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Abstract:



Let (S1,i,S2,i)∼i.i.dp(s1,s2), [image: there is no content] be a memoryless, correlated partial side information sequence. In this work, we study channel coding and source coding problems where the partial side information [image: there is no content] is available at the encoder and the decoder, respectively, and, additionally, either the encoder’s or the decoder’s side information is increased by a limited-rate description of the other’s partial side information. We derive six special cases of channel coding and source coding problems and we characterize the capacity and the rate-distortion functions for the different cases. We present a duality between the channel capacity and the rate-distortion cases we study. In order to find numerical solutions for our channel capacity and rate-distortion problems, we use the Blahut-Arimoto algorithm and convex optimization tools. Finally, we provide several examples corresponding to the channel capacity and the rate-distortion cases we presented.
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1. Introduction


In this paper, we investigate point-to-point channel models and rate-distortion problem models where both users have different and correlated partial side information and where, in addition, a rate-limited description of one of the user’s side information is delivered to the other user. We then show the duality between the channel models and the rate-distortion models we investigate.



For the convenience of the reader, we refer to the state information as the side information, to the partial side information that is available to the encoder as the encoder’s side information (ESI) and to the partial side information that is available to the decoder as the decoder’s side information (DSI). We refer ro the rate-limited description of the other user’s side information as the increase in the side information. For example, if the decoder is informed with its DSI and, in addition, with a rate-limited description of the ESI, then we would say that the decoder is informed with increased DSI.



To make the motivation for this paper clear, let us look at the simple example depicted in Figure 1. In this setup, the communication between the Tx-Rx pair (the encoder-decoder) is interrupted by an undesired signal, S. The encoder and the decoder do not know S perfectly, but they each possess a version of S; the encoder knows [image: there is no content] (the ESI) and the decoder knows [image: there is no content] (the DSI). For this example, let us assume that the source of the interruption is physically located in close proximity to the encoder (potentially, both signal sources are co-located). Thus, we assume that the encoder “knows more on S” then the decoder; i.e., [image: there is no content]. We assume also that the transmitter can provide a rate-limited description of the ESI, [image: there is no content], to the decoder, thus increasing his DSI. In these circumstances, we pose the question; what is the capacity of the channel between the encoder and the decoder? This question is of practical importance. Knowing the channel capacity allows one to analyze its communication system better, answering questions such as “how close is the communication system’s performance to the capacity?” and “how important is the quality of the side information to the throughput?”. Moreover, it allows one to design better practical codes, like polar codes and LDPC codes.


Figure 1. Increased partial side information example. The encoder wants to send a message to the decoder over an interrupted channel in the presence of side information. The encoder is provided with the ESI and the decoder is provided with increased DSI. i.e., the decoder is informed with a rate-limited description of the ESI, in addition to the DSI.



[image: Entropy 19 00467 g001]






1.1. Channel Capacity in the Presence of State Information


The three problems of channel capacity in the presence of state information that we address in this paper are presented in Figure 2a. We make the assumption that the encoder is informed with partial state information, the ESI ([image: there is no content]), and the decoder is informed with different, but correlated, partial state information, which is the DSI ([image: there is no content]). The channel capacity problem cases are:

	
Case 1: The decoder is provided with increased DSI; i.e., in addition to the DSI, the decoder is also informed with a rate-limited description of the ESI.



	
Case 2: The encoder is informed with increased ESI.



	
Case 2C: Similar to Case 2, with the exception that the ESI is known to the encoder in a causal manner. Notice that the rate-limited description of the DSI is still known to the encoder noncausally.







Figure 2. Channel coding and source coding cases. (a) Channel coding with state information. Case 1: Rate-limited ESI at the decoder. Case 2: Rate-limited DSI at the encoder. Case 2C: Causal ESI and rate-limited DSI at the encoder; (b) Source coding with side information. Case 2: Rate-limited DSI at the encoder. Case 1: Rate-limited ESI at the decoder. Case 1C: Causal DSI and rate-limited ESI at the decoder. The cases are presented in this order to allow each source coding case to be paralel to the dual channel coding case.



[image: Entropy 19 00467 g002]






We will subsequently provide the capacity of Case 1 and Case 2C and characterize the lower and the upper bounds on Case 2, which differ only by a Markov relation. The results for the first case under discussion, Case 1, can be concluded from Steinberg’s problem [1]. In [1], Steinberg introduced and solved the case in which the encoder is fully informed with the ESI and the decoder is informed with a rate-limited description of the ESI. Therefore, the innovation in Case 1 is that the decoder is also informed with the DSI. The solution for this problem can be derived by considering the DSI to be a part of the channel’s output in Steinberg’s solution. In the proof of the converse in his paper, Steinberg uses a new technique that involves using the Csiszár sum twice in order to get to a single-letter bound on the rate. We shall use this technique to present a duality in the converse of the Gelfand–Pinsker [2] and the Wyner-Ziv [3] problems, which, by themselves, constitute the basis for most of the results in this paper. In [3], Wyner and Ziv presented the rate-distortion function for data compression problems with side information at the decoder. We make use of their coding scheme in the achievability proof of the lower bound of Case 2 for describing the ESI with a limited rate at the decoder. In [2], Gelfand and Pinsker presented the capacity for a channel with noncausal channel state information (CSI) at the encoder. We use their coding scheme in the achievability proof of Case 1 and the lower bound of Case 2 for transmitting information over a channel where the ESI is the state information at the encoder. Therefore, we combine in our problems the Gelfand–Pinsker and the Wyner-Ziv problems. Another related paper is [4], in which Shannon presented the capacity of a channel with causal CSI at the transmitter. We make use of Shannon’s result in the achievability proof of Case 2C for communicating over a channel with causal ESI at the encoder. We also use Shannon’s strategies [4], for developing an iterative algorithm to calculate the capacity of the cases we present in this paper.



Some related papers that can be found in the literature are mentioned herein. Heegard and El Gamal [5] presented a model of a state-dependent channel, where the transmitter is informed with the CSI at a rate limited to [image: there is no content] and the receiver is informed with the CSI at a rate limited to [image: there is no content]. This result relates to Case 1, Case 2 and Case 2C since we consider the rate-limited description of the ESI or the DSI as side information known at both the encoder and the decoder. Cover and Chiang [6] extended the Gelfand–Pinsker problem and the Wyner-Ziv problem to the case where both the encoder and the decoder are provided with different, but correlated, partial side information. They also showed a duality between the two cases, which is a topic that will be discussed later in this paper. Rozenzweig et al. [7] and Cemal and Steinberg [8] studied channels with partial state information at the transmitter. A detailed subject review on channel coding with state information was given by Keshet et al. in [9].



In addition to these three cases, we also present a more general case, where both the encoder and the decoder are informed with increased partial side information. i.e., the encoder and the decoder are each informed with partial side information, and, in addition, with a rate-limited description of the other’s side information. We provide a lower bound on the capacity for this case; however, this bound does not necessarily coincide with the capacity and, therefore, this problem remains open.




1.2. Rate-Distortion with Side Information


In this paper, we address three problems of rate-distortion with side information, as presented in Figure 2b. In common with the channel capacity problems, we assume that the encoder is informed with the ESI ([image: there is no content]) and the decoder is informed with the DSI ([image: there is no content]), where the source, X, the ESI and the DSI are correlated. The rate-distortion problem cases we investigate in this paper are:

	
Case 1: The decoder is provided with increased DSI.



	
Case 1C: Similar to Case 1, with the exception that the ESI is known to the encoder in a causal manner. The rate-limited description of the ESI is still known to the decoder noncausally.



	
Case 2: The encoder is informed with increased ESI.








Case 2 is a special case of Kaspi’s [10] two-way source coding for [image: there is no content]. In [10], Kaspi introduced a model of multistage communication between two users, where each user may transmit up to K messages to the other user, dependent on the source and the previous received messages. For Case 2, we can consider sending the rate-limited description of the DSI as the first transmission and then, sending a function of the source, the ESI and the rate-limited description of the DSI as the second transmission. This fits into Kaspi’s problem for [image: there is no content] and thus Kaspi’s theorem also applies to Case 2. Kaspi’s problem was later extended by Permuter et al. [11] to the case where a common rate-limited side information message is being conveyed to both users. Another strongly related paper is Wyner and Ziv’s paper [3]. In the achievability of Case 1, we use the Wyner-Ziv coding scheme twice; once for describing the ESI at the decoder where the DSI is the side information and once for the main source and the ESI where the DSI is the side information. The rate-limited description of the ESI is the side information provided to both the encoder and the decoder. In [6] there is an extension to the Wyner-Ziv problem to the case where both the encoder and the decoder are provided with correlated partial side information. Weissman and El Gamal [12] and Weissman and Merhav [13] presented source coding with causal side information at the decoder, which relates to Case 1C. In addition, we present a generalized case of rate-distortion with two-sided increased partial side information. In this problem setup the encoder and the decoder are each informed with partial side information, and, in addition, with a rate-limited description of the other’s side information. We present an upper bound on the optimal rate; however, this bound does not necessarily coincide with the optimal rate and, therefore, this problem remains open.




1.3. Duality


Within the scope of this work, we point out a duality relation between the channel capacity and the rate-distortion cases we discuss. The operational duality between channel coding and source coding was first mentioned by Shannon [14]. Pradhan et al. [15] and Pradhan and Ramchandran [16] studied the functional duality between some cases of channel coding and source coding, including the duality between the Gelfand–Pinsker problem and the Wyner-Ziv problem. This duality was also described by Cover and Chiang in [6], where they provided a transformation that makes duality between channel coding and source coding with two-sided state information apparent. Zamir et al. [17] and Su et al. [18] utilized the duality between channel coding and source coding with side information to develop coding schemes for the dual problems. Goldfeld, Permuter and Kramer [19] studied the duality between a two-encoder source coding with one-sided, rate-limited coordination and a semi-deterministic broadcast channel with one-sided decoder cooperation. More related works on the topic of duality can be found in the papers of Asnani et al. [20] and Gupta and Verdu [21].



In our paper, we show that the channel capacity cases and the rate-distortion cases we discuss are operational duals in a way that strongly relates to the Wyner-Ziv and Gelfand–Pinsker duality. We also provide a transformation scheme that shows this duality in a clear way. Moreover, we show a duality relation between Kaspi’s problem and Steinberg’s [1] problem by showing a duality relation between Case 2 source coding and Case 1 channel coding. Also, we show duality in the converse parts of the Gelfand–Pinsker and the Wyner-Ziv problems. We show that both converse parts can be proven in a perfectly dual way by using the Csiszár sum twice.




1.4. Computational Algorithms


Calculating channel capacity and rate-distortion problems, in general, and the Gelfand–Pinsker and the Wyner-Ziv problems, in particular, is not straightforward. Blahut [22] and Arimoto [23] suggested an iterative algorithm (to be referred to as the B-A algorithm) for numerically computing the channel capacity and the rate-distortion problems. Willems [24] and Dupuis et al. [25] presented iterative algorithms based on the B-A algorithm for computing the Gelfand–Pinsker and the Wyner-Ziv functions. We use principles from Willems’ algorithms to develop an algorithm to numerically calculate the capacity for the cases we presented. More B-A based iterative algorithms for computing channel capacity and rate-distortion with side information can be found in [26,27]. A Blahut-Arimoto based algorithm for maximizing the directed-information can be found in [28].




