] (y-axis), Figure 3 displays the dependence of [image: there is no content] instead dependence of [image: there is no content] of the disorder parameter p, obtained from simulations on [image: there is no content] and [image: there is no content] AL.


Figure 3. (Color online). The [image: there is no content] as a function of the parameter p, for [image: there is no content], 16, 32, 64, and 128 lattice sizes, and [image: there is no content] for [image: there is no content] and [image: there is no content] AL.
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In Figure 4, we plot the opinion [image: there is no content] vs. L. The fits of the curves correspond to the exponent ratio [image: there is no content] according to relation Equation (3a); see Table 2.


Figure 4. Log–log plot of the dependence of the opinion [image: there is no content] on the linear system size L. Fitting data, we obtained the estimate for the critical ratio [image: there is no content].
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Table 2. Critical parameter ([image: there is no content]), exponents, and effective dimension for continuous opinion dynamic (KCOD) model on [image: there is no content] and [image: there is no content]. For completeness, we cite data for KCOD model on [image: there is no content] as well [16].
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The Figure 5 displays the log-log plot of the [image: there is no content] at [image: there is no content] as a function of the lattice size L. The slopes of curves correspond to the exponent ratio [image: there is no content] according to Equation (3b). The numerical estimates are [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content] AL.


Figure 5. Log–log plot of the [image: there is no content] at [image: there is no content] versus L for [image: there is no content], and [image: there is no content] AL. Fitting data, we obtained the estimate for the critical ratio [image: there is no content].
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In Figure 6 we present the exponent ratios [image: there is no content] at [image: there is no content] as [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content] AL.


Figure 6. [image: there is no content] at [image: there is no content] versus L for [image: there is no content] and [image: there is no content], AL. Fitting data, we obtained another estimate for the critical ratio [image: there is no content] .
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In Figure 7, we used the scaling relation Equation (4) and obtained the exponent ratio [image: there is no content]. The calculated values of the exponent [image: there is no content] are in Table 2.


Figure 7. Plot of [image: there is no content] versus the linear system size L for [image: there is no content] and [image: there is no content] AL. Fitting data, we obtained the estimate for the critical ratio [image: there is no content].



[image: Entropy 19 00459 g007]






In Figure 8a,d we plot [image: there is no content] versus [image: there is no content] using the critical exponent ratios [image: there is no content], [image: there is no content], and [image: there is no content] and [image: there is no content] for [image: there is no content] and [image: there is no content]. In Figure 8b,e we plot [image: there is no content] versus [image: there is no content] using the critical exponent ratios [image: there is no content] and [image: there is no content] and [image: there is no content] and [image: there is no content] for [image: there is no content] and [image: there is no content]. In Figure 8c,f we plot [image: there is no content] versus [image: there is no content] using the critical exponent [image: there is no content] and [image: there is no content] for [image: there is no content] and [image: there is no content]. The excellent curve collapse for distinct system sizes corroborates our estimated values for [image: there is no content] and exponent ratios [image: there is no content], [image: there is no content], and [image: there is no content].


Figure 8. (Color online) Data collapse of the opinion O, OF, and O4 shown in Figure 3 for [image: there is no content], 64, and 128 [image: there is no content] (a–f) and [image: there is no content] (d–f) AL. The exponent ratios used here were [image: there is no content], [image: there is no content], and [image: there is no content] for [image: there is no content], and [image: there is no content], [image: there is no content], and [image: there is no content] for [image: there is no content] AL.
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The resulting critical exponents and disorder parameters are collected in Table 2. One can also see that the exponent ratios [image: there is no content], [image: there is no content], [image: there is no content] are very close to MVM (Table 1), as expected by Grinstein criterion for regular lattices [8]. They are different from [image: there is no content] obtained for a regular [image: there is no content] Ising model, but obey hyperscaling relation (within the error bars). Equation (5) yields effective dimensionality of systems [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content]. The KCOD on those two AL has the effective dimensionality close to MVM for [image: there is no content] ([image: there is no content]) and for [image: there is no content] ([image: there is no content]) AL (see Table 1 and Table 2). The results of simulations are collected in Table 2.




4. Conclusions


We studied a nonequilibrium KCOD model through extensive Monte Carlo simulations on [image: there is no content] and [image: there is no content] AL. On these lattices, the KCOD shows a second-order phase transition. Our Monte Carlo simulations suggest that the effective dimensionality [image: there is no content] is close to two; i.e., that hyperscaling relation [image: there is no content] may be valid.



Finally, we remark that the critical exponents [image: there is no content], [image: there is no content], and [image: there is no content] for KCOD on [image: there is no content] and [image: there is no content] AL are very close to the MVM model on [image: there is no content] and [image: there is no content] AL [14] (see Table 1 and Table 2). Therefore, the exponent ratio [image: there is no content] and [image: there is no content] differs from 2D Ising model while [image: there is no content] and [image: there is no content] for MVM is a weak indication and [image: there is no content] for KCOD is a strong indication for Ising. Therefore, the KCOD model does not belong to the Ising universality class [12,18]. Thus, our results agree partially with Grinstein.
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