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Abstract: Several fundamental concepts with respect to the second-law analysis (SLA) of the
turbulent flows in gas turbines are discussed in this study. Entropy and exergy equations for
compressible/incompressible flows in a rotating/non-rotating frame have been derived. The exergy
transformation efficiency of a gas turbine as well as the exergy transformation number for a single
process step have been proposed. The exergy transformation number will indicate the overall
performance of a single process in a gas turbine, including the local irreversible losses in it and its
contribution to the exergy obtained the combustion chamber. A more general formula for calculating
local entropy generation rate densities is suggested. A test case of a compressor cascade has been
employed to demonstrate the application of the developed concepts.

Keywords: second-law analysis; entropy; exergy; gas turbine; cascade; Brayton cycle; computational
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1. Introduction

A gas turbine is a type of combustion engine, which usually comprises an upstream compressor,
a downstream turbine, and a combustion chamber in between. The design of a high performance gas
turbine is a key technology in modern industry due to its significant applications in aircraft, electrical
generators, and ships.

Compared to reciprocating engines, gas turbines have the advantages of a higher power-weight
ratio, a smaller volume, lower toxic emissions, etc. However, the efficiency of gas turbines is usually
lower than that of reciprocating engines. Generally, the efficiency of a gas turbine can be improved by
increasing the pressure ratio [1] and reducing the engine weight [2]. However, according to the second
law of thermodynamics, the efficiency of a gas turbine is ultimately determined by the irreversibility
in its flow and temperature field. For example, if a gas turbine has a pressure ratio of 20, its efficiency
according to an ideal Brayton cycle is about 60%, whereas the efficiency even for a modern gas turbine
is no more than 40%. A gas turbine may be combined with a steam plant to form a “combined cycle”
system. In recent years, the efficiency of the gas turbine combined cycle system’s power generation
has been increased to 60% [3]. However, this only increases the system’s overall efficiency, while the
efficiency of the gas turbine is not really improved. The key to improving the efficiency of a gas turbine
still lies in how to reduce the losses due to irreversibility.

In an ideal gas turbine, the working gases follow the Brayton cycle, which is composed of the
procedures of isentropic compression, isobaric (constant pressure) combustion, isentropic expansion,
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and isobaric heat rejection: see the cycle 0–1–2–3–0 in Figure 1. The efficiency for the ideal Brayton
cycle is:

ηideal =

.
Qcbc −

.
Q3−0

.
Qcbc

= 1− T0

T1
(1)

where
.

Qcbc and
.

Q3−0 are the heat generation and release rates in the processes of isobaric combustion
(1–2) and isobaric heat rejection (3–0).
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Figure 1. The schematic diagram of ideal (0–1–2–3–0) and real (0–1’–2’–3’–0) Brayton cycles in a gas
turbine. (a) The temperature–entropy diagram; (b) The schematic diagram of a gas turbine. The hot air
at 3(3’) cools down in the atmosphere to become cold air at 0. Only the irreversible processes in the
compressor (0–1’) and the turbine (2’–3’) are under consideration.

However, irreversibility occurs in a real gas turbine. The T-S diagram for a real Brayton cycle is
indicated by 0–1’–2’–3’–0 in Figure 1, in which only the irreversibility of the compression (0–1’) and
expansion (2’–3’) processes are taken into account. The efficiency of the real Brayton cycle is

ηreal =

.
Qcbc −

.
Q3′−0

.
Q1−2

. (2)

When the compressor and the turbine are considered to be adiabatic, the entropy will increase
in processes 0–1’ and 2’–3’ due to irreversibility, leading to higher entropy at state 3’ than at state 3.
As a result, the heat release in process 3’–0 is larger than in the ideal cycle (3–0), i.e.,

.
Q3′−0 >

.
Q3−0.

Thus, the efficiency of a real gas turbine is always lower than that of an ideal one.
The second-law analysis (SLA) is a very helpful tool for understanding these irreversible processes.

In the SLA, irreversibility in both flow and temperature fields are accounted for. However, the SLA
was usually used for analyzing a thermal system, while the detailed flow and temperature fields were
traditionally studied within the disciplines of fluid mechanics and heat transfer, in which the SLA still
has not received much attention. Entropy almost never appears in the text books of fluid dynamics
and heat transfer: see [4,5] as examples. This concept is ignored perhaps due to the reason that the
irreversibility effect is considered to be not important in these two disciplines. However, turbulent
flow and heat transfer are typical irreversible processes due to the dissipation in the flow field and
irreversibility in the temperature fields. Another possible reason is that it is very difficult to calculate
or measure the local entropy generation rate accurately due to model and experimental errors.
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Some progress has been made in employing the SLA in flow and heat transfer problems since the
1980s. Bejan [6,7] laid the foundation with respect to analyzing and optimizing thermal systems with
the SLA approach. Kock and Herwig [8] extended this concept to a detailed analysis of turbulent flows,
and identified four different mechanisms of entropy generation: dissipation in a mean and fluctuating
velocity field and heat flux in a mean and fluctuating temperature field. Later, Kock and Herwig [9]
developed equations for computing entropy generation rates for Reynolds Averaged Navier–Stokes
Simulations (RANSs) and implemented them into computational fluid dynamics (CFD) codes. Jin and
Herwig [10] indicated that model errors in RANS simulations may lead to considerable uncertainties
in entropy generation results.