1.5. Organization of the Paper and Main Contributions


To summarize, the main contributions of this paper are:

	
We characterize the capacity and the rate-distortion functions of new channel and source coding problems with increased partial side information. We quantify the gain in the rate that can be achieved by having the parties involved share their partial side information with each other over a rate-limited secondary channel.



	
We show a duality relationship between the channel capacity cases and the rate-distortion cases that we discuss.



	
We provide a B-A based algorithm to solve the channel capacity problems we describe.



	
We show a duality between the Gelfand–Pinsker capacity converse and the Wyner-Ziv rate-distortion converse.








The reminder of this paper is organized as follows. In Section 2 we introduce some notations for this paper and provide the settings of three channel coding and three source coding cases with increased partial side information. In Section 3 we present the main results for coding with increased partial side information; we provide the capacity and the rate-distortion for the cases we introduced in Section 2 and we point out the duality between the cases we examined. Section 4 contains illuminating examples for the cases discussed in the paper. In Section 5 we describe the B-A based algorithm we used in order to solve the capacity examples. We conclude the paper in Section 6 and we highlight two open problems; channel capacity and rate-distortion with two-sided rate-limited partial side information. Appendix A contains the duality derivation for the converse proofs of the Gelfand–Pinsker and the Wyner-Ziv problems and Appendix B, Appendix C, Appendix D and Appendix E contain the proofs for our theorems and lemmas.





2. Problem Setting and Definitions


In this section, we describe and formally define three cases of channel coding problems and three cases of source coding problems. All six cases are presented in Figure 2a,b.



Notations. 

We use subscripts and superscripts to denote vectors in the following ways: [image: there is no content] and [image: there is no content] for [image: there is no content]. Moreover, we use the lower case x to denote sample value, the upper case X to denote a random variable, the calligraphic letter [image: there is no content] to denote the alphabet of X, [image: there is no content] to denote the cardinality of the alphabet of X and [image: there is no content] to denote the probability [image: there is no content]. We use the notation [image: there is no content] to denote the strongly typical set of the random variable X, as defined in [29] (Chapter 11).





2.1. Definitions and Problem Formulation—Channel Coding with State Information


Definition 1.

A discrete channel is defined by the set [image: there is no content]. The channel’s input sequence, [image: there is no content], the ESI sequence, [image: there is no content], the DSI sequence, [image: there is no content], and the channel’s output sequence, [image: there is no content], are discrete random variables drawn from the finite alphabets [image: there is no content], respectively. Denote the message and the message space as [image: there is no content]and let [image: there is no content]be the reconstruction of the message W. The random variables [image: there is no content]are i.i.d. [image: there is no content]and the channel is memoryless, i.e., at time i, the output, [image: there is no content], has a conditional distribution of


[image: there is no content]



(1)









In the remainder of the paper, unless specifically mentioned otherwise, we refer to the ESI and the DSI as if they are known to the encoder and the decoder, respectively, in a noncausal manner. Also, as noted before, we use the term increased side information to indicate that the user’s side information also includes a rate-limited description of the other user’s partial side information. For example, when the decoder is informed with the DSI and with a rate-limited description of the ESI we would say that the decoder is informed with increased DSI.



Problem Formulation.

For the channel [image: there is no content], consider the following channel coding problem cases:

	
Case 1: The encoder is informed with ESI and the decoder is informed with increased DSI.



	
Case 2: The encoder is informed with increased ESI and the decoder is informed with DSI.



	
Case 2C: The encoder is informed with increased causal ESI ([image: there is no content] at time i) and the decoder is informed with DSI. This case is the same as Case 2, except for the causal ESI.








All cases are presented in Figure 2a.





Definition 2.

A [image: there is no content]code, [image: there is no content], for a channel with increased partial side information, as illustrated in Figure 2a, consists of two encoders and one decoder. The encoders are f and [image: there is no content], where f is the encoder for the channel’s input and [image: there is no content]is the encoder for the side information, and the decoder is g, as described for each case:



Case 1: Two encoders


fv:S1n→{1,2,⋯,2nR1′},f:{1,2,⋯,2nR}×S1n×{1,2,⋯,2nR1′}→Xn,








and a decoder


g:Yn×S2n×{1,2,⋯,2nR1′}→{1,2,⋯,2nR}.



(2)







Case 2: Two encoders


fv:S2n→{1,2,⋯,2nR2′},f:{1,2,⋯,2nR}×S1n×{1,2,⋯,2nR2′}→Xn,








and a decoder


g:Yn×S2n×{1,2,⋯,2nR2′}→{1,2,⋯,2nR}.



(3)







Case 2C: Two encoders


fv:S2n→{1,2,⋯,2nR2′},fi:{1,2,⋯,2nR}×S1i×{1,2,⋯,2nR2′}→Xi,








and a decoder


g:Yn×S2n×{1,2,⋯,2nR2′}→{1,2,⋯,2nR}.



(4)







The average probability of error, [image: there is no content], for a [image: there is no content]code is defined as


Pe(n)=12nR∑w=12nRPrW^≠W|W=w,



(5)




where the index W is chosen according to a uniform distribution over the set [image: there is no content]. A rate pair [image: there is no content]is said to be achievable if there exists a sequence of [image: there is no content]codes such that the average probability of error [image: there is no content]as [image: there is no content].





Definition 3.

The capacity of the channel, [image: there is no content], is the supremum of all R such that the rate pair [image: there is no content]is achievable.






2.2. Definitions and Problem Formulation—Source Coding with Side Information


Throughout this article we use the common definitions of rate-distortion as presented in [29].



Definition 4.

The source sequence [image: there is no content], the ESI sequence [image: there is no content]and the DSI sequence [image: there is no content]are discrete random variables drawn from the finite alphabets [image: there is no content]and [image: there is no content]respectively. The random variables [image: there is no content]are i.i.d [image: there is no content]. Let [image: there is no content]be the reconstruction alphabet and [image: there is no content]be the distortion measure. The distortion between sequences is defined in the usual way:


[image: there is no content]



(6)









Problem Formulation.

For the source, X, the ESI, [image: there is no content], and the DSI, [image: there is no content], consider the following source coding problem cases:

	
Case 1: The encoder is informed with ESI and the decoder is informed with increased DSI.



	
Case 2: The encoder is informed with increased ESI and the decoder is informed with DSI.



	
Case 1C: The encoder is informed with ESI and the decoder is informed with increased causal DSI ([image: there is no content] at time i). This case is the same as Case 1, except for the causal DSI.








All cases are presented in Figure 2b.





Definition 5.

A [image: there is no content]code, [image: there is no content], for the source X with increased partial side information, as illustrated in Figure 2b, consists of two encoders, one decoder and a distortion constraint. The encoders are f and [image: there is no content], where f is the encoder for the source and [image: there is no content]is the encoder for the side information, and the decoder is g, as described for each case:



Case 1: Two encoders


fv:S1n→{1,2,⋯,2nR1′},f:Xn×S1n×{1,2,⋯,2nR1′}→{1,2,⋯,2nR},








and a decoder


g:{1,2,⋯,2nR}×S2n×{1,2,⋯,2nR1′}→X^n.



(7)







Case 2: Two encoders


fv:S2n→{1,2,⋯,2nR2′},f:Xn×S1n×{1,2,⋯,2nR2′}→{1,2,⋯,2nR},








and a decoder


g:{1,2,⋯,2nR}×S2n×{1,2,⋯,2nR2′}→X^n.



(8)







Case 1C: Two encoders


fv:S1n→{1,2,⋯,2nR1′},f:Xn×S1n×{1,2,⋯,2nR1′}→{1,2,⋯,2nR},








and a decoder


gi:{1,2,⋯,2nR}×S2i×{1,2,⋯,2nR1′}→X^i.



(9)







The distortion constraint for all three cases is:


[image: there is no content]



(10)







For a given distortion, D, and for any [image: there is no content], the rate pair [image: there is no content]is said to be achievable if there exists a [image: there is no content]code for the rate-distortion problem.





Definition 6.

For a given [image: there is no content]and distortion D, the operational rate [image: there is no content]is the infimum of all R, such that the rate pair [image: there is no content]is achievable.







3. Results


In this section, we present the main results of this paper. We will first present the results for the channel coding cases, then the main results for the source coding cases and, finally, we will present the duality between them.



3.1. Channel Coding with Side Information


For a channel with two-sided state information as presented in Figure 2a, where [image: there is no content], the capacity is as follows



Theorem 1 (The capacity for the cases in Figure 2a).

For the memoryless channel [image: there is no content], where [image: there is no content]is the ESI and [image: there is no content]is the DSI and the side information [image: there is no content], the channel capacity is



Case 1: The encoder is informed with ESI and the decoder is informed with increased DSI,


C1*=maxp(v1|s1)p(u|s1,v1)p(x|u,s1,v1)s.t.R′≥I(V1;S1)−I(V1;Y,S2)I(U;Y,S2|V1)−I(U;S1|V1).



(11)







Case 2: The encoder is informed with increased ESI and the decoder is informed with DSI;



Lower bounded by


C2lb*=maxp(v2|s2)p(u|s1,v2)p(x|u,s1,v2)s.t.R′≥I(V2;S2|S1)I(U;Y,S2|V2)−I(U;S1|V2).



(12)







Upper bounded by


C2ub1*=maxp(v2|s1,s2)p(u|s1,v2)p(x|u,s1,v2)s.t.R′≥I(V2;S2)−I(V2;S1)I(U;Y,S2|V2)−I(U;S1|V2)



(13)




and by


C2ub2*=maxp(v2|s2)p(u|s1,s2,v2)p(x|u,s1,v2)s.t.R′≥I(V2;S2|S1)I(U;Y,S2|V2)−I(U;S1|V2).



(14)







Case 2C: The encoder is informed with increased causal ESI ([image: there is no content]at time i) and the decoder is informed with DSI,


[image: there is no content]



(15)







For case j, [image: there is no content], some joint distribution, [image: there is no content], and [image: there is no content]being some auxiliary random variables with bounded cardinality.



Appendix B contains the proof.





Lemma 1.

For all three channel coding cases described in this section and for [image: there is no content], the following statements hold,

	
The function [image: there is no content]is a concave function of [image: there is no content].



	
It is enough to take X to be a deterministic function of [image: there is no content]to evaluate [image: there is no content].



	
The auxiliary alphabets [image: there is no content]and [image: there is no content]satisfy


for Case 1:|V1|≤|X||S1||S2|+1and|U|≤|X||S1||S2||X||S1||S2|+1,for Case 2:|V2|≤|S1||S2|+1and|U|≤|X||S1||S2||S1||S2|+1,for Case 2C:|V2|≤|S2|+1and|U|≤|X||S2||S2|+1.
















Appendix D contains the proof for the above lemma.





Remark 1.

Please notice that in Equation (14), the rate of the side information, [image: there is no content], can be written as [image: there is no content]. This is true since the Markov relation [image: there is no content]holds. Therefore, the only difference between the two upper bounds of Case 2, [image: there is no content](13) and [image: there is no content](14), is in the distribution over which we maximize. While for [image: there is no content]we restrict the maximization to distributions which maintain the Markov chain [image: there is no content], for the second upper bound, [image: there is no content], we restrict the maximization to distributions which maintain [image: there is no content]. We should note that we cannot state with certainty that one of the bounds is tighter than the other for all distributions [image: there is no content]and for all values of [image: there is no content]. Notwithstanding, one bound may be tighter than the other for all distributions.






