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Abstract: The determination of the probability distribution function (PDF) of uncertain input
and model parameters in engineering application codes is an issue of importance for uncertainty
quantification methods. One of the approaches that can be used for the PDF determination
of input and model parameters is the application of methods based on the maximum entropy
principle (MEP) and the maximum relative entropy (MREP). These methods determine the PDF that
maximizes the information entropy when only partial information about the parameter distribution
is known, such as some moments of the distribution and its support. In addition, this paper shows
the application of the MREP to update the PDF when the parameter must fulfill some technical
specifications (TS) imposed by the regulations. Three computer programs have been developed:
GEDIPA, which provides the parameter PDF using empirical distribution function (EDF) methods;
UNTHERCO, which performs the Monte Carlo sampling on the parameter distribution; and DCP,
which updates the PDF considering the TS and the MREP. Finally, the paper displays several
applications and examples for the determination of the PDF applying the MEP and the MREP,
and the influence of several factors on the PDF.

Keywords: maximum entropy principle; maximum relative entropy principle; information entropy;
updating probability distribution functions

1. Introduction

In many industrial applications, researchers, engineers, and organizations use computer codes that
contain the state of the art of a given branch of engineering. These codes use, in general, physical models
that are the state of the art for a given application, for instance CFD (computational fluid dynamics)
codes such as ANSYS-CFX or STAR-CD for fluid engineering applications, FEM (Finite Element
Method) codes as ANSYS for mechanical engineering applications, thermal-hydraulics codes as RELAP
or TRACE for nuclear engineering applications, and so on [1–3]. In general, these codes need a set of
input data that can be classified as: initial and boundary conditions, geometric data, physical property
data, and model parameter data. The methodologies known as BEPU, meaning Best-Estimate Plus
Uncertainty, try to estimate the uncertainty in the code response once the uncertainty in the input and
model data have been obtained and propagated from the input to the output [4,5]. These methodologies
provide a set of output results plus their uncertainties in the form of tolerance regions with prescribed
levels of coverage and confidence, usually 95/95, meaning a 95% of coverage and 95% confidence.
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Depending on the type of computational code, the number of uncertain input parameters can be small
or large; if the number of uncertain parameters is large, there exist some techniques, as the sensitivity
analysis or the PIRT (phenomena identification and ranking table), which allow the reduction of the
number of uncertain parameters to only those that have a certain degree of influence on the output
results, or, in the case of nuclear engineering, on the critical safety output parameters [5,6].

One of the main problems found in this type of work is the determination of the probability
distribution of the input and model parameters. Occasionally, we only know the parametric family of
the distribution of a given uncertain parameter X, but the distribution parameters θ(θ1, θ2, . . . , θn) are
unknown. So, the set of unknown parameters of the probability distribution function (PDF) pX( x|θ)
must be determined. Other times, we do not know the distribution of the parameter, but we know
some moments of the distributions, so we need a method to obtain the parameter distribution from the
partial information that we have on the moments. In addition, it is possible that regulatory restrictions
are imposed on some input parameters. For instance, the nuclear regulatory agencies around the
world impose the so called ‘technical specifications’ (TS) that must be fulfilled by some operational
plant parameters, and surveillances are periodically performed to know if the plant parameters verify
these TS [7,8]. These additional restrictions can modify the PDF of a given parameter, so we need
methods to determine the parameter distributions from the available information and, at the same
time, to determine the change in these distributions produced by the TS. Notice that to know if the TS
are verified, the parameter values of some components are surveilled periodically and if its values are
not within the intervals indicated by the TS, then, modifications are performed to change its values to
fulfill the TS. The application of the MEP and the MREP provides a method to determine the PDF of
the unknown parameters when partial information is known. The methodology consists of selecting
the PDF that maximizes the Shannon information entropy and, at the same time, fulfills the restrictions
imposed by the known information in the form of known moments, these ideas were initiated by
Shannon and Jaynes [9–12] and then were further elaborated by Mead and Papanicolau [13], Montroll
and Shlesinger [14], Shore and Johnson [15], among other researchers.

The application of the MEP to engineering problems has been performed in the past by different
authors to know the parameter distribution for some cases [5,16–20], when limited information was
known about the parameter distribution, for instance, some moments of the distribution and its support
interval. This case is studied in this paper and two additional ones that need the application of the
MREP: the first case is when new information is available on a given parameter and we need to update
the distribution considering the previous one and the new available information, this problem can also
be studied by Bayesian methods as in Caticha and Preuss [21]. The second case is when there are some
technical specification (TS) that can have some influence on parameter distribution. These technical
specifications can fix some acceptance intervals for some parameters and, also, they establish detailed
instructions to perform periodical surveillance to check the fulfillment of the TS [7,22].

The main objective of the paper is to develop a methodology to obtain the unknown probability
distribution functions of the parameters that enter into BEPU analysis when only partial information
is available about these parameters using the MEP, this information could be provided as some known
distribution moments or support. A second objective is the updating of the parameter distribution
when new information is provided. In this case, the MREP is used to update the PDF, using the old
PDF as ranking function. The third objective is how to consider the effect of the technical specifications
imposed by regulatory authorities on the probability distributions of the input parameters that must
fulfill these TS. Finally, a four objective is to develop tools to apply these developments to real cases
found in the applications. These developments are of relevance for present and future applications of
BEPU and uncertainty quantification of the results of many engineering applications.

The aim of the paper is to assemble, in a single paper, the basic ideas of the maximum entropy and
the maximum relative entropy principles, and the applications of these principles to solve common
problems found in BEPU engineering analysis, including the technical specifications imposed by the
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regulations. In addition, a few key deductions have been explained with detail in order that people
learns how to apply these techniques to solve specific problems.

The paper has been organized as follows:
Section 2 gives a brief introduction on uncertainty quantification in engineering codes. The goal

of this section is to analyze the fields where the principles of maximum entropy and maximum relative
entropy can be applied.

In Section 3.1, we explain how to apply the principle of maximum entropy to the determination
of the probability distribution function when some moments of the distribution are known; whereas
in Section 3.2, we explain the application of the maximum relative entropy to update PDF when
new information is available; finally, in Section 3.3 it is explained the application of the MREP to the
determination of the PDF considering the technical specifications imposed by regulatory authorities.

In Section 4, we give some examples of the application of the MEP and the MREP to some cases
that can appear in the applications. Section 4.1 shows the application of the MEP and the MREP to
the case of known support [−∞, ∞] and previously known mean µ, and variance σ2 when the TS
impose an acceptance interval [L, U] with coverage γ and confidence β. In Section 4.2, we explain the
application of the MREP to several cases with previously known distributions when new information
is known with and without technical specifications (TS). In Section 4.3, we explain the application of
the MREP to the case of a parameter with a previous truncated Gaussian distribution, for which the
updated data have the same mean and support but different variance. Finally, Section 4.4 of this paper
shows the results obtained applying the MEP to several cases found in the applications.

In Section 5, we explain the programs that have been built to apply the previous development to
some real cases, also in this section we display some applications of the previous programs to some
particular cases.

Finally, in Section 6 we discuss the main findings and conclusions of the paper.

2. Uncertainty Quantification in Thermal-Hydraulics and CFD Codes

In this section, we give some brief outlines about the possible fields were the application of the
maximum entropy principle and the maximum relative entropy principle could be useful.

2.1. BEPU Methodologies in Nuclear Engineering Applications

Deterministic safety analysis (DSA) is the analytic tool used in the design of nuclear power plants.
DSA methodologies are used to calculate a number of safety magnitudes as defined by regulatory
authorities for different ‘design basis accidents’. DSA methodologies can be roughly classified in two
categories conservative and realistic (BEPU). Computational codes are used in DSA methodologies
to obtain the safety magnitudes of interest. Conservative methodologies use predictive models and
assumptions that introduce a pessimistic bias on calculated safety magnitudes. For this reason, they do
not need an uncertainty analysis of the results.

The acceptance criteria in these conservative methodologies are simple, considering that the
predictive model of the computational code can be viewed as a multidimensional function

Y = R(X) with X ∈ Rn, Y ∈ Rm (1)

where Y represents the output response of the code (i.e., the calculated safety magnitudes for a given
design basis transient or accident), that is generally multidimensional, and consists in a set of values
of the safety parameters of interest versus time. The code can be considered as a certain function
transforming the input and model data X in the code output Y f or a given scenario, that describes
a certain transient or accident type. In these kinds of methodologies, where very conservative models
and input parameter data are used, the acceptance criteria are very simple and express the fact that
the output safety variables Y computed by the code must be located inside a prescribed region of the
code output space, called the ’safety region’ (SR). The safety region specifies certain limits for the
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components of Y to assure the safety of the design for the considered scenario. If the output vector
remains inside this region, the safety is guaranteed for the considered scenario so we must have

Y ∈ SR ⊂ Rm (2)

The components of the vector Y are plant magnitudes like temperatures, pressures, and degrees
of oxidation at specific reactor locations.

The other kind of methodologies, known as realistic or BEPU (Best-Estimate Plus Uncertainty)
methodologies, use models and input data values that contains the state of the art for the physical
models and numerical methods used to solve a set of problems. Because the parameter models and
input data contains a certain degree of uncertainty, and this uncertainty is propagated from the input to
the output through the code. Then, in the BEPU methodologies, the acceptance criteria with a degree
of coverage γ0 and confidence β0 is written, in a probabilistic way, as follows [4]

ProbS(ProbY(Y ∈ SR) ≥ γ0) ≥ β0 (3)

Equation (3) states that Y must be inside SR with a probability of at least γ0 (termed level of
coverage) and a statistical confidence β0 (termed level of confidence). The pair γ0/β0 is termed level
of tolerance of the criterion (3).

One immediately observes that the acceptance criteria in the BEPU methodologies adopt a more
complex form than in the conservative methodologies. Equation (3) contains two nested probabilities,
the inner one refers to the uncertainty on Y, propagated from the uncertain input X and model data
to the output for a sample of finite size N. This uncertainty is produced by the random nature of X,
that generally are sampled by Monte Carlo and then propagated by the code to the output. The outer
probability is due to the finite size of the sample S used to perform the Monte Carlo sampling and
propagate the results from the input to the output, if we choose another samples of the same size the
results will be different but at least β0 × 100% of the results will have a degree of coverage bigger
than γ0.

To perform the BEPU methodologies, one key point is to use Monte Carlo to perform the random
sampling over the distribution of the uncertain input data and model parameters. However, to perform
this sampling one needs the PDF of the parameter to be sampled. Here the principles of maximum
entropy and maximum relative entropy enter in action. Because the parameter distribution is not
always known for all the parameters and we have in some cases only a partial knowledge about some
moments of the parameters and the support of the distribution, these two principles MEP and MREP
can be used to obtain the PDF that maximizes the entropy in the first case and the relative entropy
in the second case and, at the same time, satisfy the restrictions imposed by the partial information
known about the parameters. Another important issue that appears in nuclear engineering, and in
some branch of engineering subject to technical specifications (TS) on certain operational parameters,
is the influence of these specifications on the PDF. This issue is also studied in the next section.