With the development of high performance computers in recent years, people have started to
calculate the losses in blade cascades from RANS results. Orhan [11] investigated the loss mechanism
of an axial turbine cascade with the SLA. Denton and Pullan [12] and Zlatinov et al. [13] analyzed
the local entropy generation rate in turbines with unsteady RANSs. However, Kopriva et al. [14,15]
found that RANSs have much lower accuracy than large eddy simulations (LESs). Tucker [16,17]
indicated that it is particularly difficult to predict unsteady separations in turbines with RANSs.
As a compromise between the computational cost and the accuracy, Lin et al. [18] studied the local
entropy generation in a turbine cascade passage with a delayed detached eddy simulation (DDES)
method. The losses in both flow and temperature fields were visualized according to the numerical
results. With the same method, Wang et al. [19] analyzed the interaction between the corner separation
and wakes in a compressor cascade. The detailed coherent structures, local losses information, and
turbulence characteristics were identified according to the local entropy generation rate. Despite this
progress, more systematic studies are still required for understanding the irreversible processes in gas
turbines. In particular, the relationship between local entropy generation and global efficiency should
be better understood.

In the present paper, we attempt to investigate several fundamental concepts with respect to
the SLA of the irreversible processes in gas turbines. Entropy and exergy transport equations for
compressible flows in a rotating frame will be derived in Section 2. Through the derivation, we will
show the relationship between the SLA and the other laws in fluid mechanics. In Section 3, we will
discuss the dimensionless coefficients for assessing irreversible processes in a gas turbine. The concepts
of exergy transformation efficiency and exergy transformation number will be introduced. CFD modeling
for calculating the local entropy generate rate density will be discussed in Section 4. A test case for
applying the developed theories will be provided in Section 5. The conclusions are given in Section 6.

2. The Entropy and Exergy Transport Equations for Compressible Flows in a Rotating Frame

The governing equations for the flows in a cascade passage or the combustion chamber are the
compressible Navier–Stokes and energy equations. The equations in a rotating frame were adopted,
and thus they can be also used for the flows in rotors. The governing equations [20,21] read:

∂ρ

∂t
+

∂(ρui)

∂xi
= 0 (3)

∂(ρui)

∂t
+

∂
(
ρujui

)
∂xj

= − ∂p
∂xi

+
∂τji

∂xj
+ ρ fi (4)

∂(ρet)

∂t
+

∂(ρuiht)

∂xi
=

∂

∂xi

(
λ

∂θ

∂xi

)
+

∂

∂xj

(
τji·ui

)
(5)

The chemical reaction in the combustion chamber is not considered here for simplicity, while the
combustion heat is accounted for by the heat exchange at the boundary walls. The reference frame
rotates with the angular velocity of ω. The value of ω is zero when a stationary frame is under
consideration. The reference frame velocity is v = ω× r, where r is the displacement from the axis to
the position vector x. If x1 is selected as the axis, we have r = (0, x2, x3). fi is the component of the
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body acceleration rate vector F = −(2ω× u +ω× v), in which the Coriolis and centrifugal forces are
taken into account.

ρ, vi, ui, θ and λ are the density, frame velocity component, relative velocity component,
temperature, and thermal conductivity, respectively. The relative total energy and enthalpy are
calculated by et = e + 1

2
(
u2

i − v2
i
)

and ht = e + p
ρ + 1

2
(
u2

i − v2
i
)
, respectively. τij = 2νsij is the

anisotropic part of the viscous stress tensor, where the strain rate sij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

Multiplying Equation (4) with ui and considering ρ fiui = ∂
(

1
2 ρv2

j

)
/∂t + ∂

(
1
2 ρv2

j ui

)
/∂xi, the

transport equation of the relative kinetic energy kr can be derived:

∂(ρkr)

∂t
+

∂(ρuikr)

∂xi
= −ui

∂p
∂xi

+ ui
∂τji

∂xj
(6)

where kr = 1
2
(
u2

i − v2
i
)
. Subtracting Equation (6) from Equation (5), the transport equation of the

enthalpy can be obtained, i.e.,

∂(ρh)
∂t

+
∂(ρuih)

∂xi
=

dp
dt

+
∂

∂xi

(
λ

∂θ

∂xi

)
+ τji

∂ui
∂xj

. (7)

Substituting Equation (7) into the fundamental equation of thermodynamics Tds = dq = dh− 1
ρ dp,

the entropy equation can be derived, i.e.,

ρ
ds
dt

=
∂(ρs)

∂t
+

∂(ρuis)
∂xi

=
∂

∂xi

(
λ

θ

∂θ

∂xi

)
+

λ

θ2
∂θ

∂xi

∂θ

∂xi
+

2µsijsij

T
. (8)

The irreversibility is due to the last two terms in Equation (8), which are always positive. They are
called the entropy generation rate density in the temperature field

.
S
′′′
C and in the flow field

.
S
′′′
D .

Their definitions are:
.
S
′′′
C ≡

λ

θ2
∂θ

∂xi

∂θ

∂xi
;

.
S
′′′
D ≡

2µsijsij

T
. (9)

For an open system, the total differential of exergy of a gas is dhE = dh− T∞ds + dk, where T∞

is the environmental temperature, hE is the specific exergy of a gas, and k = 1
2 (ui + vi)

2 is the total
kinetic energy. The transport equation of k can be obtained from Equation (4), i.e.,

∂(ρk)
∂t

+
∂
(
ρujk

)
∂xj

= −(ui + vi)
∂p
∂xi

+ (ui + vi)
∂τji

∂xj
. (10)

Substituting Equations (7), (8), and (10) into the total derivative of exergy, the balance equation of
exergy can be obtained, i.e.,

ρ dhE

dt = ∂(ρhE)
∂t + ∂(ρuihE)

∂xi

= ∂p
∂t +

∂
∂xi

((
1− T∞

θ

)
λ ∂θ

∂xi

)
+ ∂

∂xj

(
τjiui

)
+ ∂

∂xj

((
τji − pδji

)
vi
)
− T∞

( .
S
′′′
C +

.
S
′′′
D

)
.