3.2. Source Coding with Side Information


For the problem of source coding with side information as presented in Figure 2b, the rate-distortion function is as follows:



Theorem 2 (The rate-distortion function for the cases in Figure 2b).

For a bounded distortion measure [image: there is no content], a source, X, and side information, [image: there is no content], where [image: there is no content], the rate-distortion function is



Case 1: The encoder is informed with ESI and the decoder is informed with increased DSI,


R1*(D)=minp(v1|s1)p(u|x,s1,v1)p(x^|u,s2,v1)s.t.R′≥I(V1;S1|S2)I(U;X,S1|V1)−I(U;S2|V1).



(16)







Case 1C: The encoder is informed with ESI and the decoder is informed with increased causal DSI ([image: there is no content]at time i),


R1C*(D)=minp(v1|s1)p(u|x,s1,v1)p(x^|u,s2,v1)s.t.R′≥I(V1;S1)I(U;X,S1|V1).



(17)







Case 2: The encoder is informed with increased ESI and the decoder is informed with DSI,


R2*(D)=minp(v2|s2)p(u|x,s1,v2)p(x^|u,s2,v2)s.t.R′≥I(V2;S2)−I(V2;X,S1)I(U;X,S1|V2)−I(U;S2|V2).



(18)







For case j, [image: there is no content], some joint distribution, [image: there is no content], where [image: there is no content]and [image: there is no content]being some auxiliary random variables with bounded cardinality.



Appendix C contains the proof.





Lemma 2.

For all cases of rate-distortion problems in this section and for [image: there is no content], the following statements hold.

	
The function [image: there is no content]is a convex function of [image: there is no content]and D.



	
It is enough to take [image: there is no content]to be a deterministic function of [image: there is no content]to evaluate [image: there is no content].



	
The auxiliary alphabets [image: there is no content]and [image: there is no content]satisfy


for Case 1:|V1|≤|S1||S2|+1and|U|≤|X||S1||S2||S1||S2|+1,for Case 1C:|V1|≤|S1|+1and|U|≤|X||S1||S1|+1,for Case 2:|V2|≤|X||S1||S2|+1and|U|≤|X||S1||S2||X||S1||S2|+1.
















Appendix D contains the proof for the above lemma.






3.3. Duality


We now investigate the duality between the channel coding and the source coding for the cases in Figure 2a,b. The following transformation makes the duality between the channel coding cases 1, 2, 2C and the source coding cases 2, 1, 1C, respectively, evident. The left column corresponds to channel coding and the right column to source coding. For cases j and [image: there is no content], where j,j¯∈{1,2} and j¯≠j, consider the transformation:


channelcoding⟷sourcecodingC⟷R(D)maximization⟷minimizationCj⟷Rj¯(D)X⟷X^Y⟷XSj⟷Sj¯Vj⟷Vj¯U⟷U(19)R′⟷R′.











This transformation is an extension of the transformation provided in [6,15]. Note that while the channel capacity formula in Case j and the rate-distortion function in Case [image: there is no content] are dual to one another in the sense of maximization-minimization, the corresponding rates [image: there is no content] are not dual to each other in this sense; i.e., one would expect to see an opposite inequality (≥↔≤) for dual cases, where we have an inequality that is in the same direction (≤↔≤) in the [image: there is no content] formulas. The duality in the side information rates, [image: there is no content], is then in the sense that the arguments in the formulas for the dual [image: there is no content] are dual. This exception is due to the fact that while the Gelfand–Pinsker and the Wyner-Ziv problems for the main channel or the main rate-distortion problems are dual, the Wyner-Ziv problem for the side information stays the same; the only difference is the input and the output.





4. Examples


In this section, we provide examples for Case 2 of the channel coding theorem and for Case 1 of the source coding theorem. The numerical iterative algorithm, which we used to numerically calculate the lower bound, [image: there is no content], is provided in the next section.



Example 1 (Case 2 channel coding for a binary channel).

Consider the binary channel illustrated in Figure 3. The alphabet of the input, the output and the two states is binary [image: there is no content] with [image: there is no content] being a joint probability mass function (PMF) matrix. The channel is dependent on the states [image: there is no content] and [image: there is no content], where the encoder is fully informed with [image: there is no content] and with [image: there is no content] with a rate limited to [image: there is no content] and the decoder is fully informed with [image: there is no content]. The dependence of the channel on the states is illustrated in Figure 3. If [image: there is no content] then the channel is the Z channel with transition probability [image: there is no content], if [image: there is no content] then the channel has no error, if [image: there is no content] then the channel is the X-channel and if [image: there is no content] then the channel is the S-channel with transition probability of [image: there is no content]. The side information’s joint PMF is


[image: there is no content]










Figure 3. Example 1 Channel coding Case 2—channel topology.



[image: Entropy 19 00467 g003]






The expressions for the lower bound on the capacity [image: there is no content] and for [image: there is no content] are brought in Case 2 of Theorem 1.



In Figure 4, we provide the graph from of the computation of the lower bound on the capacity for the binary channel we are testing. In the graph, we present the lower bound, [image: there is no content], as a function of [image: there is no content]. We also provide the Cover & Chiang [6] capacity (where [image: there is no content]) and the Gelfand and Pinsker [2] capacity (where [image: there is no content] and the decoder is not informed with [image: there is no content]).


Figure 4. Example 1. Channel coding Case 2 for the channel depicted in Figure 3, where the side information is distributed [image: there is no content], and [image: there is no content]. [image: there is no content] is the lower bound on the capacity of this channel, C-C rate is the Cover-Chiang rate ([image: there is no content]) and G-P rate is the Gelfand–Pinsker rate ([image: there is no content] and the decoder has no side information available at all). Notice that at the encoder the maximal uncertainty about [image: there is no content] is [image: there is no content]bit. Therefore, for any [image: there is no content][image: there is no content] reaches its maximal value.



[image: Entropy 19 00467 g004]






Discussion:

	
The algorithm that we used to calculate [image: there is no content] and [image: there is no content] combines a grid-search and a Blahut-Arimoto-like algorithms. We first construct a grid of probabilities of the random variable [image: there is no content] given [image: there is no content], namely, [image: there is no content]. Then, for every probability [image: there is no content] such that [image: there is no content] is close enough to [image: there is no content] we calculate the maximum of [image: there is no content] using the iterative algorithm described in the next section. We then choose the maximum over those maximums and declare it to be [image: there is no content]. By taking a fine grid of the probabilities [image: there is no content] the operation’s result can be arbitrarily close to [image: there is no content].



	
For a given joint PMF matrix [image: there is no content], we can see that [image: there is no content] is non-decreasing in [image: there is no content]. Furthermore, since the expression [image: there is no content] is bounded by [image: there is no content], allowing [image: there is no content] to be greater than [image: there is no content] cannot improve [image: there is no content] any more. i.e., [image: there is no content]. Therefore, it is enough to allow [image: there is no content] to achieve [image: there is no content], as if the encoder is fully informed with [image: there is no content].



	
Although [image: there is no content] is a lower bound on the capacity, it can be significantly greater than the Cover-Chiang and the Gelfand–Pinsker rates for some channel models, as can be seen in this example. Moreover, we can actually state that [image: there is no content] is always greater than or equal to the Gelfand–Pinsker and the Cover-Chiang rates. This is due to the fact that when [image: there is no content], [image: there is no content] coincides with the Cover-Chiang rate, which, in its turn, is always greater than or equal to the Gelfand–Pinsker rate; since [image: there is no content] is also non-decreasing in [image: there is no content], it is obvious that our assertion holds.










Example 2 (Source coding Case 1 for a binary-symmetric source and Hamming distortion).

Consider the source [image: there is no content], where S1,S2∼i.i.d.Bernoulli(0.5), and consider the problem setting depicted in Case 1 of the source coding problems. It is sufficient for the decoder to reconstruct [image: there is no content] with distortion [image: there is no content] in order to reconstruct X with the same distortion. Furthermore, the two rate-distortion problem settings illustrated in Figure 5 are equivalent.


Figure 5. The equivalent rate-distortion problem for Case 1 for the source [image: there is no content] where S1,S2∼i.i.d.Bernoulli(0.5).



[image: Entropy 19 00467 g005]






For every achievable rate in Setting 1, [image: there is no content]. Denote [image: there is no content], then, [image: there is no content] and, therefore, [image: there is no content] in Setting 1 ⇒Ed(X,X^)≤D in Setting 2. In the same way, for Setting 2, denote [image: there is no content]. Then, [image: there is no content] and, therefore, [image: there is no content] in Setting 2 ⇒Ed(S1,S^1)≤D in Setting 1. Hence, we can conclude that the two settings are equivalent and, for any given [image: there is no content] and [image: there is no content], the rate-distortion function is


[image: there is no content]



(20)







In Figure 6 we present the plot resulting for this example. It is easy to verify that the Wyner and Ziv rate and the Cover and Chiang rate for this setting are [image: there is no content].


Figure 6. Example 2. Source coding Case 1 for binary-symmetric source and Hamming distortion. The source is given by [image: there is no content], where [image: there is no content]. The graph shows the rate-distortion function for different values of [image: there is no content].



[image: Entropy 19 00467 g006]









5. Semi-Iterative Algorithm


In this section, we provide algorithms that numerically calculate the lower bound on the capacity of Case 2 of the channel coding problems. The calculation of the Gelfand–Pinsker and the Wyner-Ziv problems has been addressed in many papers in the past, including [5,24,25,26]. All these algorithms are based on Arimoto’s [23] and Blahut’s [22] algorithms and on the fact that the Wyner-Ziv and the Gelfand–Pinsker problems can be presented as convex optimization problems. On the contrary, our problems are not convex in all of their optimization variables and, therefore, cannot be presented as convex optimization problems. In order to solve our problems we devised a different approach which combines a grid-search and a Blauhut-Arimoto-like algorithm. In this section, we provide the mathematical justification for those two algorithms. Other algorithms to numerically compute the channel capacity or the rate-distortion of the rest of the cases presented in this paper can be derived using the principles that we describe in this section.



5.1. An Algorithm for Computing the Lower Bound on the Capacity of Case 2


Consider the channel in Figure 7 described by [image: there is no content] and consider the joint PMF [image: there is no content]. The capacity of this channel is lower bounded by [image: there is no content], where the maximization is over all PMFs [image: there is no content] such that [image: there is no content]. Notice that the lower bound expression is not concave in [image: there is no content], which is the main difficulty with the computation of it. We first present an outline of the semi-iterative algorithm we developed, then we present the mathematical background and justification for the algorithm and, finally, we present the detailed algorithm.


Figure 7. Channel coding: Case 2. [image: there is no content], where the maximization is over all PMFs [image: there is no content] such that [image: there is no content].



[image: Entropy 19 00467 g007]






For any fixed PMF [image: there is no content] denote


[image: there is no content]



(21)






[image: there is no content]



(22)







Then, the lower bound on the capacity , [image: there is no content], can be expressed as


C2lb(R′)=maxw(v2|s2)s.t.R′≥Rwmaxp(u|s1,v2)p(x|u,s1,v2)[I(U;Y,S2|V2)−I(U;S1|V2)]≜maxw(v2|s2)s.t.R′≥RwC2,wlb.