2.2. Application of the MEP and the MREP to the Determination of the Uncertainty in the Results of Heat
Transfer Codes and CFD Codes

Another field of application of the MEP and the MREP is to the determination of the PDF of the
input parameters of heat transfer and CFD problems. If we have partial information on some parameter
that fixes the boundary conditions of a given heat transfer problem, the use of the MEP or the MREP
allow us to obtain the parameter PDF that maximizes the information entropy and, at the same time,
satisfy the restrictions imposed by the partial knowledge on the parameter. For instance, the VV20
ASME standard [23] set the following problem: let us assume that one wants to obtain the temperature
distribution versus time for a planar 1D slab exposed to a constant heat flux q′′ at one face and
adiabatic condition on the other face, and with a uniform initial temperature distribution at time t = 0,
{Ti,0 = constant}n

i=1, being n the number of nodes. The uncertainty in the computed temperatures Ti
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(output) at different times and different nodes for this simple case is due to the uncertainty in the heat
flux q′′ , the uncertainty in the conductivity k of the slab material, the uncertainty in the product ρcp

(density times the specific heat at constant pressure), and the uncertainty in the initial temperatures.
So, the vector of input data that are uncertain for this simple case is

{
q′′ , k, ρcp , Ti,0

}
. One of the most

common techniques used to evaluate the distribution of the output is using the Monte Carlo method
that requires N random samples to be obtained by sampling on the PDF of each parameter, and then
to run the code N times and to obtain N samples of the output. The inconvenience of this method is
that the convergence is bad. So, an alternative to this method, is the latin hypercube sampling (LHS)
that requires the knowledge of the cumulative distribution function of the input parameters. In this
method, the range of each uncertain parameter is divided into nLHS bands of equal probability. Within
each band a sample is drawn from the parameter PDF. The result is a matrix of nLHS × np values, being
np the number of uncertain parameters. To assure full coverage, the input and model parameters are
combined in a random way as described by Helton and Davies [24,25]: “The nLHS values obtained for
X1 are paired at random and without replacement with the nLHS obtained for X2. These nLHS pairs are
combined in a in random manner and without replacement with the nLHS of X3, to obtain nLHS triples,
and so on...”. Then we proceed by running the code nLHS times with the np tuples being different from
one run to the other. Finally, the mean and the variance are estimated by standard statistical methods.

3. Application of the Maximum Entropy Principle and the Maximum Relative Entropy Principle
to the Determination of the PDF with and without Technical Specifications

3.1. Application of the MEP to the Case of Knowledge of Some Moments of the Distribution and Its Support

When the probability distribution function of a given parameter X with continuous distribution is
unknown and some moments of the parameter distribution are known, then, we apply the maximum
entropy principle (MEP) to obtain the parameter distribution following the ideas of Jaynes [11,12].
If fX(x) denotes the probability density function of the random parameter X, and FX(x) the cumulative
distribution function, Claude Shannon defined the concept of information entropy H as a measurement
of the uncertainty associated to the result of a given process [9]. If X has a compact support,
i.e., the random variable X can take values between a and b, with b > a, being [a, b] the distribution
support; then the Shannon information entropy is defined by the expression [5,9,10,16]

H = −
b∫

a

fX(x) log( fX(x))dx = −
b∫

a

log( fX(x))dFX (4)

Usually, we have statistical information about some moments of the PDF, defined in the general form

b∫
a

gi(x) fX(x)dx = µ(gi) = µi, i = 0, 1, 2, . . . , n (5)

In general, the functions gi(x) define the different moments of the distribution function of the
parameter X, where the index i runs from 1 to the number n of previously known moments, the index
0 is reserved for the normalization condition of the PDF, i.e., when we make g0(x) = 1, and µ0 = 1.

The problem to be solved in information theory when applying the MEP is to obtain the PDF
expression fX(x) that maximizes the information entropy and, at the same time, obeys the set of
restrictions displayed in Equation (5). To solve this problem, variational calculus is generally used and,
first, we build the following functional J[ fX(x)] that includes the restrictions of Equation (5) by means
of the Lagrange multiplier method

J[ fX ] = −
b∫

a

fX(x) log( fX(x)) dx +
n

∑
i=0

λi

 b∫
a

dxgi(x) fX(x) − µi

 (6)
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The variational calculus looks for the PDF fX(x) that maximizes the information entropy and
is consistent with the available constraining information. So that one looks for the PDF fX(x) and
the Lagrange multipliers λi values such that we have an extreme of the functional J[ fX(x)], and at
the same time the set of restrictions (5) are satisfied. To find this extreme, one considers an arbitrary
perturbation αδ fX(x) that vanishes at the end points a and b of the support interval. According to the
variational calculus, the first variation δJ[ fX(x)] of the functional J[ fX(x)] is given by

δJ =
[

∂J( fX(x) + α δ fX(x))
∂α

]
α=0

= 0 (7)

Performing the calculations in Equation (7) because of Equation (6) yields

δJ =
b∫

a

δ fX(x)

(
− log( fX(x))− 1 +

N

∑
i=0

λigi(x)

)
dx = 0 (8)

Due to the arbitrary character of the perturbation δ fX(x) the term inside the brackets in
Equation (8) must be zero so it is obtained for the PDF of the parameter the following expression

fX(x) = exp

{
−1 +

N

∑
i=0

λigi(x)

}
(9)

The values of the constants λi are obtained from the available information on the distribution
moments given by the set of Equation (5). In general, to obtain the parameter values of λi it is necessary
to solve a non-linear system of algebraic equations as will be shown later.

3.2. Application of the Maximum Relative Entropy (MREP) to the Case of New Updating Information

The principle of maximum relative entropy (MREP) can be applied in the following two cases.
The first one is to update a previous or ‘a priori’ PDF denoted by fX(x) of a given parameter when new
information is available, this information can be provided as new data or moments of the distribution.
The second case is when a regulatory body impose some specifications or restrictions on the parameter
values that modify the parameter distribution, this second case will be studied separately.

Let us now study the first case, assuming that the parameter follows an unknown probability
density qX(x) in the support interval [a, b]. Let us assume that we have a previous estimation or
‘a priori’ estimation fX(x) of the true PDF. Then, at a later time or ‘a posteriori’, we have obtained
additional information as moments or data of the unknown PDF. Therefore, we need to update the
probability distribution considering both the previously known distribution and the new information
or data available on the parameter. This goal can be achieved using the principle of the maximum
relative entropy (MREP). Caticha and Preuss [21] used this principle to develop updating methods that
are systematic and objective, they arrive to the conclusion that the unknown probability distribution
qX(x) should be ranked according to its relative entropy with respect to the previously known PDF
fX(x), this means

S(qX , fX) = −
b∫

a

dx qX(x) log
(

qX(x)
fX(x)

)
(10)

The new information generally comes as a set of known moments µ′i of the unknown distribution
qX(x) given by

E(gi) =
∫ b

a
dx gi(x)qX(x) = µ′i, i = 0, 1, 2, . . . n′ (11)

where the new moment values could be the same or different values from the previous ones, so we
distinguish the new values with a prime, also the number of new moments n′ could be different.
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To maximize the relative entropy subject to the new restrictions we build the new functional F(qX , fX)

with Lagrange multipliers λ′i and moments µ′i as

F(qX , fX) = −
b∫

a

dxq(x) log
(

qX(x)
fX(x)

)
+

n′

∑
i=0

λ′i

[∫ b

a
dx gi(x)q(x)− µ′i

]
(12)

Then, we use variational calculus again to obtain the PDF that maximizes the relative entropy and,
at the same time, satisfies the updated moment values, i.e., we set the first variation of the functional
F(qX , fX) to zero

δF(qX , fX) =

[
∂F(qX(x) + αδqX(x), fX(x))

∂α

]
α=0

= 0 (13)

This calculation yields, because the arbitrary character of the perturbation δqX(x), the result

qX(x) = fX(x) exp

{
−1 +

n

∑
i=0

λ′igi(x)

}
= fX(x)C(x) (14)

The set of updating parameters is obtained from the conditions (11). We notice that, by using the
maximum relative entropy principle, we update the old PDF by multiplication by a new updating or

correcting function C(x) = exp {−1 +
n
∑

i=0
λ′igi(x)}.

3.3. Application of the Maximum Relative Entropy to the Case of Imposing Restrictions or Technical
Specifications by a Regulatory Body

In some branches of engineering, as nuclear engineering, some operational parameters
are subject to technical specifications (TS) set by the regulatory authorities. For instance,
the opening pressure of the safety and relief valves of a nuclear plant must lie inside the interval[
L0 = preg,o − 0.015preg,o, Uo = preg,o + 0.015preg,o

]
, and a similar interval for closing, where the

value preg,o denotes the reference pressure value at what a specific valve should open when the
pressure reaches this value, the reference value for closing is in general different than for opening.
Therefore, the TS fixes the acceptance interval limits for the opening or closing pressures during the
periodical surveillances. If during the periodic surveillance the opening or closing pressures are
outside the limits fixed by the TS, the conditions of the valve are modified to fulfill the TS [26,27].

Technical specifications are intimately related to deterministic safety analysis. Safety analyses are
aimed to prove that the plant operation allowed by TS is safe enough. For traditional conservative
analyses, the TS give the regions, in the input parameter ranges, where the safety analyses are valid and
give acceptable results (i.e., results that fulfill the regulatory acceptance criteria). In fact, conservative
safety analyses are performed, setting the operational parameters on their TS limits.

However, things are different when the analyses are performed with BEPU methodologies. If we
assume that some operational parameters are assigned probability distributions, an important point is
how to choose the distributions in order to ensure that the allowed operation is being evaluated.

This problem of the compatibility of TS and BEPU methodologies has not received enough
attention in the regulatory and academic community. A first approach is found in [22], where regulatory
criteria are proposed on the probability distributions assigned to operational parameters so that it is
ensured that the BEPU analyses adequately ‘explore’ the acceptance region defined by the TS.

Therefore, when assigning probability distributions to an input parameter controlled by TS, we
can distinguish two different problems:

(1) Assigning a distribution to the parameter that represents the normal operation of the plant. In this
case, TS acts as a restriction imposed to the normal plant values. This type of distribution is
useful if we want to make BEPU analysis of the normal operation of the plant.
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(2) Assigning a distribution to the parameter that represents the allowed operation, rather than the
normal operation, of the plant. In this case, we need a fictitious distribution for the parameter,
producing high enough probability to be in regions close to the TS limits. This approach is useful
in licensing analysis, when we want a BEPU analysis of the allowed operation of the plant.

In a sense, options (1) and (2) are complementary. Reference [22] was devoted to option (2),
because it refers to the licensing analysis, where operation allowed by TS is evaluated. In the present
paper, we study option (1), useful for the analysis of normal plant operation. However, the application
of the methods here described to option (1) is straightforward; also, the methods developed in this
paper can be applied to option (2), as explained later in Section 5.4.

In probabilistic analysis BEPU, it is assumed that the parameter values are inside the interval
[L, U] with a coverage probability of γ and a degree of confidence of β. Normally, these probabilities
are expressed in % and are 95/95, what means that we have a coverage probability of 95% with
a confidence of 95%. Therefore, for a number of cases N, or data sample size N, we have a probability
p of the random parameter to belongs to the acceptance interval [L, U] when we have a coverage
probability γ and a confidence of β. The way to obtain the p-value is deduced and explained in
Appendix A, and involves solving the following equation

Ip(M, N −M + 1) = β (15)

where M =
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is the ceiling function of y; Ix(a, b), is the incomplete beta function with
parameters x, a, and b, see Appendix A for more details. γ and β are respectively a coverage and
a confidence level, with values close to 1 (typically 0.95). Notice that the coverage and confidence levels
in (15) refer to the fulfillment of the TS by an input parameter, and are conceptually different from the
coverage and confidence levels in (3) that refer to the output of the BEPU analyses. It is important to
remember that the size of the Monte Carlo sample, N, is obtained from the tolerance level in (3).

Condition (15) means that a fraction γ of the N sample values falls into the acceptance interval
[L, U] with a probability β. Here we have followed the approach used in [22] for assignation
of distributions.