(11)

Equations (8) and (11) were derived for compressible flows in a rotating frame, but they can also
be used for incompressible flows in a non-rotating frame when ρ is a constant and vi is zero.

Integrating Equations (8) and (11) in a volume under consideration, e.g., a cascade passage or
the combustion chamber, the integral forms of the entropy and exergy equations can be obtained.
They are:

∂

∂t

∫
V
(ρs)dV′ +

∫
A

ρuisnidA′ = ∆
.
S +

.
Q

S
(12)

∂

∂t

∫
V

(
ρhE − p

)
dV′ +

∫
A

(
ρuihE − τijuj

)
nidA′ = −T∞∆

.
S−

.
Wt +

.
Q

E
(13)
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where ∆
.
S =

∫
V

( .
S
′′′
C +

.
S
′′′
D

)
dV′ is the overall entropy generation rate in domain V, ni is the direction

vector of a surface element,
.

Q
S
=
∫

A
λ
θ

∂θ
∂xi

nidA′ is the exchange of entropy due to heat transfer at
the boundary, Wt =

∫
A
(
−τji + pδji

)
vinjdA′ is the shaft work when a rotor is accounted for, and

.
Q

E
=
∫

A

(
1− T∞

θ

)
λ ∂T

∂xi
nidA′ is the increase of exergy due to heat transfer. When the compressor and

turbine are assumed to be adiabatic,
.

Q
E

is non-zero only in the combustion chamber.
Equation (12) shows that the entropy will always increase or remain constant in an isolated

system in which
.

Q
S

and
∫

A ρuisnidA′ are zero. The corresponding destruction of exergy according

to Equation (13) is
∫

V T∞

( .
S
′′′
C +

.
S
′′′
D

)
dV′. This is accordance with the second law of thermodynamics.

The derivation shows that the traditional laws in fluid mechanics and heat transfer are sufficient
for satisfying the second law of thermodynamics. It is not necessary to solve the entropy or exergy
equations in numerical simulations. The entropy generation rate can be calculated as post processing
of the numerical results.

3. Dimensionless Coefficients for Assessing Irreversible Processes

The bulk quantitates S, H, T, and P can be calculated by the statistics of the local flow quantities
s, h, θ, and p, respectively. For example, the bulk temperature is calculated by T =

∫
A ρuiθnidA′/

.
m,

where A is the cross section under consideration. The mass flow rate is
.

m =
∫

A ρuinidA′. The losses in
a certain process step, such as in a cascade passage, can be evaluated with these bulk quantities.

The loss in a cascade passage was traditionally evaluated by the enthalpy loss coefficient [22], which
is defined by:

ζh =


.

Hout−
.

Hout,is
.

H
∗
inl−

.
Hinl

for a compressor cascade;
.

Hout−
.

Hout,is
.

H
∗
out−

.
Hout

for a turbine cascade
(14)

where
.

H is the rate of specific enthalpy, and the subscripts “out” and “is” denote the outlet and
isentropic process, respectively. The superscript * denotes the stagnation value.

In a real application, instead of Equation (14), it is more convenient to use the stagnation pressure
loss coefficient [22] instead of ζh to indicate the loss, i.e.,

ζp =


P∗inl−P∗out
P∗inl−Pinl

for a compressor cascade;

P∗inl−P∗out
P∗out−Pout

for a turbine cascade
(15)

where the subscript “inl” denotes the inlet. Obviously, the irreversibility due to heat transfer is not
taken into account in Equations (14) and (15). However, as shown in Figure 1, the increase of entropy
due to heat transfer will also reduce the efficiency of a gas turbine. The losses in a cascade can be more
accurately assessed by the SLA. Denton [23] suggested the use of an entropy loss coefficient to indicate
the loss of efficiency in a cascade, i.e.,

ζs =


Tout∆

.
S

.
H
∗
inl−

.
Hinl

for a compressor cascade;

Tout∆
.
S

.
H
∗
out−

.
Hout

for a turbine cascade
(16)

where ∆
.
s is the entropy generation rate in a cascade under consideration. The losses of exergy due

to irreversibility are more accurately assessed by Equation (16) than by Equation (15). However, the
contribution of the cascade to the output work is not taken into account by Equation (16). According to
Equation (16), the optimized blade cascades should have low loading and work at a small incidence
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angle, thus the entropy generation can be minimized. This conflicts with some real applications in
which higher loading blade cascades which work at higher incidence angles are preferred.

In order to assess the irreversible processes in gas turbines more comprehensively, we adopted
and further developed the concepts of entropic potential and energy devaluation number, which have
been proposed by Herwig and his colleagues [24–26] in recent years. According to these studies, the
entropic potential is defined by the entropy generation rate by which the entropy of the ambient is
increased when the primary energy rate

.
E becomes part of its internal energy, i.e.,

.
Sirr =

.
E

T∞
(17)

where T∞ is the environmental temperature. The amount of the entropic potential rate of
.
E that is

consumed by the process step i under consideration can be determined by the energy devaluation
number, which is defined by

Ni ≡
∆

.
Si

.
Sirr

=
T∞∆

.
Si

.
E

. (18)

More details can be found in [24–26].

In a gas turbine, the primary energy is the exergy
.

Q
E

which is obtained in the combustion chamber

in process 1’–2’.
.

Q
E

was derived and defined in Equation (13). In order to simplify its calculation, we
approximate the local wall temperature θw in the combustion chamber with the bulk temperature T in
the cross section which is enclosed by the wall surface. Thus, the primary energy can be calculated by

.
E =

.
Q

E
=
∫ 2′

1′

(
1− T∞

T

)
d

.
Q =

.
Qcbc − T∞

(
S′2 − S′1

) .
m (19)

where
.