(23)







The outline of the algorithm is as follows: for any given rate [image: there is no content], [image: there is no content] and [image: there is no content],

	
Establish a fine and uniformly spaced grid of legal PMFs, [image: there is no content], and denote the set of all of those PMFs as [image: there is no content].



	
Establish the set W*:={w(v2|s2)|w(v2|s2)∈W and [image: there is no content]. This set is the set of all PMFs [image: there is no content] such that [image: there is no content] is [image: there is no content]-close to [image: there is no content] from below. If [image: there is no content] is empty, go back to step 1 and make the grid finer. Otherwise, continue.



	
For every [image: there is no content], perform a Blahut-Arimoto-like optimization to find [image: there is no content] with accuracy of [image: there is no content].



	
Declare [image: there is no content].








Remark 2.


	1. 

	
We considered only those [image: there is no content]s such that [image: there is no content]since [image: there is no content]is the maximal value that [image: there is no content]takes. The interpretation of this is that if the encoder is informed with [image: there is no content], we cannot increase its side information about [image: there is no content]in more than [image: there is no content]. Therefore, for any [image: there is no content], we can limit [image: there is no content]to be equal to [image: there is no content]in order to compute the capacity;




	2. 

	
Since [image: there is no content]is continuous in [image: there is no content]and bounded (for example, by [image: there is no content]from above and by [image: there is no content]from below), [image: there is no content]can be arbitrarily close to [image: there is no content]for ϵ→0,δ→0and [image: there is no content].











5.1.1. Mathematical background and justification


Here we focus on finding the lower bound on the capacity of the channel for a fixed distribution [image: there is no content], i.e., finding [image: there is no content]. Note that the mutual information expression [image: there is no content] is concave in [image: there is no content] and convex in [image: there is no content]. Therefore, a standard convex maximization technique is not applicable for this problem. However, according to Dupuis, Yu and Willems [25], we can write the expression for the lower bound as [image: there is no content], where [image: there is no content] is a probability distribution over the set of all possible strategies [image: there is no content], the input symbol X is selected using [image: there is no content] and [image: there is no content]. Now, since [image: there is no content] is concave in [image: there is no content], we can use convex optimization methods to derive [image: there is no content].



Denote the PMF


[image: there is no content]



(24)




and denote also


[image: there is no content]



(25)






[image: there is no content]



(26)







Notice that [image: there is no content] is a marginal distribution of [image: there is no content] and that [image: there is no content] for the joint PMF [image: there is no content].



The following lemma is the key for the iterative algorithm.



Lemma 3.



[image: there is no content]



(27)









The proof for this is brought by Yeung in [30]. In addition, Yeung shows that the two-step alternating optimization procedure converges monotonically to the global optimum if the optimization function is concave. Hence, if we show that [image: there is no content] is concave, we can maximize it using an alternating maximization algorithm over q and Q.



Lemma 4.

The function [image: there is no content]is concave in q and Q simultaneously.





We can now proceed to calculate the steps in the iterative algorithm.



Lemma 5.

For a fixed q,Jw(q,Q)is maximized for [image: there is no content].





Proof. 

The above follows from the fact that [image: there is no content] is a marginal distribution of [image: there is no content] and the property of the K-L divergence [image: there is no content]. ☐





Lemma 6.

For a fixed Q,Jw(q,Q)is maximized for [image: there is no content], where [image: there is no content]is defined by


[image: there is no content]



(28)




and


[image: there is no content]



(29)









Define [image: there is no content] in the following way


[image: there is no content]



(30)




where [image: there is no content] is given in (26), [image: there is no content] and [image: there is no content] are marginal distributions of the joint PMF [image: there is no content]. The following lemma will help us to define a termination condition for the algorithm.



Lemma 7.

For every [image: there is no content]the function [image: there is no content]is an upper bound on [image: there is no content]and converges to [image: there is no content]for a large enough number of iterations.







5.2. Semi-Iterative Algorithm


The the algorithm for finding [image: there is no content] is brought in Algorithm 1. Notice that the result of this algorithm, [image: there is no content], can be arbitrarily close to [image: there is no content] for ϵ→0,δ→0 and [image: there is no content].








	Algorithm 1 Numerically calculating [image: there is no content]



	
	 1:

	
Chose [image: there is no content], [image: there is no content]




	 2:

	
Set [image: there is no content] {the amount of information needed for the encoder to know [image: there is no content] given [image: there is no content]}




	 3:

	
Set [image: there is no content]




	 4:

	
Establish a fine and uniformly spaced grid of legal PMFs [image: there is no content] and name it [image: there is no content]




	 5:

	
for all w in [image: there is no content]do




	 6:

	
 Compute [image: there is no content] using


[image: there is no content]












	 7:

	
 if [image: there is no content]then




	 8:

	
  Set [image: there is no content] to be a uniform distribution over [image: there is no content], where [image: there is no content] is the alphabet of t.  i.e., Q(t|y,s2,v2)=1|T|,∀t,y,s2,v2




	 9:

	
  repeat




	10:

	
    Set [image: there is no content] using


[image: there is no content]












	11:

	
    Set [image: there is no content] using


[image: there is no content]












	12:

	
    Compute [image: there is no content] using


[image: there is no content]












	13:

	
    Compute [image: there is no content] using


[image: there is no content]












	14:

	
  until [image: there is no content]




	15:

	
  if [image: there is no content]then




	16:

	
    Set [image: there is no content]




	17:

	
  end if




	18:

	
 end if




	19:

	
end for




	20:

	
if [image: there is no content]then {there is no PMF [image: there is no content] such that [image: there is no content] is [image: there is no content]-close to [image: there is no content] from below}




	21:

	
 go to line 4 and make the grid finer




	22:

	
end if




	23:

	
Declare [image: there is no content]














6. Open Problems


In this section, we discuss the generalization of the channel capacity and the rate-distortion problems that we presented in Section 3. We now consider the cases where the encoder and the decoder are simultaneously informed with a rate-limited description of both the ESI and the DSI, as illustrated in Figure 8. A lower bound on the capacity and an upper bound on the rate-distortion are suggested. Achievability schemes for the presented bounds can be easily derived using the same techniques that we used in the proofs for Theorems 1 and 2, and, hence, are omitted. We were unable to prove that the suggested bounds are tight, nor did we encounter any other such proofs in the published literature; therefore, we believe these problems to be open.


Figure 8. Channel coding with two-sided increased partial side information.
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6.1. A Lower Bound on the Capacity of a Channel with Two-Sided Increased Partial Side Information


Consider the channel illustrated in Figure 8, where (S1,i,S2,i)i.i.d.∼p(s1,s2). The encoder is informed with the ESI [image: there is no content] and rate-limited DSI and the decoder is informed with the DSI [image: there is no content] and rate-limited ESI. An [image: there is no content] code for the discussed channel consists of three encoding maps:


fv1:S1n→{1,2,⋯,2nR1′},fv2:S2n→{1,2,⋯,2nR2′},f:{1,2,⋯,2nR}×S1n×{1,2,⋯,2nR2′}→Xn,








and a decoding map:


[image: there is no content]











Fact 1: The channel capacity, [image: there is no content], of this channel coding setup is bounded from below as follows:


C12*≥maxp(v1|s1)p(v2|s2)p(u|s1,v1,v2)p(x|u,s1,v1,v2)s.t.R1′≥I(V1;S1)−I(V1;Y,S2,V2)R2′≥I(V2;S2)−I(V2;S1)I(U;Y,S2|V1,V2)−I(U;S1|V1,V2),



(31)




for some joint distribution [image: there is no content] and [image: there is no content] and [image: there is no content] are some auxiliary random variables.



The proof for the achievability follows closely the proofs given in Appendix B and, therefore, is omitted.




6.2. An Upper Bound on the Rate-Distortion with Two-Sided Increased Partial Side Information


Consider the rate-distortion problem illustrated in Figure 9, where the source X and the side information [image: there is no content] are distributed (Xi,S1,i,S2,i)∼i.i.d.p(x,s1,s2). The encoder is informed with the ESI [image: there is no content] and rate-limited DSI and the decoder is informed with the DSI [image: there is no content] and rate-limited ESI. An [image: there is no content] code for the discussed rate-distortion problem consists of three encoding maps:


fv1:S1n→{1,2,⋯,2nR1′},fv2:S2n→{1,2,⋯,2nR2′},f:Xn×S1n×{1,2,⋯,2nR2′}→{1,2,⋯,2nR},








and a decoding map:


[image: there is no content]










Figure 9. Source coding with two-sided increased partial side information.
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Fact 2: For a given distortion, D, and a given distortion measure, d(X,X^):X×X^→R+, the rate-distortion function [image: there is no content] of this setup is bounded from above as follows:


R12*(D)≤minp(v1|s1)p(v2|s2)p(u|x,s1,v1,v2)p(x^|u,s2,v1,v2)s.t.R1′≥I(V1;S1)−I(V1;S2,V2)R2′≥I(V2;S2)−I(V2;X,S1,V1)I(U;X,S1|V1,V2)−I(U;S2|V1,V2),



(32)




for some joint distribution [image: there is no content] where [image: there is no content] and [image: there is no content] and [image: there is no content] are some auxiliary random variables.



The proof for the achievability follows closely the proofs given in Appendix C and, therefore, is omitted.
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Appendix A. Duality of the Converse of the Gelfand–Pinsker Theorem and the Wyner-Ziv Theorem


In this appendix, we provide proofs of the converse of the Gelfand–Pinsker capacity and the converse of the Wyner-Ziv rate in a dual way.


 [image: Entropy 19 00467 i001]



(A1)




where


Δ=∑i=1nI(Yi−1;Si|W,Si+1n),Δ=∑i=1nI(Xi−1;Si|T,Si+1n),Δ*=∑i=1nI(Si+1n;Yi|W,Yi−1),Δ*=∑i=1nI(Si+1n;Xi|T,Xi−1),(a)follows from Fano′s inequality(a)follows from Fano′s inequalityaand from that fact that W isand from the fact that T isindependent of Sn,independent of Sn,(b)follows the fact that Si is(b)follows from the fact that Si isindependent of Si+1n.independent of Si+1n and that Xiis independent of Xi−1.



(A2)







By substituting the output Y and the input X in the channel capacity theorem with the input X and the output [image: there is no content] in the rate-distortion theorem, respectively, we can observe duality in the converse proofs of the two theorems.




Appendix B. Proof of Theorem 1


In this section, we provide the proofs for Theorem 1, Cases 2 and 2C. The results for Case 1, where the encoder is informed with ESI and the decoder is informed with increased DSI, can be derived directly from [1] (Section IV). In [1], Steinberg considered the case where the encoder is fully informed with the ESI and the decoder is informed with a rate-limited description of the ESI. Therefore, by considering the DSI, [image: there is no content], to be a part of the channel’s output, we can apply Steinberg’s result on the channel depicted in Case 1. For this reason, the proof for this case is omitted.