For instance, the solution of Equation (15) using the inverse of the incomplete beta function,
i.e., “betaincinv” of MATLAB with N = 93, β = 0.95, M = 0.95 × 93 = 89 gives p = 0.9786.
Therefore, in this case, the additional restriction that we have on the PDF and that is imposed by
the technical specification is

U∫
L

qX(x)dx = p (16)

The condition (16) can be expressed if the support of the distribution is [a, b] as follows

b∫
a

qX(x)[H(U − x)− H(L− x)]dx = p (17)

where H(U − x) is the Heaviside function that is zero for x > U, and 1 for the rest of values; H(L− x)
is the Heaviside function that is zero for x > L, and 1 for the rest of values.

The question is that the TS through the surveillance and repairing actions modifies the parameter
distribution in such a way that some parameter of the distribution could be modified to fulfill
Equation (16), normally this parameter is the variance of the distribution that it is changed to comply
with (16). The regulatory authority could modify the value of p given by (15) to perform a conservative
analysis [22]. This last point will be discussed later in Section 5.4.3. Let us discuss the general conditions
that must verify qX(x), first the function must be a continuous function in order to have an unambiguous
probability value for each x, second for these kind of problems influenced by the TS, the average value of
the distribution in general does not change for symmetrical distributions because this value represents
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the reference value of the TS—i.e., the reference pressure for opening or closing the valve—although
this statement in some particular cases could change. Also, some moments such as the variance related
to the width of the distribution could change. The way to proceed is as follows, first with the known
support and the distribution moments we apply the MEP and we determine the previous probability
distribution, fX(x). Second, we build the functional that considers the moments that can change as
unknowns and take into account the TS condition (17) and the known moments

F(qX , fX) = −
∫ b

a
dx qX(x) log

(
qX(x)
fX(x)

)
+

n

∑
i=0

λ′i

[∫ b

a
gi(x)qX(x)− µ′i

]

+λ′n+1

[∫ b

a
dxqX(x)(H(U − x)− H(L− x))− p

] (18)

Proceeding as in the previous subsection—i.e., equating to zero the first variation—yields the
following expression for the new PDF that considers the TS and maximizes the relative entropy

qX(x) = fX(x) exp

{
−1 +

n

∑
i=0

λ′igi(x) + λ′n+1(H(U − x)− H(L− x))

}
(19)

The unknown parameter values of the new PDF are obtained from the updated conditions (11),
the TS condition (16), and the continuity of qX(x) at L and U. Some examples will be shown in the
next section.

4. Examples of Application of the MEP and the MREP to the Determination of the PDF of
Parameters with and without Technical Specifications

4.1. Application of the MEP and the MREP to the Case of Known Support [−∞, ∞] and Previously Known
Mean µ, and Variance σ2 When the TS Impose an Acceptance Interval [L, U] with Coverage γ and
Confidence β

This case appears sometimes during the application of BEPU methodologies. These methodologies,
first at all, determine the number of cases N to be run by the code by the Wilks formula [28,29],
that depends on the coverage and the confidence levels in (3), normally 95/95 for the output variable.
Once N is known, each input or model parameter of the code that is important in the output response
for the critical safety parameter must be randomly sampled N times over its distribution. Then, we
generate N data sets by Monte Carlo sampling over the PDF that follows each individual parameter.
Each data set contains a set of input parameters and the code is executed N times with each one of
these data sets. From the output results of the code, it is easy by order statistic methods to build
a tolerance interval for the desired output variable with a coverage γ0 and a confidence β0. Note that
this coverage and confidence for the output variable of the code are not necessary the same that for the
input parameter data.

It is easy to prove that if the random parameter has the support [−∞, ∞], mean µ, and variance
σ2, then the application of the MEP leads to a Gaussian distribution [5], see also Appendix B

fX(x) =
1√
2πσ

exp

(
−1

2

(
x− µ

σ

)2
)

(20)

Let us assume that when performing the sampling of the parameter we want that the parameter
complies the TS with a probabilistic criterion without changing the average value µ that is normally
related to the reference value of the TS. In addition, because we are applying a Wilks’ methodology with
N cases, we want that at least M = dγ Ne values of the parameter belong to the acceptance interval
[L, U] with confidence β. Therefore, the new probability density function qX(x) of the parameter must
verify the condition
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U∫
L

qX(x)dx =

+∞∫
−∞

qX(x)[H(U − x) − H(L − x)]dx = p (21)

While, as explained in Appendix A, p is obtained solving Equation (15). In addition, qX(x) must
verify the following set of conditions

+∞∫
−∞

qX(x)dx = 1;
∫ +∞

−∞
xqX(x)dx = µ;

∫ +∞

−∞
(x− µ)2qX(x)dx = σ′2 6= σ2 (22)

The value of the new unknown parameter σ′2 and the new distribution function will be obtained
applying the MREP, with the previously known PDF fX(x) as weighting or ranking reference once we
know the value of p that it is obtained by solving Equation (15), or has been set by the regulatory body.
The new function that contains the relative entropy and the set of restriction conditions is given by

F(qX , fX) = −
∫ +∞

−∞
dx qX(x) log

(
qX(x)
fX(x)

)
+ λ′0

[∫ +∞

−∞
dxqX(x)− 1

]
+λ′1

[∫ +∞

−∞
dxxqX(x) − µ

]
+ λ′2

[∫ +∞

−∞
dx(x− µ)2qX(x) − σ′2

]

+λ′3

[∫ b

a
dxqX(x)(H(U − x) − H(L − x)) − p

] (23)

Then, we equate to zero the first variation of (23), i.e., we set δF(qX , fX) = 0, and after some
calculus the following result is obtained for the new PDF that maximizes the relative entropy

qX(x) = fX(x) exp
(
−1 + λ′0 + λ′1x + λ′2(x− µ)2 + λ′3(H(U − x) − H(L − x))

)
(24)

The PDF given by Equation (24) must satisfy the conditions (21) and (22). Notice that inside
the acceptance interval [L, U] the difference of the Heaviside function is 1 and outside [L, U] is zero.
Therefore, Equation (24) can be expressed in the form

qX(x) = fX(x) D exp (λ′1x + λ′2(x − µ)2), i f x /∈ [L, U] (25)

qX(x) = fX(x) D′ exp (λ′1x + λ′2(x − µ)2), i f x ∈ [L, U] (26)

where the new constants D and D′ are given by the expressions

D = exp
(
−1 + λ′0

)
and D = exp

(
−1 + λ′0 + λ′3

)
(27)

From the continuity of the PDF qX(x), at x = L or x = U, it is obtained that D = D′. From this
condition, it is deduced that

exp
(
λ′3
)
= 1

yields−−−→ λ′3 = 0 (28)

Therefore, the new updated PDF that fulfills the TS is given, because of (20), (24), (27), and (28), by

qX(x) =
1√
2πσ

D exp

{
λ′1x + λ′2(x − µ)2 − 1

2

(
x − µ

σ

)2
}

(29)

Next, we consider that the PDF given by (29) must satisfy Equation (21) and the set of Equation (22).
In this case, we have assumed that the TS does not change the reference value, for instance, the reference
pressures to open the safety and relief valve, but the limitation imposed by the TS in Equation (21)
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is more restrictive and could change the variance of the distribution. Then, Equation (22) because of
Equation (29) yield the following set of conditions

+∞∫
−∞

dx
1√
2πσ

D exp

{
λ′1x + λ′2(x − µ)2 − 1

2

(
x − µ

σ

)2
}

= 1 (30)

+∞∫
−∞

dx x
1√
2πσ

D exp

{
λ′1x + λ′2(x − µ)2 − 1

2

(
x − µ

σ

)2
}

= µ (31)

+∞∫
−∞

dx (x − µ)2 1√
2πσ

D exp

{
λ′1x + λ′2(x − µ)2 − 1

2

(
x − µ

σ

)2
}

= σ′2 6= σ2 (32)

Together with Equation (21), written in the form

∫ U

L
dx qX(x; Θ) = FX(U; Θ) − FX(L; Θ) = p (33)

where Θ denotes the set of parameters values that determine the distribution function and that normally
depend on the type of distribution, for instance for a Gaussian these parameters are the mean and the
variance. FX(U; Θ) is the cumulative distribution function (CDF) evaluated at the upper limit U of the
acceptance interval, while FX(L; Θ) is the CDF evaluated at the lower limit L of the acceptance interval.

Then, Equation (31) can be written as

+∞∫
−∞

dx x
1√
2πσ

D exp
{

λ′1x +

(
λ′2 −

1
2σ2

)
(x − µ)2

}
= µ (34)

With the change of variables x − µ = t, we can express Equation (34) in the form

+∞∫
−∞

dt (t + µ)
1√
2πσ

D exp
{

λ′1(t + µ) +

(
λ′2 −

1
2σ2

)
t2
}

= µ (35)

Next because condition (30), Equation (35) simplifies to

+∞∫
−∞

dt t exp
{

λ′1(t + µ) + λ′3t2
}
= 0 (36)

where λ′3 =
(

λ′2 − 1
2σ2

)
. Because exp

(
λ′3t2) is an even function ( f (−t) = f (t)) and t is an odd

function ( f (−t) = − f (t)), then it follows that, in order that the integral (36) vanishes, the Lagrange
multiplier λ′1 must be equal to zero.

The coefficient D can be now calculated from (30), on account of λ′1 = 0

+∞∫
−∞

dx
1√
2πσ

D exp {λ′3(x− µ)2} =
+∞∫
−∞

dt
1√
2πσ

D exp
{

λ′3t2
}
=

1√
2πσ

D
√

π

−λ′3
= 1 (37)

Therefore, the coefficient D is given by the expression

D = σ
√
−2λ′3 (38)
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To compute the value of λ′3 we use condition (32), because (38), performing the change of variables
x − µ = t and the integral in (32), gives after some calculus

+∞∫
−∞

dx t2 1√
2πσ

D exp
{

λ′3t2
}
=

1√
2πσ

D
1

2
(
−λ′3

)√ π

−λ′3
= σ′2 (39)

From Equations (38) and (39), it is deduced that

λ′3 = − 1
2σ′2

(40)

Finally, after some trivial algebra, one arrives at the expression of the PDF qX(x; Θ) that considers
the technical specifications

qX(x; Θ) =
1√

2πσ′
exp

(
−1

2

(
x − µ

σ′

)2
)

(41)

Once we know the PDF type, we must obtain the unknown parameter value σ′, that in this case is
obtained solving the Equation (33), and looking for the value of σ′ such that the integral of the PDF
over the acceptance interval yields the probability p, that is obtained from (15). Then we will display
some calculations about this type of problem and their applications.

4.2. Application of the Principle of MRE to Cases with Previously Known Distributions When New Information
is Known without and with Technical Specifications

Some examples of parameter distribution updating are showed in this section. The updating with
the new information is performed using the maximum relative entropy principle. The entropy in this
case is ranked with respect to the previously known distribution, as explained in the previous section.