Q
E

is the exergy obtained in the combustion chamber, and
.

m is the mass flow rate.
Time averaging and summing up the integral exergy equations (Equation (13)) of all the processes

in a gas turbine and dividing it with
.

Q
E

, we have

∑i (T∞∆
.
Si)

.
Q

E +
∑i

.
Wti

.
Q

E +

.
Q

E
3′−0
.

Q
E = 1 (20)

as the chain of energy devaluation and transportation. In this chain, T∞∆
.
Si

.
Q

E = Ni is the energy devaluation

number of process i defined by Equation (18). The exergy obtained in the combustion chamber
.

Q
E

is devaluated by ∑
i
(T∞∆

.
Si), transformed to shaft work by ∑

i

.
Wti, or transported to the environment

by
.

Q
E
3′−0.

.
Q

E
3′−0 occurs in process 3′ − 0 (see Figure 1) due to the release of heat, which is not a real

loss of exergy and this part of exergy can be (totally by an ideal process and partly by a real process)
regained through a gas turbine combined cycle (GTCC) power generation system. Thus, the exergy

transformed by the gas turbine is ∑
i

.
Wti + ∆

.
E

E
3′−0. Multiplying Equation (20) with

.
Q

E
/

.
Qcbc, we may

define the exergy transformation efficiency of a gas turbine by:

ηE ≡
(

∑
i

.
Wti +

.
Q

E
3′−0

)
/

.
Qcbc =

.
Q

E
/

.
Qcbc − T∞ ∑

i
∆

.
Si/

.
Qcbc. (21)

ηE indicates the fraction of the heat
.

Qcbc which can be transformed to exergy. ηE is higher than ηreal

defined by Equation (2) by
.

Q
E
3′−0/

.
Qcbc.
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ηE is influenced by both the entropy generation rate ∆
.
Si in each process step i and its contribution

to
.

Q
E

. Thus, we may define the exergy transformation number of process step i by:

ηE
i ≡

.
Q

E
i /

.
Qcbc − T∞∆

.
Si/

.
Qcbc (22)

where
.

Q
E
i is the contribution of process i to

.
Q

E
. That is to say, although all of the exergy

.
Q

E
is obtained

in the combustion chamber, the combustion chamber is not the only contributor to
.

Q
E

. The compressor

upstream also has important effects on
.

Q
E

.
When ηE

i of each process is known, we have ηE = ∑
i

ηE
i as the chain of exergy transformation.

In a gas turbine, we use ηE
tur,i, ηE

com,i, and ηE
cbc to denote the exergy transformation numbers of turbine

cascade i, compressor cascade i, and the combustion chamber.
ηE

tur,i of turbine cascade i is determined only by the entropy generation rate in it, i.e.,

ηE
tur,i = −T∞∆

.
Stur,i/

.
Qcbc. (23)

Compressor cascade i may have two opposite effects on exergy transformation. On the one hand,
similar to a turbine cascade, the exergy is destroyed due to entropy generation. On the other hand, the
exergy obtained in the combustion chamber is increased due to the increase of the temperature and the
pressure through the compressor cascade. Under this consideration, ηE

com,i is calculated by

ηE
com,i =

.
Q

E
com,i/

.
Qcbc − T∞∆

.
Scom,i/

.
Qcbc (24)

where ∆
.
Scom,i is the entropy generation rate in compressor cascade i, and

.
Q

E
com,i is the contribution

of compressor cascade i to the exergy obtained in the combustion chamber
.

Q
E

. Figure 2 shows the
influence of compressor cascade i on the exergy obtained in the combustion chamber schematically:
the static temperature is increased from T1,i−1 to T1,i through compressor cascade i. The potential
exergy that can be obtained in the combustion chamber through a reversible process is increased

from
.

Q
E
cbc,i−1 =

.
Qcbc −

.
mT∞

∫ T2,i−1
T1,i−1

cp
T dT to

.
Q

E
cbc,i =

.
Qcbc −

.
mT∞

∫ T2,i
T1,i

cp
T dT. T2,i−1 and T2,i are the

temperature at the exit of the combustion chamber when the temperature at the inlet of the combustion

chamber is T1,i−1 and T1,i, respectively. Thus, the contribution of compressor cascade i to
.

Q
E

is
calculated by

.
Q

E
com,i =

.
Q

E
cbc,i −

.
Q

E
cbc,i−1 =

.
mT∞

∫ T2,i−1

T1,i−1

cp

T
dT − .

mT∞

∫ T2,i

T1,i

cp

T
dT (25)

with T2,i−1 and T2,i being determined according to the first law of thermodynamics, by

∫ T2,i−1

T1,i−1

cpdT =
∫ T2,i

T1,i

cpdT =

.
Qcbc

.
m

. (26)
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Figure 2. Influence of compressor cascade i on the exergy obtained in the combustion chamber. (a) A gas
turbine with i − 1 compressor cascades: the inlet and outlet temperature of the combustion chamber
is T1,i−1 and T2,i−1; (b) A gas turbine with i compressor cascades: the inlet and outlet temperature of
the combustion chamber is T1,i and T2,i. The static temperature is increased from T1,i−1 to T1,i through
compressor cascade i.