Appendix B.1. Proof of Theorem 1, Case 2


Channel capacity Case 2 is presented in Figure A1. The proof of the lower bound, [image: there is no content], is performed in the following way: for the description of the DSI, [image: there is no content], at a rate [image: there is no content] we use a Wyner-Ziv coding scheme where the source is [image: there is no content] and the side information is [image: there is no content]. Then, for the channel coding, we use a Gelfand–Pinsker coding scheme where the state information at the encoder is [image: there is no content], [image: there is no content] is a part of the channel’s output and the rate-limited description of [image: there is no content] is side information at both the encoder and the decoder. Notice that [image: there is no content] and that, since the Markov chain [image: there is no content] holds, we can also write [image: there is no content]. We make use of these expressions in the following proof.


Figure A1. Channel capacity: Case 2. Lower bound: [image: there is no content], where the maximization is over all joint PMFs [image: there is no content] that maintain the Markov relations [image: there is no content] and [image: there is no content] and the constraint [image: there is no content]. Upper bounds: [image: there is no content] is the result of the same expressions as for the lower bound, except that the maximization is taken over all PMFs that maintain the Markov chain [image: there is no content], and [image: there is no content] is the result of the same expressions as for the lower bound, except that this time the maximization is taken over all PMFs that maintain [image: there is no content].
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Achievability: (Channel capacity Case 2—Lower bound). Given [image: there is no content] i.i.d. [image: there is no content] and the memoryless channel [image: there is no content], fix [image: there is no content], where [image: there is no content] (i.e., [image: there is no content] can get the values 0 or 1).



Codebook generation and random binning



	
Generate a codebook [image: there is no content] of [image: there is no content] sequences [image: there is no content] independently using i.i.d.∼p(v2). Label them [image: there is no content], where [image: there is no content], and randomly assign each sequence [image: there is no content] a bin number [image: there is no content] in the set [image: there is no content].



	
Generate a codebook [image: there is no content] of [image: there is no content] sequences [image: there is no content] independently using i.i.d.∼p(u). Label them [image: there is no content], [image: there is no content], and randomly assign each sequence a bin number [image: there is no content] in the set [image: there is no content].






Reveal the codebooks and the content of the bins to all encoders and decoders.



Encoding

	
State Encoder: Given the sequence [image: there is no content], search the codebook [image: there is no content] and identify an index k such that [image: there is no content]. If such a k is found, stop searching and send the bin number [image: there is no content]. If no such k is found, declare an error.



	
Encoder: Given the message W, the sequence [image: there is no content] and the index j, search the codebook [image: there is no content] and identify an index k such that [image: there is no content]. If no such k is found or there is more than one such index, declare an error. If a unique k, as defined, is found, search the codebook [image: there is no content] and identify an index l such that [image: there is no content] and [image: there is no content]. If a unique l, as defined, is found, transmit [image: there is no content], [image: there is no content]. Otherwise, if there is no such l or there is more than one, declare an error.








Decoding



Given the sequences [image: there is no content] and the index k, search the codebook [image: there is no content] and identify an index l such that [image: there is no content]. If a unique l, as defined, is found, declare the message [image: there is no content] to be the bin index where [image: there is no content] is located, i.e., [image: there is no content]. Otherwise, if no such l is found or there is more than one, declare an error.



Analysis of the probability of error



Without loss of generality, let us assume that the message [image: there is no content] was sent and the indexes that correspond with the given [image: there is no content] are [image: there is no content] and [image: there is no content]; i.e., [image: there is no content] corresponds with [image: there is no content], [image: there is no content], [image: there is no content] is chosen according to [image: there is no content] and [image: there is no content].



Define the following events:


E1:=∀v2n(k)∈Cv,v2n(k),S2n∉Tϵ(n)(V2,S2)E2:=v2n(1),S1n∉Tϵ(n)(V2,S1)E3:=∃k′≠1 such that bvv2n(k′)=1 and v2n(k′),S1n∈Tϵ(n)(V2,S1)E4:=∀un(l)∈Cu such that buun(l)=1,un(l),S1n,v2n(1)∉Tϵ(n)(U,S1,V2)E5:=un(1),Yn,S2n,v2n(1)∉Tϵ(n)(U,Y,S2,V2)E6:=∃l′≠1 such that un(l′),Yn,S2n,v2n(1)∈Tϵ(n)(U,Y,S2,V2)











The probability of error [image: there is no content] is upper bounded by [image: there is no content]. Using standard arguments, and assuming that [image: there is no content] and that n is large enough, we can state that

	
 


[image: there is no content]








The probability that there is no [image: there is no content] in [image: there is no content] such that [image: there is no content] is strongly jointly typical is exponentially small provided that [image: there is no content]. This follows from the standard rate-distortion argument that [image: there is no content][image: there is no content]’s “cover” [image: there is no content], therefore [image: there is no content].



	
By the Markov lemma [31], since [image: there is no content] are strongly jointly typical, [image: there is no content] are strongly jointly typical and the Markov chain [image: there is no content] holds, then [image: there is no content] are strongly jointly typical with high probability. Therefore, [image: there is no content].



	
 


(A4)P(E3|E1c,E2c)=Pr{⋃v2n(k′≠1)∈Cvbvv2n(k′)=1v2n(k′),S1n∈Tϵ(n)(V2,S1)}(A5)≤∑v2n(k′≠1)∈Cvbvv2n(k′)=1Prv2n(k′),S1n∈Tϵ(n)(V2,S1)(A6)≤∑v2n(k′≠1)∈Cvbvv2n(k′)=12−n(I(V2;S1)−ϵ)(A7)=2n(I(V2;S2)+2ϵ−R′)2−n(I(V2;S1)−ϵ)(A8)=2n(I(V2;S2)−I(V2;S1)+3ϵ−R′).











The probability that there is another index [image: there is no content], [image: there is no content], such that [image: there is no content] is in bin number 1 and that is strongly jointly typical with [image: there is no content] is bounded by the number of [image: there is no content]’s in the bin times the probability of joint typicality. Therefore, if the number of bins [image: there is no content] then [image: there is no content].



	
We use here the same argument we used for [image: there is no content]; by the covering lemma, we can state that the probability that there is no [image: there is no content] in bin number 1 that is strongly jointly typical with [image: there is no content] tends to zero for large enough n if the average number of [image: there is no content]’s in each bin is greater than [image: there is no content]; i.e., [image: there is no content]. This also implies that in order to avoid an error the number of words one should use is [image: there is no content], where the last expression also equals [image: there is no content].



	
As we argued for [image: there is no content], since [image: there is no content] is strongly jointly typical, [image: there is no content] is strongly jointly typical and the Markov chain [image: there is no content] holds, then, by the Markov lemma, [image: there is no content] is strongly jointly typical with high probability, i.e., [image: there is no content].



	
 


P(E6|E1c,⋯,E5c)=Pr{⋃un(l′≠1)∈Cuun(l′),Yn,S2n,v2n(1)∈Tϵ(n)(U,Y,S2,V2)}≤∑l′=22n(I(U;Y,S2,V2)−2ϵ)Prun(l′),Yn,S2n,V2n∈Tϵ(n)(U,Y,S2,V2)≤∑l′=22n(I(U;Y,S2,V2)−2ϵ)2−n(I(U;Y,S2,V2)−ϵ)≤2n(I(U;Y,S2,V2)−2ϵ)2−n(I(U;Y,S2,V2)−ϵ)(A9)=2−nϵ.











The probability that there is another index [image: there is no content], [image: there is no content], such that [image: there is no content] is strongly jointly typical with [image: there is no content] is bounded by the total number of [image: there is no content]’s times the probability of joint typicality. Therefore, taking [image: there is no content] assures us that [image: there is no content]. This follows the standard channel capacity argument that one can distinguish at most [image: there is no content] different [image: there is no content]’s given any typical member of [image: there is no content].








This shows that for rates R and [image: there is no content] as described and for large enough n, the error events are of arbitrarily small probability. This concludes the proof of the achievability and the lower bound on the capacity of Case 2.



Converse: (Channel capacity Case 2—Upper bound). We first prove that it is possible to bound the capacity from above by using two random variables, U and V, that maintain the Markov chain [image: there is no content] (that is [image: there is no content]). Then, we prove that it is also possible to upper-bound the capacity by using U and V that maintain the Markov relation [image: there is no content] (that is [image: there is no content]).



Fix the rates R and [image: there is no content] and a sequence of codes [image: there is no content] that achieve the capacity. By Fano’s inequality, [image: there is no content], where [image: there is no content] as [image: there is no content]. Let [image: there is no content], and define V2,i=(T2,Yi−1,S1,i+1n,S2i−1),Ui=W; hence, the Markov chain [image: there is no content] is maintained. The proof for this follows.


[image: there is no content]











Next, consider


[image: there is no content]








where (a) follows from the fact that [image: there is no content] is independent of [image: there is no content] given [image: there is no content], and the fact that [image: there is no content] is independent of [image: there is no content] given [image: there is no content] (the proof for this follows) and (b) follows from the fact that conditioning reduces entropy.


[image: there is no content]








where we used the facts that W is independent of [image: there is no content], [image: there is no content] is a function of [image: there is no content] and that the channel is memoryless; i.e., [image: there is no content] is independent of [image: there is no content] given [image: there is no content]. We continue the proof of the converse by considering the following set of inequalities:


nR=H(W)≤H(W|T2)−H(W|T2,Yn,S2n)+nϵn=I(W;Yn,S2n|T2)+nϵn=∑i=1nI(W;Yi,S2,i|T2,Yi−1,S2i−1)+nϵn=(b)∑i=1n[I(W,S1,i+1n;Yi,S2,i|T2,Yi−1,S2i−1)−I(S1,i+1n;Yi,S2,i|W,T2,Yi−1,S2i−1)]+nϵn=(c)∑i=1n[I(W,S1,i+1n;Yi,S2,i|T2,Yi−1,S2i−1)−I(S1,i;Yi−1,S2i−1|W,T2,S1,i+1n)]+nϵn=∑i=1n[I(W;Yi,S2,i|T2,Yi−1,S1,i+1n,S2i−1)−I(S1,i;W|T2,Yi−1,S1,i+1n,S2i−1)](A13)+Δ−Δ*+nϵn,








where


[image: there is no content]



(A14)






[image: there is no content]



(A15)




(b) follows from the mutual information properties and (c) follows from the Csiszár sum identity.



By using the Csiszár sum on (A14) and (A15), we get


[image: there is no content]



(A16)




and, therefore, from (A11) and (A13)


[image: there is no content]



(A17)






[image: there is no content]



(A18)







Using the convexity of [image: there is no content] and Jensen’s inequality, the standard time sharing argument for R and the fact that [image: there is no content] as [image: there is no content], we can conclude that


[image: there is no content]



(A19)






[image: there is no content]



(A20)




where U and V maintain the Markov chain [image: there is no content].



We now proceed to prove that it is possible to upper-bound the capacity of Case 2 by using two random variables, U and V, that maintain the Markov chain [image: there is no content]. Fix the rates R and [image: there is no content] and a sequence of codes [image: there is no content] that achieve the capacity. By Fano’s inequality, [image: there is no content], where [image: there is no content] as [image: there is no content]. Let [image: there is no content] and define V2,i=(T2,S2i−1),Ui=(W,Yi−1,S1,i+1n). The Markov chain [image: there is no content] is maintained. Then,


[image: there is no content]








where [image: there is no content] follows from the same reasoning as in (A11), and [image: there is no content] follows from the fact that [image: there is no content] is independent of [image: there is no content] given [image: there is no content], and the fact that [image: there is no content] is independent of [image: there is no content] given [image: there is no content]; the proof for this follows.