4.2.1. Application of the MRE Principle to the Case of a Parameter with Previously Uniform
Distribution in the Interval [a, b], and the New Information Available is the Parameter Mean Value µ

A common case for many parameters is to use a uniform distribution when their distributions are
unknown. As it is well known, uniform distribution maximizes the entropy in the interval [a, b] when
we do not have more information. This is the reason why in many BEPU analysis methodologies it is
assumed that many parameters follow the uniform distribution [30]. Let us assume that the previous
or ‘prior’ parameter distribution is the uniform one, given by

fX(x) =


1

b − a
, f or a ≤ x ≤ b

0, f or x /∈ [a, b]
(42)

If we know new information on the parameters, for instance the mean value µ, then we can use
the MRE principle to update the PDF with this information, as explained in Section 3. Then, if it
is assumed that the distribution support does not change, it is obtained because Equation (14) the
following result for the updated PDF

qX(x) =


1

b − a
exp

{
−1 + λ′0 + λ′1x

}
=

1
b− a

D exp
{

λ′1x
}

, f or a ≤ x ≤ b

0 , f or x /∈ [a, b]
(43)

In this case, the application of the normalization condition gives
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b∫
a

1
b− a

D exp
{

λ′1x
}

dx = 1
yields⇒ D =

λ′1(b − a)
exp

(
λ′1b
)
− exp

(
λ′1a
) (44)

Then, because of Equations (43) and (44), it is obtained that the updated PDF qX(x) is the following
truncated exponential

qX(x) =


λ′1

exp
(
λ′1b
)
− exp

(
λ′1a
) exp

{
λ′1x

}
, f or a ≤ x ≤ b

0 , f or x /∈ [a, b]
(45)

The value of the parameter λ′1 is obtained from the first moment condition that can be expressed
as follows

b∫
a

xqX(x)dx =
λ′1

exp
(
λ′1b
)
− exp

(
λ′1a
) b∫

a

x exp
{

λ′1x
}

dx = µ (46)

Performing by parts the integral that appears in Equation (46) yields the following equation that
must be solved to obtain the unknown Lagrange multiplier λ′1

b exp
(
λ′1b
)
− a exp

(
λ′1a
)

exp
(
λ′1b
)
− exp

(
λ′1a
) − 1

λ′1
= µ (47)

The unknown value of the Lagrange multiplier λ′1 depends on, b, and µ, and must be obtained
solving the non-linear Equation (47). For the case of a = −1 and b = 1, the Equation (47) simplifies to

coth
(
λ′1
)
− 1

λ′1
= µ (48)

Representing the µ at the y axis versus the λ′1 at the x axis it is obtained the plot displayed at
Figure 1. When λ′1 → 0 it is obtained that µ→ 0 and reciprocally as it is easily checked. This means
that when the parameter λ′1 tends toward zero, the distribution becomes uniform in the interval [−1, 1]
and, therefore, the average value µ is zero. The reciprocal is also simple, if µ→ 0 then it follows from
Equation (48) that tanh

(
λ′1
)
= λ′1 and therefore λ′1 = 0.
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4.2.2. Application of the MREP to the Case of a Parameter with Previously Truncated Exponential
Distribution in the Interval [a, b] with Mean Value µ, and the New Parameter Mean Value µ is the
Same and the TS Impose an Acceptance Interval [L, U]

In this case, the previous distribution is the truncated exponential given by Equation (45).
Now, the TS impose an acceptance interval [L, U] and the new probability density function qX(x)
of the parameter must verify the condition (21) being the mean value µ the same. Then, the only degree
of freedom of the distribution is its support that is adjusted to comply the TS. Applying the MREP,
and after some calculations, we obtain

qX(x) =


λ
′′
1

exp
(
λ
′′
1 b′
)
− exp

(
λ
′′
1 a′
) exp

{
λ′ ′1x

}
, f or a′ ≤ x ≤ b′

0 , f or x /∈ [a′, b′]

(49)

The new limits a′ and b′ are unknown. The condition for the first moment of the distribution is

b′∫
a′

xqX(x)dx =
λ
′′
1

exp
(
λ
′′
1 b′
)
− exp

(
λ
′′
1 a′
) b′∫

a′

x exp
{

λ
′′
1 x
}

dx = µ (50)

Equation (50) yields the following equation that must be solved to obtain the unknown value of
the Lagrange multiplier λ

′′
1 once a′ and b′ are known

b′ exp
(
λ
′′
1 b′
)
− a′ exp

(
λ
′′
1 a′
)

exp
(
λ
′′
1 b′
)
− exp

(
λ
′′
1 a′
) − 1

λ
′′
1
= µ (51)

However, the inconvenience is that a′ and b′ are unknown. Without loss of generality, let us
assume that the mean value is in the center of the support [a′, b′]. For this case, if t denotes the half
width of the interval [a′, b′], then we may write a′ = µ − t, b′ = µ + t, substitution of these values
into Equation (51) gives the following equation

λ
′′
1 t coth

(
λ
′′
1 t
)
= 1 (52)

The only solution of this equation is λ
′′
1 t = 0, so we have that λ

′′
1 = 0, i.e., we have a uniform

distribution. Applying the condition (21) imposed by the TS, and denoting the half width of the
acceptance interval by s, we have

U∫
L

qX(x)dx =
U − L
b′ − a′

=
2s
2t

= p (53)

Because p is known, as was explained in Section 3.3, and s is also known because is given by the
TS, then we can obtain directly a′ and b′. For the example of Section 5.2, with N = 93 and coverage
and confidence 95/95 then p = 0.9786. Therefore, because in this example U = pre f + 0.015 pre f and
L = pre f − 0.015pre f , from Equation (53) it is deduced that t = 0.015328 pre f . Because we have assumed
that µ is in the center of [a′, b′], then it follows a′ = µ − 0.015328 pre f and b′ = µ + 0.015328 pre f .
As a conclusion of this subsection, to fulfill the TS the half-width of the distribution, t, should be
modified to verify the condition (53).
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4.3. Application of the MREP to the Case of a Parameter with Previously Truncated Gaussian Distribution in
the Interval [a, b] with Mean Value µ = (a + b)/2, and Variance σ2, the Updated Data Have the Same
Support, the Same µ But Different Variance σ′2

The Gaussian truncated distribution is used when sampling over distributions that have an upper
and a lower limit for the parameter X and the available information is the mean and the variance. In this
case, it is common to perform the following change of variables z = (x − µ)/s, where s = (b − a)/2
is the half width of the distribution, and the relation between both PDF is fX(x) = 1

s fZ

(
x−µ

s

)
.

Thus, the random variable Z distributes in the interval [−1, 1].
The application of the MEP with the restrictions due to the previous information (the mean and

the variance) yields the following result for the previous PDF, as shown by Muñoz-Cobo et al. [5] and
Udwadia [16]

fZ(z) =

{
D exp

(
λ′z2) f or− 1 ≤ z ≤ 1

0, f or z /∈ [−1, 1]
(54)

The value of the parameter λ′ is obtained solving the following equation

(σ

s

)2
=

log(0.5
∫ 1
−1 dz exp

(
λ′z2))

λ′
(55)

Usually, we know σ and the half width s, so we can plot σ
s versus λ′, this gives the graphic

displayed at Figure 2. From the plot, it is very easy to obtain the value of λ′ corresponding to a given
σ
s value. Table 1 shows the values of σ/s corresponding to the negative integer values of λ′ ranging
from −1 to −80.
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s versus λ′ for the Gaussian truncated distribution with half width s.

Table 1. σ
s and λ′ for negative λ′ values.

λ′ −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 −0.5
σ

s
0.3567 0.3681 0.3809 0.3953 0.4117 0.4306 0.4524 0.4776 0.5069 0.5401 0.5578

λ′ −80 −60 −40 −35 −30 −20 −18 −16 −14 −12
σ

s
0.1700 0.1901 0.2217 0.2329 0.2464 0.2845 0.2950 0.3069 0.3207 0.3371

Once we have computed the value of the parameter λ′, the value of the constant D in Equation (54)
is obtained from the normalization condition of the PDF. This calculation yields

D =
1∫ 1

−1 dx exp(λ′x2)
=

1√
π
−λ′ erf

(√
−λ′

) (56)
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Being erf(
√
−λ′) the error function evaluated at

√
−λ′.

Figure 3 displays the truncated Gaussian evaluated for the following negative lambda values
λ′ = −10, −9, −8,−7,−6,−5,−4,−3,−2,−1,−0.5. As observed in Table 1, the values of σ increase
when λ′ increases from −10 to −0.5.
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To get the updated PDF, assuming that the support [a, b] and the mean µ = a+b
2 are the same as in

the previous PDF, and the variance change from σ to σ′, we proceed as follows: first we know that the
previous PDF was fX(x) = 1

s fZ

(
x−µ

s

)
that was obtained by application of the MEP. Then to apply the

principle of the maximum relative entropy with the new restrictions, and considering that the new
probability distribution qX(x) should be ranked according to its relative entropy with respect to the
previously known PDF fX(x), we built the following functional

F(qX , fX) = −
b∫

a

dx qX(x) log
(

qX(x)
fX(x)

)
+ λ′0

 b∫
a

dx qX(x)− 1

+ λ′1

 b∫
a

dx x qX(x)− µ


+λ′1

 b∫
a

dx (x− µ)2 qX(x)− σ′2


(57)

Setting to zero the first variation δF = 0 it is obtained, after some calculus and simplifications,
the following result for the updated PDF qX(x)

qX(x) = fX(x) D′ exp (λ′1x + λ′2(x− µ)2), i f x ∈ [a, b] (58)

qX(x) = 0, i f x /∈ [a, b] (59)

Because Expression (53) for the previous PDF, it is deduced that the updated PDF can be written,
after performing some trivial manipulations

qX(x) = D′′ exp (λ′′1 x + λ
′′
2 (x− µ)2), i f x ∈ [a, b] (60)

From the condition
∫ b

a dxxqX(x) = µ, it is easy to prove, as was done in previous sections,
that the parameter λ

′′
1 = 0. The constants D′′ and λ

′′
2 should be obtained from the rest of new

moment restrictions.
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Performing the change of variables z = (x− µ)/s, where s = (b − a)/2 and x = zs + µ, it is
obtained that the updated PDF, expressed in terms of z, is given by the expression

qZ(z) =

{
D′′′ exp

(
λ′′′ z2) f or− 1 ≤ z ≤ 1

0, f or z /∈ [−1, 1]
(61)

where we have set D′′′ = sD′′ and λ′′′ = λ
′′
2 s2, and from the normalization condition of the PDF it

follows that
D′′′ =

1∫ 1
−1 dz exp(λ′′′ z2)

=
1√

π
−λ′′′ erf

(√
−λ′′′

) (62)

To find the λ′′′ value, we use the second moment restriction, after performing the change of
variables from x to z, it yields

1∫
−1

dz z2D′′′ exp
(

λ′′′ z2
)
=

(
σ′

s

)2

(63)

To solve this equation, one considers the parametric integral I(λ′′′ ) =
1∫
−1

dz exp
(
λ′′′ z2) that depends

on the parameter. The derivation of this integral with respect to λ′′′ yields, because (63) and (64)

dI(λ′′′ )
dλ′′′

=

1∫
−1

dz z2 exp
(

λ′′′ z2
)
=

(
σ′

s

)2

(D′′′ )−1 = I(λ′′′ )
(

σ′

s

)2

(64)

The boundary condition to integrate Equation (64) is deduced from I(λ′′′ = 0) =
∫ 1
−1 dz = 2.

Therefore, we have

I(λ′′′ ) = 2 exp

((
σ′

s

)2

λ′′′

)
= (D′′′ )−1 =

1∫
−1

dz exp
(

λ′′′ z2
)

(65)

So, to obtain λ′′′ one must solve the equation

log
(

0.5
∫ 1
−1 dz exp

(
λ′′′ z2))

λ′′′
=

(
σ′

s

)2

(66)

We observe that Equation (66) is the same one that Equation (55) with σ changed by σ′ and λ′ by λ′′′ .
For instance, changing the value of σ

s = 0.3953 to σ′
s = 0.4306 produces a change in λ′′′ from −7 to −5.

4.4. Application of the MREP to the Case of a Parameter with Previously Log-Normal Distribution in the
Interval (0, ∞) and New Measurements Yields < logx > = µlog, Same Value as the Previous One and

〈
(

log(x)− µlog

)2
〉 = σ′2

Let us assume that the previous parameter distribution is a log-normal distribution, given as
deduced by application of the MEP, sees Appendix B.2, by

fX(x) =
1√

2πσx
exp

(
−1

2

( log(x)− µlog

σ

)2)
(67)
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Let us assume that new measurements yield < log x > = µlog, and <
(

log(x)− µlog

)2
> = σ′2.