When an ideal gas with a constant capacity cp is taken into account, Equations (25) and (26) can
be simplified to

.
Q

E
com,i =

.
mcpT∞ln

(
T1,i−1 +

.
Qcbc/

(
cp

.
m
)

T1,i−1

)
− .

mcpT∞ln

(
T1,i +

.
Qcbc/

(
cp

.
m
)

T1,i

)
. (27)

ηE
cbc of the combustion chamber is calculated by

ηE
cbc =

.
Q

E
cbc/

.
Qcbc − T∞∆

.
Scbc/

.
Qcbc (28)

where ∆
.
Scbt is the entropy generation rate in the combustion chamber, and

.
Q

E
cbc is the increase of

exergy in the combustion chamber without the upstream compressor through a reversible process. It is
calculated by

.
Q

E
cbc =

.
Qcbc − T∞

∫ T2,0

T1,0

cp

T
dT; with

∫ T2,0

T1,0

cpdT =

.
Qcbc

.
m

(29)

where T1,0 = T0 is the compressor inlet temperature (state 0 is indicated in Figure 1), and T2,0 is
temperature at the exit of the combustion chamber when the inlet temperature of the combustion

chamber is T0. Obviously, we have
.

Q
E
cbc + ∑i

.
Q

E
com,i =

.
Q

E
.

When the efficiency coefficients of all the processes are known, we have

ηE
cbc + ∑

i
ηE

com,i + ∑
i

ηE
tur,i = ηE (30)

as a chain of exergy transformation. The exergy transformation number ηE
i can be used to assess an

isolated process step, since only local flow and temperature fields are needed to calculate its value.
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4. Modeling of Local Entropy Generation Rate Densities

The entropy generation rate densities
.
S
′′′
D and

.
S
′′′
C can be directly calculated from direct numerical

simulation (DNS) results. However, DNS requires very high computational costs and is thus not
suitable for engineering applications. When RANS or other models’ results are used in the study, part
of the losses cannot be calculated directly and thus must be modeled. Kock and Herwig [8,9] proposed
models for calculating entropy generation rates with RANS results. In these models,

.
S
′′′
D and

.
S
′′′
C were

decomposed by:
.
S
′′′
D =

2µsijsij

θ
+

ε

θ
(31)

.
S
′′′
C =

λ

θ
2

∂θ

∂xi

∂θ

∂xi
+

εθ

θ
2 (32)

where ε = 2µs′ijs
′
ij is the turbulent dissipation rate, and εθ = λ ∂θ′

∂xi
∂θ′
∂xi

is the temperature fluctuation
dissipation rate. However, ε and εθ are not always calculated explicitly in RANS models, and even
when they are determined, their accuracies are low since they often are only used as intermediate
quantities for calculating the eddy viscosity or Reynolds stresses: see [27].

Instead, we assume that, when the flow domain under consideration is sufficiently large, the
produced turbulence is in balance with the dissipation, i.e.,∫

V
εdV′ ≈

∫
V

ProdV′ =
∫

V
−ρu′iu

′
jsijdV′ (33)

∫
V

εθdV′ ≈
∫

V
ProθdV′ =

∫
V
−ρθ′u′i

∂θ

∂xi
V′. (34)

With this assumption, ε and εθ can be replaced with the turbulence production rate Pro and the
temperature fluctuation production rate Proθ . According to the eddy viscosity hypothesis, the effect of
turbulence on momentum and heat transfer can be approximated in a similar way as the molecular
diffusion: see [27]. Thus,

.
S
′′′
D and

.
S
′′′
C can be calculated by

.
S
′′′
D ≈

2(µ + µT)sijsij

θ
(35)

.
S
′′′
C ≈

(λ + λT)

θ
2

∂θ

∂xi

∂θ

∂xi
(36)

where µT is the eddy viscosity, and λT = µT
PrT

is the turbulent thermal conductivity. PrT is the turbulent
Prandtl number. Equations (35) and (36) can be calculated directly in all RANS models which are
based on the eddy viscosity hypothesis.

5. A Test Case of Application

As an example for applying the concepts developed in Sections 2–4, we analyzed the turbulent
flow in an isolated compressor cascade which was taken from the experimental database of [28] with a
RANS method. Through this low cost test case, we will show how to analyze the numerical results
with the concepts developed in Sections 2–4.

The computational domain is half of the cascade passage. The geometric parameters of the
cascade are shown in Table 1. In order to reduce the boundary effects, the inlet and outlet regions were
extended by 1.59C and 2C, respectively, where C is the length of the chord. The velocity profile at the
inlet was given according to the experimental data in [28]. The time and surface averaged inlet velocity
uinl and turbulent intensity are 40 ms−1 and 0.8%, respectively. The turbulent intensity was calculated

by
( 2

3 kT,inl
)1/2

/uinl , where kT,inl is the inlet turbulent kinetic energy. The inlet-specific dissipation rate
ωT,inl is 3.1× 103 s−1. Four incidence angles were accounted for in the present study. They are 0◦, 2◦,



Entropy 2017, 19, 470 10 of 19

4◦, and 7◦. Since the flow is at a small velocity (the Mach number is smaller than 0.3), the fluid in the
cascade is assumed to be incompressible with the constant density of 1.217 kg m−3.

Table 1. Geometric parameters of the cascade.

Parameter Value

Chord (m) 0.15
Camber angle (◦) 23.22
Stagger angle (◦) 42.7
Pitch spacing (m) 0.134

Solidity 1.12
Blade span (m) 0.37

Aspect ratio 2.47
Design upstream flow angle (◦) 54.31

Design downstream flow angle (◦) 31.09

The flow was assumed to be quasi-steady. The following steady Reynolds averaged Navier–Stokes
equations were solved during the simulation:

∂ui
∂xi

= 0 (37)

ρ
∂
(
ujui

)
∂xj

= − ∂p
∂xi

+
∂

∂xj

(
(µ + µT)

∂ui
xj

)
. (38)

The eddy viscosity µT was calculated with the k-ω Shear-Stress Transport (SST) turbulence model [29].
An open source CFD software, OpenFoam v16.06+, was used to carry out the simulation.