[image: there is no content]








where we used the facts that W is independent of [image: there is no content], [image: there is no content] is independent of [image: there is no content] given [image: there is no content], [image: there is no content] is a function of [image: there is no content] and that the channel is memoryless; i.e., [image: there is no content] is independent of [image: there is no content] given [image: there is no content].



In order to complete our proof, we need the following lemma.



Lemma A1.

The following inequality holds:


[image: there is no content]



(A23)









Proof. 

Notice that


[image: there is no content]



(A24)




and that


[image: there is no content]



(A25)







Therefore, it is enough to show that [image: there is no content] holds in order to prove the lemma. Consider


∑i=1n−I(S1,i;S1,i+1n|T2)−∑i=1n−I(S1,i;S2i−1|T2)=∑i=1nH(S1,i|T2,S1,i+1n)−H(S1,i|T2,S2i−1)=∑i=1nH(S1n|T2)−H(S1,i|T2,S2i−1)=∑i=1nH(S1,i|T2,S1i−1)−H(S1,i|T2,S2i−1)(A26)≥(a)0,








where [image: there is no content] follows from the fact that the Markov chain [image: there is no content] holds and from the data processing inequality. This completes the proof of the lemma. ☐





We continue the proof of the converse by considering the following set of inequalities:


nR=H(W)≤H(W|T2)−H(W|T2,Yn,S2n)+nϵn=I(W;Yn,S2n|T2)+nϵn=∑i=1nI(W;Yi,S2,i|T2,Yi−1,S2i−1)+nϵn=(a)∑i=1n[I(W,S1,i+1n;Yi,S2,i|T2,Yi−1,S2i−1)−I(S1,i+1n;Yi,S2,i|W,T2,Yi−1,S2i−1)]+nϵn=(b)∑i=1n[I(W,S1,i+1n;Yi,S2,i|T2,Yi−1,S2i−1)−I(S1,i;Yi−1,S2i−1|W,T2,S1,i+1n)]+nϵn=∑i=1n[I(W,S1,i+1n;Yi,S2,i|T2,Yi−1,S2i−1)−I(S1,i;W,Yi−1,S2i−1|T2,S1,i+1n)]+nϵn≤(c)∑i=1n[I(W,S1,i+1n;Yi,S2,i|T2,Yi−1,S2i−1)−I(S1,i;W,Yi−1,S1,i+1n|T2,S2i−1)]+nϵn≤∑i=1n[I(W,Yi−1,S1,i+1n;Yi,S2,i|T2,S2i−1)−I(S1,i;W,Yi−1,S1,i+1n|T2,S2i−1)]+nϵn(A27)=∑i=1nI(Ui;Yi,S1,i+1n|V2,i)−I(Ui;S1,i|V2,i),








where [image: there is no content] follows from the mutual information properties, [image: there is no content] follows from the Csiszár sum identity and [image: there is no content] follows from Lemma A1. Therefore,


[image: there is no content]



(A28)






[image: there is no content]



(A29)







Using the convexity of [image: there is no content] and Jensen’s inequality, the standard time sharing argument for R and the fact that [image: there is no content] as [image: there is no content], we can conclude that


[image: there is no content]



(A30)






[image: there is no content]



(A31)




where the Markov chain [image: there is no content] holds. Therefore, we can conclude that the expression given in (12) is an upper-bound to any achievable rate. This concludes the proof of the upper-bound and the proof of Theorem 1 Case 2.




Appendix B.2. Proof of Theorem 1, Case 2C


Channel capacity Case 2C is illustrated in Figure A2. For describing the DSI, [image: there is no content], with a rate [image: there is no content] we use the standard rate-distortion coding scheme. Then, for the channel coding we use the Shannon strategy [4] coding scheme where the channel’s causal state information at the encoder is [image: there is no content], [image: there is no content] is a part of the channel’s output and the rate-limited description of [image: there is no content] is the side information at both the encoder and the decoder.


Figure A2. Channel capacity: Case 2 with causal ESI. [image: there is no content], where the maximization is over all PMFs [image: there is no content] such that [image: there is no content].



[image: Entropy 19 00467 g011]








Achievability: (Channel capacity Case 2C). Given [image: there is no content] i.i.d. [image: there is no content], where the ESI is known in a causal way ([image: there is no content] at time i), and the memoryless channel [image: there is no content], fix [image: there is no content], where [image: there is no content] (i.e., [image: there is no content] can get the values 0 or 1).



Codebook generation and random binning



	
Generate a codebook [image: there is no content] of [image: there is no content] sequences [image: there is no content] independently using i.i.d.∼p(v2). Label them [image: there is no content] where [image: there is no content].



	
For each [image: there is no content] generate a codebook [image: there is no content] of [image: there is no content] sequences [image: there is no content] distributed independently according to i.i.d.∼p(u|v2). Label them [image: there is no content], where [image: there is no content], and associate the sequences [image: there is no content] with the message [image: there is no content].






Reveal the codebooks and the content of the bins to all encoders and decoders.



Encoding



	
State Encoder: Given the sequence [image: there is no content], search the codebook [image: there is no content] and identify an index k such that [image: there is no content]. If such a k is found, stop searching and send it. Otherwise, if no such k is found, declare an error.



	
Encoder: Given the message [image: there is no content], the index k and [image: there is no content] at time i, identify [image: there is no content] in the codebook [image: there is no content] and transmit [image: there is no content] at any time [image: there is no content]. The element [image: there is no content] is the result of a multiplexer with an input signal [image: there is no content] and a control signal [image: there is no content].






Decoding



Given [image: there is no content] and k, look for a unique index [image: there is no content], associated with the sequence [image: there is no content], such that [image: there is no content]. If a unique such [image: there is no content] is found, declare that the sent message was [image: there is no content]. Otherwise, if no unique index [image: there is no content] exists, declare an error.



Analysis of the probability of error



Without loss of generality, let us assume that the message [image: there is no content] was sent and the index k that correspond with [image: there is no content] is [image: there is no content]; i.e., [image: there is no content] corresponds to [image: there is no content] and [image: there is no content] is chosen according to [image: there is no content].



Define the following events:


E1:=∀v2n(k)∈Cv,S2n,v2n(k)∉Tϵ(n)(S2,V2)E2:=(un(1,1),Yn,S2n)∉Tϵ(n)(U,Y,S2|v2n(1))E3:=∃w′≠1:un(w′,1)∈Cu(1)andun(w′,1),Yn,S2n∈Tϵ(n)(U,Y,S2|v2n(1)).











The probability of error [image: there is no content] is upper bounded by [image: there is no content]. Using standard arguments and assuming that [image: there is no content] and that n is large enough, we can state that

	
For each sequence [image: there is no content], the probability that [image: there is no content] is not jointly typical with [image: there is no content] is at most [image: there is no content]. Therefore, having [image: there is no content]i.i.d. sequences in [image: there is no content], the probability that none of those sequences is jointly typical with [image: there is no content] is bounded by


P(E1)≤1−2−n(I(V2;S2)+ϵ)2n(I(V2;S2)+2ϵ)≤e−2n(I(V2;S2)+2ϵ)2−n(I(V2;S2)+ϵ)(A32)=e−2nϵ,








where, for every [image: there is no content], the last line goes to zero as n goes to infinity.



	
The random variable [image: there is no content] is distributed according to [image: there is no content], therefore, having [image: there is no content] implies that [image: there is no content]. Recall that [image: there is no content] and that [image: there is no content] is generated according to [image: there is no content]; therefore, [image: there is no content] is jointly typical. Thus, by the Markov lemma [31], we can state that [image: there is no content] with high probability for a large enough n.



	
Now, the probability for a random [image: there is no content], such that [image: there is no content], to be also jointly typical with [image: there is no content] is upper bounded by [image: there is no content], hence


[image: there is no content]








which goes to zero exponentially fast with n for every [image: there is no content].



Therefore, [image: there is no content] goes to zero as [image: there is no content].








Converse: (Channel capacity case 2c). Fix the rates R and [image: there is no content] and a sequence of codes [image: there is no content] that achieve capacity. By Fano’s inequality, [image: there is no content], where [image: there is no content] as [image: there is no content]. Let [image: there is no content], and define V2,i=(T2,Yi−1,S2i−1),Ui=W. Then,


[image: there is no content]








where [image: there is no content] follows from the fact that [image: there is no content] is independent of [image: there is no content] and the fact that [image: there is no content] is independent of [image: there is no content] given [image: there is no content]. The proof for this follows.


[image: there is no content]








where we used the fact that W is independent of [image: there is no content], [image: there is no content] is independent of [image: there is no content] given [image: there is no content], [image: there is no content] is a function of [image: there is no content] and that [image: there is no content] is independent of [image: there is no content] given [image: there is no content]. We now continue with the proof of the converse.


[image: there is no content]








and therefore, from (A34) and (A36)


[image: there is no content]



(A37)






[image: there is no content]



(A38)







Using the convexity of [image: there is no content] and Jensen’s inequality, the standard time-sharing argument for R and the fact that [image: there is no content] as [image: there is no content], we can conclude that


[image: there is no content]



(A39)






[image: there is no content]



(A40)







Notice that the Markov chain [image: there is no content] holds since [image: there is no content] is independent of [image: there is no content] and [image: there is no content] is dependent on [image: there is no content] only through [image: there is no content]. Notice also that the Markov chain [image: there is no content] holds since


[image: there is no content]











This concludes the converse, and the proof of Theorem 1 Case 2C.





Appendix C. Proof of Theorem 2


In this section, we provide the proof of Theorem 2, Cases 1 and 1C. Case 2, where the encoder is informed with increased ESI and the decoder is informed with DSI is a special case of [10] for [image: there is no content] and, therefore, the proof for this case is omitted. Following Kaspi’s scheme (Figure A3) for [image: there is no content], at the first stage, node W sends a description of W with a rate limited to [image: there is no content], then, after reconstructing [image: there is no content] at the Z node, it sends a function of Z and [image: there is no content] over to node W with a rate limited to [image: there is no content]. Let [image: there is no content] be W in Kaspi’s scheme and [image: there is no content] be Z in Kaspi’s scheme. Consider [image: there is no content]. Then, it is apparent that Case 2 of the rate-distortion problems is a special case of Kaspi’s two-way problem for [image: there is no content].


Figure A3. Kaspi’s two-way source coding scheme. The total rates are [image: there is no content] and [image: there is no content] and the expected per-letter distortions are [image: there is no content] and [image: there is no content].



[image: Entropy 19 00467 g012]








Appendix C.1. Proof of Theorem 2, Case 1


Rate-distortion Case 1 is presented in Figure A4. We use the Wyner-Ziv coding scheme for the description of the ESI, [image: there is no content], at a rate [image: there is no content], where the source is [image: there is no content] and the side information at the decoder is [image: there is no content]. Then, to describe the main source, X, with distortion less than or equal to D we use the Wyner-Ziv coding scheme again, where this time, [image: there is no content] is the side information at the decoder, [image: there is no content] is a part of the source and the rate-limited description of [image: there is no content] is the side information at both the encoder and the decoder. Notice that [image: there is no content] and that since the Markov chain [image: there is no content] holds, it is also possible to write [image: there is no content]; we use these expressions in the following proof.