To update the PDF, on account of the previous distribution, we use the MREP. The first step is to build
the following functional

F(qX , fX) = −
∫ +∞

0
dx qX(x) log

(
qX(x)
fX(x)

)
+ λ′0

[∫ +∞

0
dx qX(x)− 1

]
+ λ′1

[∫ +∞

0
dx log(x)qX(x)− µlog

]
+ λ′2

[∫ +∞

0
dx
(

log(x)− µlog

)2
qX(x)− σ′2

] (68)

To update the PDF, we compute the first variation δF = 0 and it is obtained, because Section 3.2,
we get

qX(x) = fX(x) exp(−1 + λ0 + λ1 log(x) + λ2

(
log(x)− µlog)

2
)

(69)

Then, after some calculus, Equation (69) can be written, because Equation (67), as

qX(x) = D xλ1−1 exp
((

λ2 −
1

2σ2

)(
log(x)− µlog

)2
)

(70)

The next step is to use the condition
∫ +∞

0 dx log(x)qX(x)− µlog = 0, and to perform the change
of variables z = log(x). After some elemental calculus, it is obtained, because (70), that the previous
condition reduces to ∫ +∞

−∞
dzD z exp

(
λ1z +

(
λ2 −

1
2σ2

)(
z− µlog

)2
)
= µlog (71)

Next, we perform the following change of variables z− µlog = t in Equation (71), that after some
simplifications using the normalization condition of the PDF yields

∫ +∞

−∞
dt t exp

(
λ1t +

(
λ2 −

1
2σ2

)
t2
)
= 0 (72)

On account that t is an odd function and exp
(
(λ2 − 1

2σ2 )t2
)

an even function, it is deduced
that the only possibility that the integral in Equation (72) yields zero is that the coefficient λ1 = 0.
The expression for the constant D in Equation (70) can be obtained from the normalization condition
for the new PDF ∫ +∞

0
dx

D
x

exp
((

λ2 −
1

2σ2

)(
log(x)− µlog

)2
)
= 1 (73)

Performing the change of variables log(x) = z in Equation (73), and computing the integral that
results, gives the following result for D

D =

√√√√−(λ2 − 1
2σ2

)
π

(74)

The last step to obtain the PDF is to use the condition
∫ +∞

0 dx
(

log(x)− µlog

)2
qX(x) = σ′2,

and then to perform the change of variables z = log(x)− µlog, that, on account of the expression for
the PDF qX(x), gives the result

D
∫ +∞

−∞
dz z2 exp

((
λ2 −

1
2σ2

)
z2
)
=

√√√√−(λ2 − 1
2σ2

)
π

1

2
(
−
(

λ2 − 1
2σ2

))√√√√ π

−
(

λ2 − 1
2σ2

) = σ′2 (75)
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So finally, from Equation (75), we obtain the value of the Lagrange multiplier λ2 that is given by

λ2 =
1

2σ2 −
1

2(σ′)2 (76)

Therefore, the result for the updated PDF that maximizes the relative entropy is

qX(x) =
1√

2πσ′x
exp

(
−1

2

( log(x)− µlog

σ′

)2)
(77)

So, the updated PDF is again a log normal with the same expected value µlog for log(x) but
different variance.

4.5. Some Results Obtained by Application of the MEP to Different Cases

In this section, we give an overview of the main results obtained by application of the MEP to
deduce the PDF in different situations, in this paper we have only proven the more complex ones [5,15]:

1. Only the lower and upper bounds a and b of the distribution support [a, b] are known. In this
case, the application of the MEP yields the uniform distribution.

2. The lower and upper bounds of the distribution are 0, and ∞, and we also know the PDF mean µ.
In this case the application of MEP yields the exponential distribution with parameter λ = 1/µ.

3. The lower and upper bounds of the distribution are −∞ and ∞ respectively, and only the mean µ

and the variance σ2 are known; the application of the MEP yields the Gaussian distribution.
4. The support interval [a, b] and the mean µ of the distribution are known in this case. Then, applying

the MEP yields the truncated exponential PDF; see appendix (I-1) of reference [5] for more details.
5. In this case, the information available is the distribution support [a, b], the mean µ = a+b

2 and the
variance. Therefore, the application of the MEP yields the truncated Gaussian distribution; see
appendix I-2 of reference [5] and the paper by Udwadia [16] for further information.

6. The information supplied are the lower and upper bounds 0, ∞ of the support [0, ∞), and the
following distribution moments: 〈log x〉 = µ1 and 〈(log(x)− µ1)

2〉 = σ2. Then, applying the
MEP, we obtain a log-normal PDF as shown in Appendix B.2.

7. The information provided is the support of the distribution [0, ∞) and the following moments
x = µ1, and log(x) = E(log(x)) = µ2. Then, applying the MEP it is obtained a gamma
distribution, see Appendix B.1 for more details.

5. Applications and Results

In this section, we explain the tools we have developed for the application of the MEP and the
MREP to BEPU analysis in different circumstances, i.e., considering that the TS do not influence the
PDF and considering that they influence the PDF of the input or model parameters. In addition, in this
section, we display some results obtained with the programs that we developed and implemented
for these calculations. Three computer applications were developed and are explained in Section 5.1.
Furthermore, in this section, we show some practical examples of applying MEP to the determination
of parameter distribution in real cases.

5.1. The Informatics Applications GEDIPA, UNHERCO, and DCP V1.1

5.1.1. The GEDIPA Tool for the Determination of the Moments of the Distribution and the Distribution
Type from Data Sets

As explained in Muñoz-Cobo et al. [5], the GEDIPA tool performs the data analysis of one or
several input parameter data sets to calculate the moments of their distributions and confidence
intervals for the population mean and variance. Besides, this tool performs several tests based on the
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empirical distribution function (EDF), to try to know if the data set follows a given distribution. As it
is well known [31], these kinds of tests are based in the comparison of the continuous cumulative
distribution function (CDF), denoted by FX(x), with the empirical cumulative distribution function
obtained from a data sample of n elements and that is denoted by Fn(x). These tests compute
a pseudo-distance d(FX , Fn) between FX(x) and Fn(x). If this pseudo-distance is bigger than a critical
value, that in general depends on the level of significance and the information available on the mean
and the variance, then the test is rejected—i.e., the data set does not follow the distribution with
CDF equal to FX(x). In the present version of GEDIPA, this tool performs the Anderson–Darling
test for the normal and the exponential distributions, and the Kolmogorov–Smirnov test for normal
distribution [31–33].

The present version of GEDIPA computes the first four moments of the data set (mean, variance,
skewness, and kurtosis). Also, GEDIPA computes the confidence interval for the mean, assuming
that the parameter distribution is the normal. In addition, GEDIPA computes a confidence interval
for the mean using the Louis Gutmann interval [34], which has the advantage that is a conservative
confidence interval valid for any random variable with finite variance. Therefore, this confidence
interval can be applied to almost all the practical situations. GEDIPA also computes a confidence
interval for the variance if the parameter data set follows a normal distribution.

5.1.2. The UNTHERCO Program to Perform the Monte Carlo Sampling

The code UNTHERCO generates Nc data sets of input and model random parameters values
that are considered important for the desired code output. Each one of these Nc data sets contains Np

parameter values obtained by Monte Carlo sampling over the distribution PDF of each one of these
Np parameters. The selection of the parameters that are important for the desired output response
of the code is obtained by performing a sensitivity analysis for each parameter and, also, if needed
generating a PIRT (Phenomena Identification and Ranking Table) [2,3,5,35] by a group of experts.

Therefore, before applying UNTHERCO, we must know the PDF of the selected uncertain
parameters that have some degree of influence on the code output results. If by means of GEDIPA,
or by any other statistical package, we know the PDF of a given parameter, then we must supply to
UNTHERCO the type of PDF and the parameter values (localization and scale parameters, for instance
mean and variance for the normal distribution) that characterize a given probability distribution.
The number of data sets to be generated is obtained by application of the Wilks’ formula, and is
equal to the number of cases to be run with the code, that depends of the coverage degree γ, and the
confidence β of the output. Sometimes, it happens that the PDF of some parameter is unknown, then,
we must apply the MEP with the data available on the parameter. In that case, we must supply to
UNTHERCO the information available on the parameter as lower and upper bounds of the parameter
support and moments of the distribution. Then, with this information, we must apply the MEP to
know its PDF type. Once we know the PDF type, we must assign a code to each PDF type; this code is
supplied to UNTHERCO, with the information available on the parameter. UNTHERCO has a library
of cases where it is possible to apply the MEP. With the code number and the information available,
UNTHERCO can deduce the PDF and perform the sampling.

Finally, once the Nc sets of Np parameter values have been obtained by sampling over
the parameter distributions, then, the UNTHERCO program computes the Pearson’s correlation
coefficients among these parameters to find out if there is some spurious non-negligible correlation
among any pair of parameters. If this is the case the sampling procedure is repeated with another
initial seed for the random number sequence generator [32]. The value used to decide if a correlation
among parameters is not negligible has been set to 0.2 in absolute value. Therefore, if it is found that
the correlation coefficient in absolute value is above 0.2 then the sampling is repeated with another
initial seed for the random number generator.
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5.1.3. The DCP V1.1 Tool for the Determination of Parameter Distribution Functions that Must Fulfill
Technical Specifications

Sometimes, it is necessary to obtain a PDF that fulfills one side or two side TS with samples
of a given size N determined previously from Wilks’ formula. If p denotes the probability that the
parameter belongs to the acceptance interval [L, U], then, the DCP tool obtains the parameter values of
the distribution that satisfy the restrictions imposed by the moments and, at the same time, fulfills the
condition that the probability of the parameter to belongs to the acceptance interval is p for samples of
size N, and the probability to be outside of the acceptance interval is 1 − p. In general, p is obtained
solving the Equation (15), with a coverage level γi and a confidence level βi for parameter samples
of size N, as was explained previously in Sections 3 and 4. However, p in the DCP V1.1 program
can be also chosen arbitrarily by the user to build a more conservative PDF. The program DCP can
manage the following types of probability distributions: uniform, triangular, normal, truncated-normal,
log-normal, Laplace, Weibull, beta, gamma, and quadratic exponential. In the next section, we explain
some applications of the DCP V1.1 program.

5.2. Application of the DCP Program to Solve Some Updating Cases Produced by the Application of TS to the
Normal Distribution with Two Side Acceptance Intervals

We have seen that when considering the PDF updating including the TS when the previous
distribution was the normal one and the TS impose an acceptance interval [L, U], then, the distribution
obtained by application of the MREP is again a normal one, with in general, the same mean that is some
reference value, but the variance can change to fulfill the TS, as we saw in Section 4.1. The PDF for
this case can be written in the form qX(x; Θ), being Θ(µ, σ) the parameter values (mean and standard
deviation) that completely characterize the normal distribution. In this case, and in others like this one,
we have two parameters that define the distribution. The first one is the location parameter, that for
the normal distribution is the mean. While, the other one is a dilation or deformation parameter that
measures how much has deformed the distribution with respect to the mother distribution, this second
parameter for the normal distribution is the standard deviation σ. In general, we have the following
set of equations to be solved

FX(U; Θ)− FX(L; Θ) = p ; (78)
∞∫
−∞

xqX(x; Θ)dx = µ (Θ); (79)

∞∫
−∞

(x− µ)2qX(x; Θ)dx = σ′2 ; (80)

where p is obtained, as we show in Appendix A, solving the equation Ip(M, N −M + 1) = β with
M =
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U] with a coverage probability of ߛ and a degree of confidence of ߚ. Normally, these probabilities 
are expressed in % and are 95/95, what means that we have a coverage probability of 95% with a 
confidence of 95%. Therefore, for a number of cases N, or data sample size N, we have a probability 
p of the random parameter to belongs to the acceptance interval [L, U] when we have a coverage 
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and a confidence level, with values close to 1 (typically 0.95). Notice that the coverage and confidence 
levels in (15) refer to the fulfillment of the TS by an input parameter, and are conceptually different 
from the coverage and confidence levels in (3) that refer to the output of the BEPU analyses. It is 
important to remember that the size of the Monte Carlo sample, ܰ, is obtained from the tolerance 
level in (3). 