PimpleFoam was selected as the computational solver. This solver is based on a pressure correction
method for incompressible flows. The second-order upwind scheme was used for spatial discretization.
Body-fitted mesh, which concentrates near the wall, was adopted in the study. The dimensionless
mesh spacing y+ of the first grid point near the wall is ensured to be smaller than 1 to resolve the
turbulent boundary layer. The mesh in the region close to the cascade’s trailing edge was refined to
capture the corner separation. The mesh in a cross section is shown in Figure 3. A typical mesh has
about 5.8 million grid points. The mesh independence study was performed to ensure the results are
mesh resolution independent. More computational details can be found in [30].Entropy 2017, 19, 470  10 of 18 

 

 
Figure 3. The computational domain and the mesh resolution in a cross section. 

The entropy generation in the temperature field was neglected in the present test case, since it is 
much smaller than the one in the flow field. The global static temperature at the inlet and outlet were 
approximated according to the ideal gas law, i.e., ܶ = ܲ ⁄(ܴߩ) . The specific gas constant ܴ  is  
287.1 J kg−1 K−1. Since the density ߩ is a constant, the global temperature is proportional to the global 
static pressure.  

The entropy generation rate density in the flow field ሶܵᇱᇱᇱ was calculated with Equations (31) and 
(35). When Equation (31) is adopted, the turbulent dissipation rate ߝ  must be determined 
corresponding to the specific turbulent model. For the k-ω SST turbulence model in use, ߝ  is 
calculated by ߝ =  (39) ߱݇∗ߚߩ

where ߚ∗  is the constant used in the k-ω SST turbulence model. It is determined empirically 
according to experimental and DNS data. Reference [28] suggests its value to be 0.09. 

The static pressure coefficient ܥ at two sections (ݔଷ ⁄ܥ = 50%	and 29.7%) are shown in Figure 
4. The gap between the current CFD results and the experimental data in [28] is due to the model 
error. The accuracy can be further improved by using more accurate CFD methods, e.g., the large 
eddy simulation (LES) method. However, the current low cost CFD method is sufficient for the 
purpose of this study, i.e., demonstrating how to analyze cascade flows with the developed concepts. 

 
(a) (b)

Figure 4. The static pressure coefficient (Cp) on the blade wall surface; comparison between the current 
computational fluid dynamics (CFD) results and the experimental data in [28]. (a) ݔଷ ⁄ܥ = 50%; (b) ݔଷ ⁄ܥ = 29.7%. 

Both model results at the incidence angle of 4° are shown in Figure 5, which indicates that the 
two models predict similar patterns of entropy generation. ሶܵᇱᇱᇱ close to the hub is stronger according 
to Equation (35) (see Figure 5f) than Equation (31) (see Figure 5e), since the turbulence production is 
stronger than the turbulence dissipation in this region. In other words, not all of the produced 

Figure 3. The computational domain and the mesh resolution in a cross section.

The entropy generation in the temperature field was neglected in the present test case, since it
is much smaller than the one in the flow field. The global static temperature at the inlet and outlet
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were approximated according to the ideal gas law, i.e., T = P/(ρR). The specific gas constant R is
287.1 J kg −1 K−1. Since the density ρ is a constant, the global temperature is proportional to the global
static pressure.

The entropy generation rate density in the flow field
.
S
′′′
D was calculated with Equations (31) and (35).

When Equation (31) is adopted, the turbulent dissipation rate ε must be determined corresponding to the
specific turbulent model. For the k-ω SST turbulence model in use, ε is calculated by

ε = ρβ∗kω (39)

where β∗ is the constant used in the k-ω SST turbulence model. It is determined empirically according
to experimental and DNS data. Reference [28] suggests its value to be 0.09.

The static pressure coefficient Cp at two sections (x3/C = 50% and 29.7%) are shown in Figure 4.
The gap between the current CFD results and the experimental data in [28] is due to the model error.
The accuracy can be further improved by using more accurate CFD methods, e.g., the large eddy
simulation (LES) method. However, the current low cost CFD method is sufficient for the purpose of
this study, i.e., demonstrating how to analyze cascade flows with the developed concepts.
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Figure 4. The static pressure coefficient (Cp) on the blade wall surface; comparison between the
current computational fluid dynamics (CFD) results and the experimental data in [28]. (a) x3/C = 50%;
(b) x3/C = 29.7%.

Both model results at the incidence angle of 4◦ are shown in Figure 5, which indicates that the
two models predict similar patterns of entropy generation.

.
S
′′′
D close to the hub is stronger according

to Equation (35) (see Figure 5f) than Equation (31) (see Figure 5e), since the turbulence production
is stronger than the turbulence dissipation in this region. In other words, not all of the produced
turbulence is dissipated locally. Similar phenomena can be found at other incidence angles: see
Figure 6. However, according to our assumption, the turbulence production is in balance with the
turbulence dissipation when the domain size is sufficiently large. This assumption was validated by
our numerical results: the volume-integrated entropy generation rates by Equations (31) and (35) can
be found in Table 2, which are almost identical. Compared with Equation (31), Equation (35) is more
general and is independent of turbulence models.



Entropy 2017, 19, 470 12 of 19

Entropy 2017, 19, 470  11 of 18 

 

turbulence is dissipated locally. Similar phenomena can be found at other incidence angles: see Figure 
6. However, according to our assumption, the turbulence production is in balance with the turbulence 
dissipation when the domain size is sufficiently large. This assumption was validated by our 
numerical results: the volume-integrated entropy generation rates by Equations (31) and (35) can be 
found in Table 2, which are almost identical. Compared with Equation (31), Equation (35) is more 
general and is independent of turbulence models. 