Figure A4. Rate-distortion: Case 1. [image: there is no content], where the minimization is over all PMFs [image: there is no content] such that [image: there is no content] and [image: there is no content].



[image: Entropy 19 00467 g013]








Achievability: (Rate-distortion Case 1). Given (Xi,S1,i,S2,i)i.i.d.∼p(x,s1,s2) and the distortion measure D, fix [image: there is no content] that satisfies [image: there is no content] and [image: there is no content].



Codebook generation and random binning

	
Generate a codebook, [image: there is no content], of [image: there is no content] sequences, [image: there is no content], independently using i.i.d.∼p(v1). Label them [image: there is no content], where [image: there is no content] and randomly assign each sequence [image: there is no content] a bin number [image: there is no content] in the set [image: there is no content].



	
Generate a codebook [image: there is no content] of [image: there is no content] sequences [image: there is no content] independently using i.i.d.∼p(u). Label them [image: there is no content], where [image: there is no content], and randomly and assign each [image: there is no content] a bin number [image: there is no content] in the set [image: there is no content].








Reveal the codebooks and the content of the bins to all encoders and decoders.



Encoding

	
State Encoder: Given the sequence [image: there is no content], search the codebook [image: there is no content] and identify an index k such that [image: there is no content]. If such a k is found, stop searching and send the bin number [image: there is no content]. If no such k is found, declare an error.



	
Encoder: Given the sequences [image: there is no content], [image: there is no content] and [image: there is no content], search the codebook [image: there is no content] and identify an index l such that [image: there is no content]. If such an l is found, stop searching and send the bin number [image: there is no content]. If no such l is found, declare an error.








Decoding



Given the bins indices w and j and the sequence [image: there is no content], search the codebook [image: there is no content] and identify an index k such that [image: there is no content] and [image: there is no content]. If no such k is found or there is more than one such index, declare an error. If a unique k, as defined, is found, search the codebook [image: there is no content] and identify an index l such that [image: there is no content] and [image: there is no content]. If a unique l, as defined, is found, declare X^i=fi(uin(l),S2,i,v1,i(k)),i=1,2,⋯,n. Otherwise, if there is no such l or there is more than one, declare an error.



Analysis of the probability of error



Without loss of generality, for the following events [image: there is no content] and [image: there is no content], assume that [image: there is no content] and [image: there is no content] correspond to the sequences [image: there is no content] and for the events [image: there is no content] and [image: there is no content] assume that [image: there is no content] and [image: there is no content] correspond to the same given sequences. Define the following events:


E1:=∀v1n(k)∈Cv,S1n,v1n(k)∉Tϵ(n)(S1,V1)E2:=S1n,v1n(1)∈Tϵ(n)(S1,V1) but S2n,v1n(1)∉Tϵ(n)(S2,V1)E3:=∃k′≠1 such that bvv1n(k′)=1 and S2n,v1n(k′)∈Tϵ(n)(S2,V1)E4:=∀un(l)∈Cu,Xn,S1n,v1n(1),un(l)∉Tϵ(n)(X,S1,V1,U}E5:=Xn,S1n,v1n(1),un(1)∈Tϵ(n)(X,S1,V1,U but S2n,v1n(1),un(1)∉Tϵ(n)(S2,V1,U)}E6:=∃l′≠1 such that buun(l′)=1 and S2n,v1n(1),un(l′)∈Tϵ(n)(S2,V1,U).











The probability of error [image: there is no content] is upper bounded by [image: there is no content]. Using standard arguments and assuming that [image: there is no content] and that n is large enough, we can state that

	
 


[image: there is no content]











The probability that there is no [image: there is no content] in [image: there is no content] such that [image: there is no content] is strongly jointly typical is exponentially small provided that [image: there is no content]. This follows from the standard rate-distortion argument that [image: there is no content][image: there is no content]s “cover” [image: there is no content], therefore [image: there is no content].



	
By the Markov lemma, since [image: there is no content] are strongly jointly typical and [image: there is no content] are strongly jointly typical and the Markov chain [image: there is no content] holds, then [image: there is no content] are also strongly jointly typical. Thus, [image: there is no content].



	
 


[image: there is no content]











The probability that there is another index k′,k′≠1, such that [image: there is no content] is in bin number 1 and that it is strongly jointly typical with [image: there is no content] is bounded by the number of [image: there is no content]’s in the bin times the probability of joint typicality. Therefore, if [image: there is no content] then [image: there is no content]. Furthermore, using the Markov chain [image: there is no content], we can see that the inequality can be presented as [image: there is no content].



	
We use here the same argument we used for [image: there is no content]. By the covering lemma we can state that the probability that there is no [image: there is no content] in [image: there is no content] that is strongly jointly typical with [image: there is no content] tends to 0 as [image: there is no content] if [image: there is no content]. Hence, [image: there is no content].



	
Using the same argument we used for [image: there is no content], we conclude that [image: there is no content].



	
We use here the same argument we used for [image: there is no content]. Since [image: there is no content] are strongly jointly typical, [image: there is no content] are strongly jointly typical and the Markov chain [image: there is no content] holds, then [image: there is no content] are also strongly jointly typical.



	
The probability that there is another index l′,l′≠1 such that [image: there is no content] is in bin number 1 and that it is strongly jointly typical with [image: there is no content] is exponentially small provided that [image: there is no content]. Notice that [image: there is no content] stands for the average number of sequences [image: there is no content]’s in each bin indexed w for [image: there is no content].








This shows that for rates R and [image: there is no content] as described, and for large enough n, the error events are of arbitrarily small probability. This concludes the proof of the achievability for the source coding Case 1.



Converse: (Rate-distortion Case 1). Fix a distortion measure D, the rates [image: there is no content], [image: there is no content] and a sequence of codes [image: there is no content] such that [image: there is no content]. Let [image: there is no content], [image: there is no content] and define [image: there is no content] and Ui=T. Notice that [image: there is no content] and, therefore, [image: there is no content] is a function of [image: there is no content].





[image: there is no content]








where [image: there is no content] follows from the fact that [image: there is no content] is independent of [image: there is no content] given [image: there is no content].


[image: there is no content]








where [image: there is no content] follows from the fact that [image: there is no content] is independent of [image: there is no content] given [image: there is no content]; this is because [image: there is no content] is independent of [image: there is no content] given [image: there is no content], [image: there is no content] follows from the fact that conditioning reduces entropy and [image: there is no content] follows from the convexity of [image: there is no content] and Jensen’s inequality.



Using also the convexity of [image: there is no content] and Jensen’s inequality, we can conclude that


[image: there is no content]



(A46)






[image: there is no content]



(A47)







It is easy to verify that [image: there is no content] forms a Markov chain, since [image: there is no content] depends on [image: there is no content] only through [image: there is no content]. The structure [image: there is no content] also forms a Markov chain since [image: there is no content] contains no information about [image: there is no content] given [image: there is no content] and, therefore, contains no information about [image: there is no content].



This concludes the converse, and the proof of Theorem 2 Case 1.




Appendix C.2. Proof of Theorem 2, Case 1C


Rate-distortion Case 1C is illustrated in Figure A5. For describing the ESI, [image: there is no content], with a rate [image: there is no content] we use the standard rate-distortion coding scheme. Then, for the main source, X, we use a Weissman-El Gamal [12] coding scheme where the DSI, [image: there is no content], is the causal side information at the decoder, [image: there is no content] is a part of the source and the rate-limited description of [image: there is no content] is the side information at both the encoder and decoder.


Figure A5. Rate-distortion: Case 1 with causal DSI. [image: there is no content], where the minimization is over all PMFs [image: there is no content] such that [image: there is no content] and [image: there is no content].



[image: Entropy 19 00467 g014]








Achievability: (Rate-distortion Case 1C). Given (Xi,S1,i,S2,i)∼i.i.d.p(x,s1,s2) where the DSI is known in a causal way ([image: there is no content] in time i) and the distortion measure is D, fix [image: there is no content] that satisfies [image: there is no content] and that [image: there is no content].



Codebook generation and random binning

	
Generate a codebook [image: there is no content] of [image: there is no content] sequences [image: there is no content] independently using i.i.d.∼p(v2). Label them [image: there is no content] where [image: there is no content].



	
For each [image: there is no content] generate a codebook [image: there is no content] of [image: there is no content] sequences [image: there is no content] distributed independently according to i.i.d.∼p(u|v1). Label them [image: there is no content], where [image: there is no content].








Reveal the codebooks to all encoders and decoders.



Encoding

	
State Encoder: Given the sequence [image: there is no content], search the codebook [image: there is no content] and identify an index k such that [image: there is no content]. If such a k is found, stop searching and send it. Otherwise, if no such k is found, declare an error.



	
Encoder: Given [image: there is no content] and the index k, search the codebook [image: there is no content] and identify an index w such that [image: there is no content]. If such an index w is found, stop searching and send it. Otherwise, declare an error.








Decoding



Given the indices [image: there is no content] and the sequence [image: there is no content] at time i, declare [image: there is no content].



Analysis of the probability of error



Without loss of generality, let us assume that [image: there is no content] corresponds to [image: there is no content] and that [image: there is no content] corresponds to [image: there is no content].



Define the following events:


E1:=∀v1n(k)∈Cv,v1n(k),S1n∉Tϵ(n)(S1,V1)E2:=∀un(w,1)∈Cu(1),Xn,S1n,un(w,1)∉Tϵ(n)(X,S1,U)











The probability of error [image: there is no content] is upper bounded by [image: there is no content]. Assuming that [image: there is no content], we can state that by the standard rate-distortion argument, having more than [image: there is no content] sequences [image: there is no content] in [image: there is no content] and a large enough n assures us with probability arbitrarily close to 1 that we would find an index k such that [image: there is no content]. Therefore, [image: there is no content] as [image: there is no content]. Now, if [image: there is no content], using the same argument, we can also state that having more than [image: there is no content] sequences [image: there is no content] in [image: there is no content] assures us that [image: there is no content] as [image: there is no content]. This concludes the proof of the achievability.



Converse: (Rate-distortion Case 1C). Fix a distortion measure D, the rates [image: there is no content], [image: there is no content] and a sequence of codes [image: there is no content] such that [image: there is no content]. Let [image: there is no content], [image: there is no content] and define V1,i=(T1,S1,i+1n),Ui=T. Notice that [image: there is no content], and, therefore, [image: there is no content] is a function of [image: there is no content].


[image: there is no content]








where [image: there is no content] follows the fact that [image: there is no content] is independent of [image: there is no content].


[image: there is no content]








where [image: there is no content] follows from the fact that [image: there is no content] is independent of [image: there is no content] given [image: there is no content], [image: there is no content] follows from the fact that conditioning reduces entropy and [image: there is no content] follows from the convexity of [image: there is no content] and Jensen’s inequality.



Using also the convexity of [image: there is no content] and Jensen’s inequality, we can conclude that


[image: there is no content]



(A50)






[image: there is no content]



(A51)







It is easy to verify that both Markov chains [image: there is no content] and [image: there is no content] hold. This concludes the converse, and the proof of Theorem 2 Case 1C.