Condition (15) means that a fraction ߛ of the N sample values falls into the acceptance interval 
[L, U] with a probability ߚ. Here we have followed the approach used in [22] for assignation of 
distributions.  

For instance, the solution of Equation (15) using the inverse of the incomplete beta function, i.e., 
“betaincinv” of MATLAB with N = 93, ߚ	 = 	0.95, 	ܯ = 	 	0.95ڿ × ۀ93	 	= 	89  gives p = 0.9786. 
Therefore, in this case, the additional restriction that we have on the PDF and that is imposed by the 
technical specification is 

න ݍ
 ݔ݀(ݔ) = (16) 

The condition (16) can be expressed if the support of the distribution is ሾܽ, ܾሿ as follows 

නݍ
 ܷ)ܪሾ(ݔ) − (ݔ − ܮ)ܪ − ݔሿ݀(ݔ = (17) 

where ܪ(ܷ	 − (ݔ	  is the Heaviside function that is zero for ݔ	 > 	ܷ , and 1 for the rest of 
values;	ܮ)ܪ	 − 	ݔ is the Heaviside function that is zero for (ݔ	 >  .and 1 for the rest of values ,ܮ	

The question is that the TS through the surveillance and repairing actions modifies the 
parameter distribution in such a way that some parameter of the distribution could be modified to 
fulfill Equation (16), normally this parameter is the variance of the distribution that it is changed to 
comply with (16). The regulatory authority could modify the value of p given by (15) to perform a 
conservative analysis [22]. This last point will be discussed later in Section 5.4.3. Let us discuss the 
general conditions that must verify ݍ(ݔ), first the function must be a continuous function in order 
to have an unambiguous probability value for each x, second for these kind of problems influenced 
by the TS, the average value of the distribution in general does not change for symmetrical 
distributions because this value represents the reference value of the TS—i.e., the reference pressure 
for opening or closing the valve—although this statement in some particular cases could change. 
Also, some moments such as the variance related to the width of the distribution could change. The 
way to proceed is as follows, first with the known support and the distribution moments we apply 
the MEP and we determine the previous probability distribution, ݂(ݔ).	  Second, we build the 
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. When p is fixed arbitrarily to perform a conservative analysis, then p is input directly to
DCP, and the program also solves Equation (78), but do not need to solve Equation (15). The problem
is to know the parameters of the normal distribution when we have an acceptance interval [L, U] for
the parameter fixed by the TS. Normally, the average value of the parameter is the reference value
fixed by the TS, and the variance is unknown, so to solve this case we must solve the following pair of
Equations (15) and (78), this task is performed by the program DCP as follows:

The first step is to solve equation Ip(M, N −M + 1)− β = 0 by bisection, for a sample size of
N = 93, very common in BEPU analysis for two sides output tolerance intervals. Considering the usual
coverage and confidence 95/95, M =
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= 89 , the solution is p = 0.9786. Then, to obtain the value of
σ′, DCP solves by bisection Equation (78) written in the form

FX(U; Θ)− FX(L; Θ)− p = CDFN
(
U; µ, σ′

)
− CDFN

(
U; µ, σ′

)
− p = 0 (81)
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where the cumulative distribution function of the normal distribution, used by the DCP, is given by
the expression

CDFN
(
U; µ, σ′

)
= 0.5

(
1 + erf

(
(x− µ)/

(√2 σ′
)))

(82)

Being erf(x) the standard error function defined by

erf(x) =
2√
π

∫ x

0
e−t2

dt (83)

For instance, for the case that µ = 2 is the reference value and the acceptance interval is ±1.5% of
this reference value. Then, it follows that the acceptance interval is [L, U] = [1.97, 2.03]. Then, solving
Equation (33) with the value of p = 0.9786, obtained previously for N = 93 and γ/β (0.95/0.95), the new
value of σ′ obtained by DCP that fulfills the TS is σ′ = 1.30407× 10−2. If the acceptance interval is
reduced to ±1% of the reference value, then the new acceptance interval is [L, U] = [1.98, 2.02] and
the new σ′, computed by DCP that fulfills the TS, is σ′ = 0.86938× 10−2. Figure 4 displays the change
in the PDF for both acceptance intervals.
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It is important to see the influence on the PDF of the number N of cases to be run to perform
a BEPU calculation. This situation takes place when, for instance, we want to compute the uncertainty in
an output variable that has one side tolerance interval. For instance, in nuclear engineering applications,
this should be the case when the maximum fuel clad temperature, known as peak cladding temperature,
should always be smaller than a given reference value Tclad,re f , with a certain degree of coverage and
a given confidence, normally 95/95. For this case, the Wilks’ formula gives us the number of cases to be
run is 59. In this case, to perform the BEPU analysis we must determine the PDF of all the input and model
parameters that have some degree of influence on this output variable. If, for instance, we have an input
parameter that must fulfill some technical specifications with an acceptance interval [L, U] with a given
coverage γ and confidence β, then, the probability that the input parameter belongs to the acceptance
interval is found solving the equation Ip(M, N−M + 1)− β = 0, with M = γ × 59 = 57. Solving this
equation yields p = 0.986. Therefore, we need a higher probability to belong to the acceptance interval of
the input parameter when N = 59 that when N = 93. If we solve Equation (81) for an acceptance interval
of [1.97, 2.03] with µ = 2, it is found that the value of the typical deviation computed by the DCP code
reduce from σ′ = 1.30407× 10−2, for the case with N = 93, to σ′ = 1.22088× 10−2, for the case with N
= 59. These results are displayed at Figure 5, where it is observed that for 93 cases the area inside the
acceptance interval (blue line) is smaller than for the case with N = 59. This last result is a consequence of
the fact that for N = 93, p = 0.9786, while for N = 59, p = 0.986.



Entropy 2017, 19, 486 23 of 37

Entropy 2017, 19, 486  21 of 35 

 

the acceptance interval is reduced to ±1% of the reference value, then the new acceptance interval 
is [ܮ, ܷ] 	= 	 [1.98, 2.02] and the new ߪᇱ, computed by DCP that fulfills the TS, is ߪᇱ 	= 	0.86938 ×10ିଶ. Figure 4 displays the change in the PDF for both acceptance intervals. 

 
Figure 4. Probability distribution function for the acceptance interval [1.97, 2.03] (blue line) and the 
change in the PDF produced by a new imposed acceptance interval [1.98, 2.02] (green line) obtained 
for BEPU analysis with 95/95 coverage and confidence and N = 93.  

It is important to see the influence on the PDF of the number N of cases to be run to perform a 
BEPU calculation. This situation takes place when, for instance, we want to compute the uncertainty 
in an output variable that has one side tolerance interval. For instance, in nuclear engineering 
applications, this should be the case when the maximum fuel clad temperature, known as peak 
cladding temperature, should always be smaller than a given reference value ܶௗ,, with a certain 
degree of coverage and a given confidence, normally 95/95. For this case, the Wilks’ formula gives us 
the number of cases to be run is 59. In this case, to perform the BEPU analysis we must determine the 
PDF of all the input and model parameters that have some degree of influence on this output variable. 
If, for instance, we have an input parameter that must fulfill some technical specifications with an 
acceptance interval [L, U] with a given coverage ߛ and confidence ߚ, then, the probability that the 
input parameter belongs to the acceptance interval is found solving the equation ܫ(ܯ,ܰ 	ܯ− + 	1) 	ߚ− = 	0, with ܯ	 = 	 	ߛڿ × ۀ59	 	= 	57. Solving this equation yields 	 = 	0.986. Therefore, we need a 
higher probability to belong to the acceptance interval of the input parameter when N = 59 that when 
N = 93. If we solve Equation (81) for an acceptance interval of [1.97, 2.03] with ߤ	 = 	2, it is found that 
the value of the typical deviation computed by the DCP code reduce from ߪᇱ 	= 	1.30407 × 10ିଶ, for 
the case with N = 93, to ߪᇱ 	= 	1.22088 × 10ିଶ, for the case with N = 59. These results are displayed at 
Figure 5, where it is observed that for 93 cases the area inside the acceptance interval (blue line) is 
smaller than for the case with N = 59. This last result is a consequence of the fact that for N = 93, p = 
0.9786, while for N = 59, p = 0.986. 

 
Figure 5. Probability distribution functions for the acceptance interval [1.97, 2.03] computed for N = 
93 cases (blue line) and N = 59 cases (green line).  
Figure 5. Probability distribution functions for the acceptance interval [1.97, 2.03] computed for N = 93
cases (blue line) and N = 59 cases (green line).

5.3. Application of the DCP Program to Update the PDF to Fulfill the TS If the Distribution is the Log-Normal

If it is assumed that the PDF of the parameter follows a log-normal distribution and we want
that the new PDF fulfills the TS with a probabilistic criterion 95/95 for a BEPU analysis with 93 cases.
Then, the value of p is the same that in the previous case p = 0.9786. We denote by 〈log(x)〉 = µlog,
and 〈(log(x)− µlog)

2〉 = σ2, the parameters of the distribution, and by [L, U] the acceptance interval
to be fulfilled. Then, the expected value of the population is related to µlog and σ2, by the expression

µ = exp
(

µlog + 0.5σ2
)

(see Appendix B.2). If the expected population value µ is maintained, then the

program DCP determines, in this case, the new parameter values µ′log and σ′2. Really, if the value of µ

is maintained, then there is only one free parameter, σ′, to comply the technical specifications, because
µ′log = log(µ)− σ′2

2 . Then, the equation that solves DCP by the bisection method for this case is given
by Equation (16), expressed as

FX(U; µ′log, σ′)− FX(U; µ′log, σ′)− p = FX

(
U; log(µ)− σ′2

2 , σ′
)
− FX

(
L; log(µ)− σ′2

2 , σ′
)
− p = 0 (84)

Being FX(x; µ′log, σ′) the cumulative distribution function of the log-normal distribution with
parameters µ′log, σ′.

In this case, the result obtained with the DCP program for the localization and scale parameters
when the mean is 2, and the TS impose an acceptance interval [1.97, 2.03] with coverage and confidence
levels 95/95, and with p = 0.9786 as in the previous case, is µ′log = 0.6931259 and σ′ = 6.52023× 10−3.

It is immediately checked that µ = exp (µ′log + 0.5 σ′2) =2.
We display at Figure 6 the change in the probability distribution produced by a change in the

TS from an acceptance interval [0.985, 1.015] to an acceptance interval [0.99, 1.01], for a log-normal
distribution with mean = 1, and the same previous conditions of coverage and confidence 95/95,
and with p = 0.9786, obtained solving Equation (15) for N = 93.
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5.4. Application of the DCP with TS with One Side Acceptance Interval

Normally, the plant parameters that fulfill one side acceptance intervals imposed by TS are far
away of the one side limit imposed by these TS. However, the regulatory bodies can be interested
to see the effect of the parameter PDF on the output result when the parameter values are close to
the upper or lower limit of these TS due to some incident. In this case, the parameter fulfills the TS
with a probabilistic criterion, but when sampling over the PDF, some sampled values could be outside
these limits. The DCP program can build parameters for PDF that fulfill the acceptance intervals
imposed by the TS with a probabilistic criterion but, these PDFs for some parameters are close to its
operational limits.