 
(a) (b)

 
(c) (d)

 
(e) (f)

Figure 5. The distribution of the entropy production rate density at different cross sections. The 
incidence angle ߙ is 4°. (a) Equation (31), ݔଶ/݈ௗ = 50% (mid-plane); (b) Equation (35), ݔଶ/݈ௗ = 50% 
(mid-plane); (c) Equation (31), ݔଶ/݈ௗ  = 25%; (d) Equation (35), ݔଶ/݈ௗ  = 25%; (e) Equation (31), ݔଶ/݈ௗ = 5% (close to the hub); (f) Equation (35), ݔଶ/݈ௗ = 5% (close to the hub). 

Figure 5. The distribution of the entropy production rate density at different cross sections.
The incidence angle α is 4◦. (a) Equation (31), x2/lbld = 50% (mid-plane); (b) Equation (35),
x2/lbld = 50% (mid-plane); (c) Equation (31), x2/lbld = 25%; (d) Equation (35), x2/lbld = 25%;
(e) Equation (31), x2/lbld = 5% (close to the hub); (f) Equation (35), x2/lbld = 5% (close to the hub).
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Figure 6. The distribution of the entropy production rate in a plane close to the hub (x2/lbld = 5%) for
different incidence angles. (a) α = 2◦, Equation (31); (b) α = 2◦, Equation (35); (c) α = 4◦, Equation (31);
(d) α = 4◦, Equation (35); (e) α = 7◦, Equation (31); (f) α = 7◦, Equation (35).
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Table 2. Time- and volume-averaged dimensional Reynolds Averaged Navier–Stokes (RANS) results.
The local entropy generation rate

.
S
′′′

D was calculated with Equation (35). ∆
.
Si,com/(2Nbla) is the entropy

generation rate in a half-cascade passage, and ∆
.
Si,com is the entropy generation rate in a cascade.

Bulk Variables ff = 0◦ ff = 2◦ ff = 4◦ ff = 7◦

∆
.
Si,com/(2Nbla) (W K−1)

(Equation (31))
0.0705 0.0795 0.0976 0.108

∆
.
Si,com/(2Nbla) (W K−1)

(Equation (35))
0.0695 0.0782 0.101 0.112

.
m/(2Nbla) (kg s−1) 0.6897 0.656 0.621 0.568

Pinl (Pa) 101,009 100,996 101,004 101,015
P∗inl (Pa) 101,955 101,941 101,949 101,960
Tinl (K) 296.94 296.90 296.93 296.96
T∗inl (K) 299.72 299.68 299.71 299.74

Pout (Pa) 101,325 101,325 101,325 101,325
P∗out (Pa) 101,922 101,896 101,886 101,888
Tout (K) 297.87 297.87 297.87 298.87
T∗out (K) 299.53 299.55 299.52 299.53

In the current test case, we are only able to compare the entropy generation rate in the flow
field since the energy equation was not solved. More systematic studies, e.g., cascade flows at high
Mach numbers, are still required to validate the equivalence between Equation (32) and Equation (36).
Besides the entropy generation rates, the other integral quantities for calculating the dimensionless
coefficients are also provided in Table 2.

Fluid properties in the combustion chamber, including the specific combustion heat
.

Q1/
.

m, the
heat capacity cp, and the environmental temperature T∞, are required to determine the local exergy
transformation number ηE

com,i, which is defined by Equation (24). The values of these parameters are
shown in Table 3.

Table 3. The reference parameters for calculating the local exergy transformation number ηE
com,i.

.
Q1/

.
m

and cp are the properties of the gas in the combustion chamber.

Parameters Values

T∞ (K) 288.15
.

Qcbc/
.

m (J kg−1) 4× 105

cp (J kg−1 K−1) 1005

The global coefficients ζp, ζs, and ηcom,i according to the RANS results are shown in Table 4.
Both the total pressure loss coefficient ζp and the entropy loss coefficient ζs indicate that losses in the cascade
increase with the incidence angle. However, the exergy transformation coefficient ηE

com,i suggests that
the optimal incidence angle is 2o, at which cascade works with the best overall performance: although
more losses due to irreversibility occur at 2o than at 0o, a larger pressure ratio is obtained through the
cascade, which increases the potential exergy obtained in the combustion chamber QE

com,i.

Table 4. Global coefficients according to the RANS results. The local entropy generation rate
.
S
′′′

D was
calculated with Equation (35). The optimal exergy transformation number is shown with grey background.

Dimensionless
Coefficients ff = 0◦ ff = 2◦ ff = 4◦ ff = 7◦

ζp (Equation (15)) 0.0349 0.0476 0.0667 0.0762
ζs (Equation (16)) 0.0107 0.0127 0.0173 0.0210

ηcom,i (Equation (24)) 0.000490 0.000500 0.000455 0.000411
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The exergy transformation number ηcom,i is linearly related with the environmental temperature
T∞, thus T∞ does not influence the optimal results. Figure 7 shows the influence of the other reference
parameters

.
Qcbc/

.
m and cp on ηcom,i: ηcom,i decreases with

.
Qcbc/

.
m and increases with cp. However, the

optimal results are not influenced by
.

Qcbc/
.

m and cp when they are only mildly changed.
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6. Conclusions

Several fundamental aspects with respect to the SLA of the turbulent flows in gas turbines were
discussed in this study.