Appendix C.3. Proof of Theorem 2, Case 2


Rate-distortion Case 2 (see Figure A6) is a special case of [10] for [image: there is no content], and hence, the proof is omitted.


Figure A6. Rate distortion: Case 2. [image: there is no content], where the minimization is over all PMFs [image: there is no content] such that [image: there is no content] and [image: there is no content].



[image: Entropy 19 00467 g015]










Appendix D. Proof of Lemma 1


We provide here a partial proof of Lemma 1. In the first part we prove the concavity of [image: there is no content] in [image: there is no content] for Case 2, the second part contains the proof that it is enough to take X to be a deterministic function of [image: there is no content] in order to achieve the capacity [image: there is no content] for Case 1 and in the third part we prove the cardinality bound for Case 1. The proofs of these three parts for the rest of the cases can be derived using the same techniques and therefore are omitted. The proof of Lemma 2 can also be readily concluded using the techniques we use in this appendix and is omitted as well.



Part 1: We prove here that for Case 2 of the channel capacity problems, the lower bound on the capacity, [image: there is no content], is a concave function of the state information rate, [image: there is no content]. Recall that the expression for [image: there is no content] is [image: there is no content] where the maximization is over all probabilities [image: there is no content] such that [image: there is no content]. This means that we want to prove that for any two rates, [image: there is no content] and [image: there is no content], and for any [image: there is no content] and [image: there is no content] the capacity maintains [image: there is no content]. Let [image: there is no content] and [image: there is no content] be the random variables that meet the conditions on [image: there is no content] and on [image: there is no content] and also achieve [image: there is no content] and [image: there is no content], respectively. Let us introduce the auxiliary random variable [image: there is no content], independent of [image: there is no content] and Y, and distributed according to [image: there is no content] and [image: there is no content]. Then, consider


αR′(1)+α¯R′(2)=αI(V2(1);S2)−I(V2(1);S1)+α¯I(V2(2);S2)−I(V2(2);S1)=(a)αI(V2(1);S2|Q=1)−I(V2(1);S1|Q=1)+α¯I(V2(2);S2|Q=2)−I(V2(2);S1|Q=2)=(b)I(V2(Q);S2|Q)−I(V2(Q);S1|Q)(A52)=(c)I(V2(Q),Q;S2)−I(V2(Q),Q;S1),








and


αC2lb(R′(1))+α¯C2lb(R′(2))=αI(U(1);Y(1),S2|V2(1))−I(U(1);S1|V2(1))+α¯I(U(2);Y(2),S2|V2(2))−I(U(2);S1|V2(2))(A53)=(d)I(U(Q);Y(Q),S2|V2(Q),Q)−I(U(Q);S1|V2(Q),Q),








where [image: there is no content] and [image: there is no content] all follow from the fact that Q is independent of [image: there is no content] and from Q’s probability distribution. Now, let [image: there is no content] and [image: there is no content]. Then, following from the equalities above, for any two rates [image: there is no content] and [image: there is no content] and for any [image: there is no content], there exists a set of random variables [image: there is no content] that maintains


[image: there is no content]



(A54)




and


[image: there is no content]











This completes the proof of the concavity of [image: there is no content] in [image: there is no content].



Part 2: We prove here that it is enough to take X to be a deterministic function of [image: there is no content] in order to maximize [image: there is no content]. Fix [image: there is no content]. Note that


p(y,s2|u,v1)=∑x,s1p(s1|,u,v1)p(s2|s1,v1,u)p(x|s1,s2,v1,u)p(y|x,s1,s2,v1,u)(A56)=∑x,s1p(s1|u,v1)p(s2|s1)p(x|s1,v1,u)p(y|x,s1,s2)








is linear in [image: there is no content]. This follows from the fact that fixing [image: there is no content] also defines [image: there is no content] and from the following Markov chains [image: there is no content], [image: there is no content] and [image: there is no content]. Hence, since [image: there is no content] is convex in [image: there is no content] it is also convex in [image: there is no content]. Noting also that [image: there is no content] is constant given a fixed [image: there is no content], we can conclude that [image: there is no content] is convex in [image: there is no content] and, hence, it gets its maximum at the boundaries of [image: there is no content], i.e., when the last is equal 0 or 1. This implies that X can be expressed as a deterministic function of [image: there is no content].



Part 3: We prove now the cardinality bound for Theorem 1. First, let us recall the support lemma [32] (p. 310). Let [image: there is no content] be the set of PMFs on the set [image: there is no content], and let the set [image: there is no content] be a collection of PMFs [image: there is no content] on [image: there is no content] indexed by [image: there is no content]. Let gj,j=1,⋯,k, be continuous functions on [image: there is no content]. Then, for any [image: there is no content], there exists a finite random variable [image: there is no content] taking at most k values in [image: there is no content] such that


Egj(pZ|Q(z|Q))=∫Qgj(pZ|Q(z|q))dF(q)(A57)=∑q′gj(pZ|q(z|q′))p(q′).











We first reduce the alphabet size of [image: there is no content] while considering the alphabet size of U to be constant and then we calculate the cardinality of U. Consider the following continuous functions of [image: there is no content]


[image: there is no content]



(A58)







Then, by the support lemma, there exists a random variable [image: there is no content] with [image: there is no content] such that p(x,s1,s2),I(V1;S1)−I(V1;Y,S2) and [image: there is no content] are preserved. Notice that the probability of U might have changed due to changing [image: there is no content]; we denote the corresponding U as [image: there is no content]. Next, for [image: there is no content] and the corresponding probability [image: there is no content] that we found in the previous step, we consider [image: there is no content] continuous functions of [image: there is no content]


[image: there is no content]



(A59)







Thus, there exists a random variable [image: there is no content] with [image: there is no content] such that the mutual information expressions above and all the desired Markov conditions are preserved. Notice that the expression [image: there is no content] is being preserved since [image: there is no content] is being preserved.



To conclude, we can bound the cardinality of the auxiliary random variables of Theorem 1 Case 1 by [image: there is no content] and [image: there is no content] without limiting the generality of the solution. □




Appendix E. Proofs for Section 5


Appendix E.1. Proof of Lemma 4


Proof. 

For [image: there is no content] and [image: there is no content]


Jw(αq1+α¯q2,αQ1+α¯Q2)=∑s1,s2,v2,t,yp(s1,s2)w(v2|s2)p(y|t,s1,s2,v2)αq1+α¯q2logαQ1+α¯Q2αq1+α¯q2≥(a)∑s1,s2,v2,t,yp(s1,s2)w(v2|s2)p(y|t,s1,s2,v2)αq1logQ1q1+α¯q2logQ2q2(A60)=αJw(q1,Q1)+α¯Jw(q2,Q2),








where [image: there is no content] follows from the log-sum inequality:


[image: there is no content]



(A61)




for [image: there is no content] and [image: there is no content]. ☐






Appendix E.2. Proof of Lemma 6


Proof. 

Let us calculate [image: there is no content] using the KKT conditions. We want to maximize [image: there is no content] over [image: there is no content], where for all [image: there is no content] and [image: there is no content], [image: there is no content] and [image: there is no content].



For fixed [image: there is no content] and [image: there is no content],


(A62)0=∂∂q*Jw(q*,Q)+1−∑tq*(t|s1,v2)νs1,v2(A63)=∑s2,yp(s1,s2)w(v2|s2)p(y|t,s1,s2,v2)logQ(t|y,s2,v2)q*(t|s1,v2)−1−νs1,v2,








divide by [image: there is no content],


[image: there is no content]



(A64)




define [image: there is no content], hence


[image: there is no content]



(A65)




and from the constraint [image: there is no content] we get that


[image: there is no content]



(A66)




 ☐






Appendix E.3. Proof of Lemma 7


The proof for this lemma is done in three steps: first, we prove that [image: there is no content] is greater than or equal to [image: there is no content] for any two PMFs [image: there is no content] and [image: there is no content], then, we use Lemmas 3 and 5 to state that for the optimal PMF, [image: there is no content], [image: there is no content], and, therefore, [image: there is no content] is an upper bound of [image: there is no content] for every [image: there is no content]. Thirdly, we prove that [image: there is no content] converges to [image: there is no content].



Proof. 

Consider any two PMFs, [image: there is no content] and [image: there is no content], their corresponding [image: there is no content] and [image: there is no content], respectively, according to (24) and (26) and consider also the following inequalities:


∑s1,s2,v2,t,yp0(s1,s2,v2,t,y)logQ1*(t|y,s2,v2)q1(t|s1,v2)−Jw(q0,Q0*)=∑s1,s2,v2,t,yp0(s1,s2,v2,t,y)logQ1*(t|y,s2,v2)q1(t|s1,v2)−logQ0*(t|y,s2,v2)q0(t|s1,v2)=∑s1,s2,v2,t,yp0(s1,s2,v2,t,y)logQ1*(t|y,s2,v2)Q0*(t|y,s2,v2)q0(t|s1,v2)q1(t|s1,v2)=Dq0(t|s1,v2)∥q1(t|s1,v2)−DQ0*(t|y,s2,v2)∥Q1*(t|y,s2,v2)=(a)Dq0(t|s1,s2,v2)p(y|t,s1,s2,v2)p(s1,s2)w(v2|s2)∥q1(t|s1,s2,v2)p(y|t,s1,s2,v2)p(s1,s2)w(v2|s2)−DQ0*(t|y,s2,v2)∥Q1*(t|y,s2,v2)=Dp0(s1,s2,v2,t,y)∥p1(s1,s2,v2,t,y)−DQ0*(t|y,s2,v2)∥Q1*(t|y,s2,v2)=(b)Dp0(s2,v2,y)Q0*(t|y,s2,v2)p0(s1|s2,v2,t,y)∥p1(s2,v2,y)Q1*(t|y,s2,v2)p1(s1|s2,v2,t,y)−DQ0*(t|y,s2,v2)∥Q1*(t|y,s2,v2)=Dp0(s2,v2,y)∥p1(s2,v2,y)+Dp0(s1|s2,v2,t,y)∥p1(s1|s2,v2,t,y)(A67)=(c)≥0,








where [image: there is no content] is the K-L divergence, [image: there is no content] and [image: there is no content] are marginal distributions of [image: there is no content] for [image: there is no content], [image: there is no content] follows from the fact that T is independent of [image: there is no content] given [image: there is no content] and from the K-L divergence properties, [image: there is no content] follows from the fact that [image: there is no content] is a marginal distribution of [image: there is no content] for [image: there is no content] and [image: there is no content] follows from the fact that [image: there is no content] always.



Thus,


[image: there is no content]











We proved that [image: there is no content] is greater than or equal to [image: there is no content] for any choice of [image: there is no content] and [image: there is no content]. Therefore, by taking [image: there is no content] to be the distribution that achieves [image: there is no content] and by considering Lemmas 3 and 5, we conclude that [image: there is no content] for any choice of [image: there is no content].



In order to prove that [image: there is no content] converges to [image: there is no content] let us rewrite Equation (A63) as


[image: there is no content]



(A69)







We can see that for a fixed Q, the right hand side of the equation is independent of t. Considering also


[image: there is no content]








we can conclude that the equation holds when the PMF q is the PMF that achieves [image: there is no content].
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