5.4.1. Case with Lower Limit L

The one side acceptance interval is very common in many applications, for instance, for the
pump that inject the borated water during an accident in a BWR reactor, there is a TS that establishes
that the mass flow rate should be bigger that a given value L with coverage γi and confidence βi.
Normally, the values of γi and βi, for a given parameter, are 95/95.

For this case, the TS impose a known acceptance interval [L, ∞], and the problem is that if the
number of cases obtained by Wilks formula is N(γ, β) in a BEPU analysis, then, we want that from
any sample SN at least γi N cases are inside [L, ∞] with confidence βi. Because γi N is, in general,
a non-integer number, then usually it is expected that the number of cases contained inside the interval
would be greater or equal than the smaller integer bigger than γi N, i.e., the ceiling function
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In a sense, options (1) and (2) are complementary. Reference [22] was devoted to option (2), 
because it refers to the licensing analysis, where operation allowed by TS is evaluated. In the present 
paper, we study option (1), useful for the analysis of normal plant operation. However, the 
application of the methods here described to option (1) is straightforward; also, the methods 
developed in this paper can be applied to option (2), as explained later in Section 5.4. 

In probabilistic analysis BEPU, it is assumed that the parameter values are inside the interval [L, 
U] with a coverage probability of ߛ and a degree of confidence of ߚ. Normally, these probabilities 
are expressed in % and are 95/95, what means that we have a coverage probability of 95% with a 
confidence of 95%. Therefore, for a number of cases N, or data sample size N, we have a probability 
p of the random parameter to belongs to the acceptance interval [L, U] when we have a coverage 
probability ߛ and a confidence of ߚ. The way to obtain the p-value is deduced and explained in 
Appendix A, and involves solving the following equation [            ] ܫ(ܯ,ܰ − ܯ + 1) = (15) ߚ

where ܯ	 = 	 ,ܽ)௫ܫ ;is the ceiling function of y ۀݕڿ and ۀܰߛ₫	�ڿ ܾ), is the incomplete beta function 
with parameters x, a, and b, see Appendix A for more details. ߛ and ߚ are respectively a coverage 
and a confidence level, with values close to 1 (typically 0.95). Notice that the coverage and confidence 
levels in (15) refer to the fulfillment of the TS by an input parameter, and are conceptually different 
from the coverage and confidence levels in (3) that refer to the output of the BEPU analyses. It is 
important to remember that the size of the Monte Carlo sample, ܰ, is obtained from the tolerance 
level in (3). 

Condition (15) means that a fraction ߛ of the N sample values falls into the acceptance interval 
[L, U] with a probability ߚ. Here we have followed the approach used in [22] for assignation of 
distributions.  

For instance, the solution of Equation (15) using the inverse of the incomplete beta function, i.e., 
“betaincinv” of MATLAB with N = 93, ߚ	 = 	0.95, 	ܯ = 	 	0.95ڿ × ۀ93	 	= 	89  gives p = 0.9786. 
Therefore, in this case, the additional restriction that we have on the PDF and that is imposed by the 
technical specification is 

න ݍ
 ݔ݀(ݔ) = (16) 

The condition (16) can be expressed if the support of the distribution is ሾܽ, ܾሿ as follows 

නݍ
 ܷ)ܪሾ(ݔ) − (ݔ − ܮ)ܪ − ݔሿ݀(ݔ = (17) 

where ܪ(ܷ	 − (ݔ	  is the Heaviside function that is zero for ݔ	 > 	ܷ , and 1 for the rest of 
values;	ܮ)ܪ	 − 	ݔ is the Heaviside function that is zero for (ݔ	 >  .and 1 for the rest of values ,ܮ	

The question is that the TS through the surveillance and repairing actions modifies the 
parameter distribution in such a way that some parameter of the distribution could be modified to 
fulfill Equation (16), normally this parameter is the variance of the distribution that it is changed to 
comply with (16). The regulatory authority could modify the value of p given by (15) to perform a 
conservative analysis [22]. This last point will be discussed later in Section 5.4.3. Let us discuss the 
general conditions that must verify ݍ(ݔ), first the function must be a continuous function in order 
to have an unambiguous probability value for each x, second for these kind of problems influenced 
by the TS, the average value of the distribution in general does not change for symmetrical 
distributions because this value represents the reference value of the TS—i.e., the reference pressure 
for opening or closing the valve—although this statement in some particular cases could change. 
Also, some moments such as the variance related to the width of the distribution could change. The 
way to proceed is as follows, first with the known support and the distribution moments we apply 
the MEP and we determine the previous probability distribution, ݂(ݔ).	  Second, we build the 

γi N
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.
Therefore, the condition to be fulfilled is

Prob{SN}(Y ≥ M = γi N) ≥ βi (85)

where Prob{SN} (Y ≥ M) denotes the probability that Y ≥ M for all the samples SN of size N; the set of
all the samples of size N is denoted by {SN}. Therefore, following the same steps that in Appendix A,
we can write

Prob{SN}(Y ≥ M = γi N) =
N

∑
k=M

(
N
k

)
pk(1− p)N−k = Ip(M, N − M + 1) ≥ βi (86)
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So, p gives the probability to belong to the interval [L, ∞] and Equation (81) reduces to

FX(∞; Θ) − FX(L; Θ) − p = 1 − FX(L; Θ) − p = 0 (87)

Let us assume that the mean value is above the lower limit L value imposed by the TS, but the
conditions (86) and (87) must be also verified to fulfill the TS. Let us see how to fulfill the TS. The PDF
must be changed, in this case, if the previous distribution is normal, with mean µ = 2.05 and standard
deviation σ = 0.03, and L = 2. Then, the normal distribution with the same mean that fulfills the TS
obtained with DCP for one side acceptance interval [L, ∞] has a standard deviation σ′ = 0.0246883,
with the same mean value. The results of both PDF are displayed at Figure 7. The area of the PDF that
fulfills the TS and with x ≥ 2 above L is, obviously, p = 0.9786, for N = 93. The value of p is computed
by DCP V1.1 solving Equation (15), as explained previously.
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line) with L = 2 and the change in the PDF produced by the TS (green line) obtained for BEPU analysis
with 95/95 coverage and confidence and p = 0.9786.

5.4.2. Case with Upper Limit U

In this case, with a probabilistic criterion, we want that from any sample SN at least γi N cases are
inside [−∞ U] with confidence βi. Because γi N is, in general, a non-integer number, one in general
expects that the number of cases contained inside the acceptance interval would be at least the smaller
integer bigger than γi N, i.e., the ceiling function
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. Therefore, the condition to be fulfilled is now

FX(U; Θ) − FX(L = −∞; Θ) − p = FX(U; Θ) − p = 0 (88)

We have considered that FX(L = −∞; Θ) = 0. If we have a parameter X that must fulfills the TS
with U = 2, and this parameter follows a normal distribution with mean 1.95 and σ = 0.03, then the
normal distribution with the same mean that fulfills the TS is obtained with the application DCP for
one side acceptance interval [−∞, U], we assume a BEPU analysis with N = 93 cases and p = 0.9786.
The result of DCP has a standard deviation of σ′ = 0.0246883. The results of both PDFs are displayed at
Figure 8. The area of the PDF that fulfills the TS (green line) and with x ≤ 2, i.e., below U is, obviously,
p = 0.9786 and the results computed by CDT and MATLAB for p are the same.
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5.4.3. Case of a Parameter that Fulfills the TS and the Regulatory Body Wants to Build PDF that Does
Not Fulfill the TS to Check It Effect on the Output Results

Sometimes happens that the parameter distribution function with the information supplied fulfill
the TS and the probability of the parameter to belong to the acceptance interval is practically unity.
In this case, the regulatory body can be interested in checking a distribution function with an arbitrary
probability p of the parameter to belong to the acceptance interval. In this case, if p is smaller than
0.9786 for 93 cases or 0.986 for 59 cases, then, this parameter does not fulfill the TS in a probabilistic
manner. However, the output of the code will be conservative and will give us an indication of what
happens when we are near, or we have surpassed, the operating limits of the plant. In this case, we can
use this arbitrary probability p imposed by the regulatory body as a restriction in the functional (18),
to apply the MREP to obtain the parameter PDF. If we have a normal distribution for the parameter
and an upper bound TS, then we must solve the equation FX(U; Θ) − p = 0.
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Let us assume the following case to see how the DCP program computes the PDF distribution.
If we have a TS with upper limit U = 2, and the PDF follows a normal distribution with mean µ = 1.95,
and standard deviation σ = 0.015, the probability p to be inside the acceptance interval [−∞, U] for
this distribution is 0.9996. However, if we want that p = 0.8783 with µ = 1.95, with coverage equal
0.8 and confidence 0.95 that the parameter belongs the acceptance interval for samples of size equal
59, then, the DCP program gives a value of σ′ = 0.04287. So, the degree of coverage diminishes
for samples of the same size maintaining the confidence. In this way, it is possible to create PDF to
perform a conservative analysis. Figure 8 displays both PDF, the one (blue line) that fulfills the TS
with acceptance probability close to 1, and the one (green line) obtained with the same average value
and smaller acceptance probability p = 0.878 with, obviously, smaller coverage γ = 0.8 and the same
confidence β = 0.95.

5.5. Some Examples of Application of the MEP

In this subsection, we display some examples of the determination of PDF using the MEP.

5.5.1. Form Loss Coefficient of the Channel Inlet

In this case the German GRS and the Japanese JNES regulatory bodies [30], use similar although
not identical methods, both multiply the form loss coefficient K for pressure drop by a factor fK.
He GRS assumes that the support interval for this factor is [0.67, 1.5]. The GRS gives, for the probability
distribution of fK, values of a histogram that contains 50% of the cases in the interval [0.67, 1] with
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a uniform distribution in this sub-interval, and the other 50% of the cases in the sub-interval [1, 1.5]
with a uniform distribution in this subinterval. Therefore, P( fK) is given by the expression

P( fK) = 1.515 , fK ∈ [0.67, 1] (89)

P( fK) = 1.0, fK ∈ [1, 1.5] (90)

The first moment is close to 1, exactly is µ1 = 1.0295. As it is observed at Figure 9, this type of
distribution is unphysical because has a strong discontinuity at fK = 1. It is more physical to use the MEP
method. In this case, if the support is [0.67, 1.5] and if the mean value is µ1 = 1.0295, then, the application
of the MEP gives a truncated exponential. Solving the Equation (47), with b = 1.5, and a = 0.67, yields
that λ = −1.513, and the truncated exponential distribution with support [0.67, 1.5] is

P( fK) =
1.513

exp(−1.513× 0.67) − exp(−1.513× 1.5)
exp(−1.513× fK) with fK ∈ [0.67, 1.5] (91)

The value of P( fK) = 0 outside the interval is [0.67, 1.5]. Figure 10 displays this
probability distribution.
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5.5.2. Safety Injection Mass Flow Rate in HPCI (High Pressure Cooling Injection) System

In this case, many authors [5,17,18] define a factor fHPCI and multiply the reference mass flow
rate of the cooling injection by this factor, i.e., WHPCI = fHPCIWHPCI,Re f . This multiplier factor has
mean µ = 1, and has a range of variation with lower and upper bounds [0.85, 1.15] and a standard
deviation σ = 0.04. The application of the MEP with the information known about this parameter
yields a truncated Gaussian distribution with σ/s = 0.2666, therefore, from Figure 2 or Table 1, it is
obtained the value of λ = −24.07. The probability density function, according to Section 4.3, is given
by the expression

fX(x) =
1
s

fZ

(
x− µ

s

)
=

1
s

1√
π
−λ erf

(√
−λ
) exp

(
λ

(
x− µ

s

)2
)

for x ∈ [0.85, 1] (92)

fX(x) = 0 f or x /∈ [0.85, 1] (93)