Entropy and exergy equations (Equations (8) and (11)) for compressible/incompressible flows in a
rotating/non-rotating frame were derived. The derivation shows that the Navier–Stokes equations and
the energy equation are sufficient to satisfy the second law of thermodynamics, thus it is not necessary
to solve the entropy and exergy equations to evaluate their quantities. The entropy and exergy can be
determined by the post processing of CFD simulations. However, the entropy and exergy equations
and their budgets are helpful tools for analyzing the irreversible processes in gas turbines.

The exergy transformation efficiency ηE of a gas turbine as well as the exergy transformation number
ηE

i of a single process step i were proposed in this study. ηE
i in a turbine cascade, a compressor cascade,

or the combustion chamber are suggested to be calculated by Equations (23), (24), or (28). The value of
ηE

i indicates the overall effects of an irreversible process, including its destruction of exergy and its
contribution to the potential exergy obtained in the combustion chamber. ηE

i can be used to assess the
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performance of an isolated process in a gas turbine, since only local flow and temperature fields are
required to calculate its value.

The methods for calculating the local entropy generation rate densities were discussed. It was
suggested to use turbulence production rates (Equations (35) and (36)) instead of the turbulence dissipation
rates (Equations (31) and (32)) to calculate the local entropy generation rate densities. The assumption
behind this approximation is that the turbulence production rate is in balance with the turbulence
dissipation rate when the domain is sufficiently large. An advantage of Equations (35) and (36) is that
they are independent from the choices of turbulence models. However, more systematic studies, e.g.,
LESs of cascade flows at high Mach numbers, are still required to further validate these equations.

A test case with respect to a compressor cascade has been employed for applying the concepts
developed in the study. The numerical results show that the entropy generation rates calculated by
Equations (35) and (31) are almost identical. The exergy transformation number suggests an optimal
incidence angle at which the compressor cascade works with the best overall performance.

Acknowledgments: The authors gratefully acknowledge the support of this study by the DFG-Heisenberg
program (JI 253/1) and the grants of National Natural Science Foundation of China (No. 51676184 and
No. 51506195). The acknowledgement is also given to X. Ottavy of Ecole Centrale de Lyon for the data support of
our test case and H. Herwig of Hamburg University of Technology for the helpful discussion with him.

Author Contributions: Yan Jin proposed the models and derived the mathematical equations. Juan Du, Zhiyuan Li,
and Hongwu Zhang performed the CFD simulation. Juan Du and Yan Jin wrote the paper together. Juan Du,
Hongwu Zhang, and Yan Jin had deep discussion about the model and the numerical results. All authors have read
and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

e local specific internal energy, J kg−1

eE local specific exergy of the fluid, J kg−1

et local relative total energy, J kg−1

fi body acceleration rate component, m s−2

F body acceleration rate vector, m s−2
.
E bulk specific primary energy rate, J kg−1 s−1

h local specific enthalpy, J kg−1

hE local specific exergy of a gas in an open system, J kg−1

k local kinetic energy, m2 s−2

kT,inl inlet specific turbulent kinetic energy, m2 s−2
.

m mass flow rate, kg s−1

ni direction vector of a surface element
lbld length of the blade span, m
Ni energy devaluation number of process step i
Nbld blade number in a cascade
p local pressure, N m−2

P bulk pressure, N m−2

Pro local turbulence production rate, kg m−1 s−3

Proθ local temperature fluctuation production rate, J K m−3 s−1
.

Qcbc heat generation rate in the combustion chamber, J s−1
.

Q3−0 heat release rate in a reversible Brayton cycle, J s−1
.

Q3′−0 heat release rate in an irreversible Brayton cycle, J s−1

.
Q

E
3′−0 exergy of the heat release rate

.
Q3′−0, J s−1

.
Q

E
exergy of the heat generation rate

.
Qcbc, J s−1
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.
Q

E
i contribution of process i to

.
Q

E
, J s−1

R specific gas constant, J kg−1 K−1

s local specific entropy, J kg−1 K−1

sij strain rate tensor, s−1

S bulk specific entropy, J kg−1 K−1
.
S
′′′

C entropy generation rate density in the flow field, J K−1 m−3 s−1
.
S
′′′

D entropy generation rate density in the temperature field, J K−1 m−3 s−1
.
Sirr bulk specific entropy potential rate, J kg−1 K−1 s−1

T bulk temperature, K
u local velocity vector, m s−1

ui local velocity component, m s−1

v local frame velocity vector, m s−1

vi local frame velocity component, m s−1
.

Wt shaft power of a rotor, J s−1

x displacement vector, m
xi coordinate vector component, m
Greek symbols
∆

.
Si entropy generational rate in process i, J s−1 K−1

ε local turbulence dissipation rate, kg m−1 s−3

εθ local temperature fluctuation dissipation rate, kg K m−1 s−3

λ thermal conductivity, J s−1 m−1 K−1

µ dynamic viscosity, kg m−1 s−1

ηideal efficiency of an ideal Brayton cycle
ηreal efficiency of a real Brayton cycle
ηE exergy transformation efficiency
ηE

i exergy transformation number of process step i
θ local temperature
τij viscous stress tensor, k gm−1 s−2

ω angular velocity vector, s−1

ωT, inl inlet specific dissipation rate in the k-ω SST turbulence model, s−1

ζh enthalpy loss coefficient
ζp stagnation pressure loss coefficient
ζs entropy loss coefficient
Subscripts
1, 2, 3, 4 four states of an ideal Brayton cycle
A cross section
bld blade number in a cascade
cbc combustion chamber
com compressor
C temperature field
D flow field
i process step index or vector component index
inl inlet
is isentropic value
j vector component index
out outlet
r relative value
t total value
T turbulence
tur turbine
w wall surface
∞ environmental value
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Superscripts
E exergy
S entropy
* stagnation value
‘ irreversible process

Reynolds averaging
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