Figure 11 display the truncated Gaussian distribution in the interval [0.85, 1.15], with u = 1,
and σ = 0.04, computed with MATLAB.
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6. Discussion and Conclusions

Realistic calculations in many engineering fields involve the use of Best-Estimate codes, that use
the state of the art models to predict the values of a set of magnitudes that need to be calculated to know
if these output magnitudes fulfill some restrictions or does not surpass some limiting values [36,37].
In general, some of the input data and model parameter are uncertain, so the predictions of these
codes are, in general, subject to uncertainty, and it is necessary to express the output results as
tolerance regions with a coverage value and a given confidence, normally 95/95. Tolerance intervals
are built for scalar magnitudes. Many realistic methodologies build the tolerance intervals from the
output results using order statistic [5,8,36,37]. This topic is especially true in nuclear engineering
applications, where the consequences of errors in the calculations, or the design, performed with these
thermal-hydraulic or neutronic codes are more severe. However, the same kind of methodology can
be applied to other codes, as CFD and FEM, with other applications, where some input parameters
are uncertain. One alternative to BEPU approach is by introducing ultraconservative models and
assumptions that predict the output variables with a high degree of conservatism, for instance,
in nuclear calculations, there exist the conservative appendix K approach for Nuclear Safety Analysis.
Another issue of importance, that is normally circumvented, is that some of the input parameters are
sometime subject to TS involving periodic surveillance to see if the parameter belongs to a prescribed
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acceptance interval [7,22]. The problem is how to assign probability distributions to these operational
parameters controlled by TS. This topic is generally omitted in the discussion and analysis of this
kind of methodologies, and was raised and studied for the first time in [22]. Two approaches may be
conceived for this problem, depending if the PDF to be assigned represents the allowed operation
or the normal operation of the plant. The first case (Option 2 of Section 3.3) is the important one
from the regulatory standpoint, because it is needed in licensing applications, and was the focus
of [22]. The second case (Option 1 of Section 3.3) should be needed in the case of fully realistic
simulation scenarios, and is assumed through the present paper although in Section 5.4.3 it is outlined
the possibility to extend the approach developed in this paper to Option 2. We have tried to give
a first approach to solve this problem trying to know the way in which the TS can affect the PDF.
This systematic approach has been carried out considering the previous PDF as a ranking PDF during
the application of the MREP, in the sense given by Caticha and Preuss [21], and considering the
acceptance interval imposed by the TS, as a restriction in the function though an additional term with
an unknown Lagrange multiplier that must be obtained ‘a posteriori’, as we have shown in this paper.

In general, the determination of the Lagrange multipliers that appear when obtaining the PDF
by application of the MEP requires solving a non-linear equation, as Equations (49) or (51) for the
truncated exponential, or Equation (55) for the truncated Gaussian. In some cases of non-truncated
distributions, as in Equation (76), the Lagrange multipliers have been obtained analytically. In the
case of the gamma PDF with three constraints, the Lagrange multipliers can be obtained numerically
solving a non-linear equation system, as showed by Woodbury [38].

Normally, in the applications of BEPU type methodologies, there are two options to build the
input or model parameter distribution. The first one is when we know the distribution of the input
or model parameter. This distribution has been obtained from some experimental set of data values
by performing test with the data using the empirical distribution function (EDF), as explained in
Stephen’s paper [31]. This is the method that follows the program GEDIPA [5] explained in Section 5.1.
The second option is when we have only partial information about the parameter, as could be the
support of the distribution [a, b] and some of their moments. In this second case we have two options,
to apply the MEP or the MREP, if we have some previous PDF to rank the new probability distribution
taking into account the information available by building a functional that include the known moments
of the distribution, as a set of restrictions. The application of the MEP when we know the support and
some moments has been performed in a set of cases, as explained in Section 4.4. These cases have
been incorporated to the program UNTHERCO that performs the Monte Carlo sampling on the PDF
when partial information is known [5] and builds the PDFs that result from the application of the MEP.
In Section 5.5, we provide some examples of the application of the MEP to build the PDF.

The application of the MREP for updating the PDF, when new information is available and
using the previous PDF as a relative ranking function for the new probability distribution, provides,
in general, solutions with physical sense, as shown in the cases developed in Sections 4.2.1, 4.3, and 4.4,
of this paper. This result agrees with that of Caticha and Preuss [21], that established a set of three
axioms for physical systems, and arrived at the overall conclusion that the updated probability
distributions should be ranked relative to the previously known distribution according to their relative
entropy. The consequence of this fact is that the MREP gives a high preference to the updated
distributions qX(x), that vanish whenever the previous PDF fX(x) does. An example of this issue was
studied by Muñoz-Cobo et al. in appendix II-2 of reference [5], In this case, the previous distribution
was Gaussian, with a mean and variance of µ and σ2, respectively. The new information provided was
the same support, and different mean µ1, and no more new information was provided. The result
obtained was that the new distribution was again a Gaussian one with different mean µ1 and the
same variance, so the new distribution vanishes at the same points −∞ and +∞, where the previous
distribution does. Application of the MREP performed in cases 4.3 and 4.4 of this paper confirms again
that the new updated distributions vanish whenever the previous distribution does.
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The influence of the TS on the PDFs has been studied in a very broad context. The first case
studied is how the PDF must be changed to fulfill the TS in a probabilistic sense, with coverage and
confidence 95/95, when we have a sample of N cases for BEPU analysis obtained from Wilks’ formula.
In Appendix A, we deduced the probability p of the parameter X to belongs to the acceptance interval
[L, U] when performing a BEPU, analysis with N cases. If the parameter fulfills the TS the PDF does
not need to be changed unless to be required by the regulatory body to check a more conservative
approach, as studied in the case developed in Section 5.4.3. The second case is when the PDF does not
fulfill the TS, and the PDF must be changed to fulfills the TS, the first step is to obtain the probability
p of the parameter to belong to the acceptance interval [L, U], as explained in Appendix A. In this
case, we have an additional restriction in the functional imposed by the TS that tells us that the
probability of the new PDF to belong to the [L, U] interval is p. This new restriction is added to the
other restrictions as a new term in the functional F(qX , fX), that contains the relative entropy and the
set of restrictions imposed by the moments plus this new restriction imposed by the TS. Applying the
MREP, we obtained a new PDF that maximizes the entropy and considers as ranking function for the
relative entropy the PDF that is obtained without considering the effect of the TS. Using variation
calculus—i.e., maximizing the relative entropy by δF(qX , fX) = 0—we obtain the new PDF. To obtain
the parameter values of this PDF, one must solve one system of equations, as shown in Section 3.3,
and with several examples given in Sections 5.2–5.4 for different kinds of acceptance intervals imposed
by the TS and different kind of conditions.

As a final conclusion, we can say that the main contribution of the paper is the development
of a methodology to determine uncertain PDF based on MEP and MREP in the cases of known
moments of the distribution and its support, new updating information, and technical specifications
(TS) imposed by the regulations. The influence of the TS on the PDF was previously circumvented and
in this paper a general analysis on this issue has been performed. Also, several examples have been
shown on the application of this methodology to PDF updating that must fulfill technical specifications
as explained in Sections 5.2–5.4. Finally, three computational tools have been developed (GEDIPA,
UNTHERCO, and DCP) for the implementation of the MEP and the MREP in BEPU analysis.

The future avenues of research in this matter are: (i) to include the possibility to handle errors in
the data into the MEP and the MREP principles to reconstruct the PDF of the parameters in the line
started recently by Gomes-Gonçalves, Gzyl and Mayoral [39]; (ii) to extend the examples of updating
using the MREP to cases in which the previous PDF is the gamma distribution or even more complex
ones as the four parameters exponential gamma distribution [40]; (iii) to extend the analysis to PDF not
considered in this paper as the double exponential distribution, the Fisher distribution and the logistic
distribution; (iv) to generalize the updating methodology including moments and data following the
ideas of Adom Giffin [41]; (v) to study more deeply Option 2 to assign PDF to operational parameters
controlled by TS.
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Appendix A. Deduction of the Equation to Find the Probability p of Belonging to an Acceptance
Tolerance Interval [L, U] for Samples of Size N

Let us assume that we extract a sample SN of size N from a random variable X that follows a PDF
f (x; θ1, θ2), and let us denote by Y the number of sample elements inside the interval [L, U] and by p the
probability that an element xi ∈ SN of this sample belongs to the interval [L, U]. Then, the probability
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that in any sample SN of size N of the variable X, exactly n elements of this sample belong to the
interval [L, U] is given by the probability that the random variable Y would be equal to n. The random
variable Y represent the number of sample data from SN that belongs to the interval [L, U] and follows,
obviously, a binomial distribution, given by

Prob(Y = n) =

(
N
n

)
pn(1 − p)N−n (A1)

Therefore, the probability that the number Y of sample elements of SN , that belongs to the interval
[L, U], would be greater or equal than n is given by

Prob(Y ≥ n) =
N

∑
k=n

(
N
n

)
pn(1 − p)N − n = Ip(n, N − n + 1) (A2)

where Ip(n, N − n + 1) is the regularized incomplete beta function, defined by the expression [32]

Ix(a, b) =
Bx(a, b)
B(a, b)

(A3)

Being B(a, b) and Bx(a, b) the beta and the incomplete beta functions, respectively, defined by
the expressions

B(a, b) =
1∫

0

dt ta−1(1 − t)b−1 =
Γ(a)Γ(b)
Γ(a + b)

and Bx(a, b) =
∫ x

0
dt ta−1(1 − t)b−1 (A4)

If the technical specifications (TS) impose a known acceptance interval [L, U]. Then, if we apply
the Wilks’ method within a BEPU methodology with degree of coverage γ and confidence β, then the
Wilks’ method relates the minimum number of cases N that must be run to have at least coverage of γ

and a confidence of β . The number of cases to be run and, therefore, the sample size to be generated
depends, in general, on the coverage and the confidence levels and the type of interval, one side or
two sides interval. For one side intervals, the Wilks’ formula simplifies to 1 − γN ≥ β, in this
case, with a coverage and confidence in % of 95/95 yields 59 runs. For two side intervals, the Wilks’
formula reduces to 1 − γN − N(1 − γ)γN−1 ≥ β, and the number of cases that must be run is 93.
In our case, we want that at least γi N parameter values of the sample SN are within the acceptance
interval [L, U] and with a confidence βi. We must notice that the coverage γi and the confidence βi
for a parameter X to belong to the interval [L, U], could be different from the coverage γ and the
confidence β for the output of the code to belong to a given interval, although in general, the value
95/95 is also chosen.

In our case, the TS impose a known acceptance interval [L, U], and the problem is that if the
number of cases obtained by Wilks’ formula is N(γ, β), we want that from any sample SN at least
γi N cases are inside [L, U], with confidence βi. Because γi N is, in general, a non-integer number, one,
usually, wants that the number of cases contained inside the interval would be at least the smaller
integer bigger than γi N, i.e., the ceiling function γi N. Therefore, the condition to be fulfilled is

Prob{SN}(Y ≥ M = γi N) ≥ βi (A5)

where Prob{SN} (Y ≥ M) denotes the probability that Y ≥ M for all the samples SN of size N; the
set of all the samples of size N is denoted by {SN}. Therefore, because Equation (A2), we can write
Equation (A5) as
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Prob{SN}(Y ≥ M = γi N) =
N

∑
k=M

(
N
k

)
pk(1 − p)N − k = Ip(M, N − M + 1) ≥ βi (A6)

Therefore, the equation to be solved to obtain the probability p that an arbitrary element of the
sample belongs to the interval [L, U] and, in addition, that the number of elements of the sample SN
contained inside [L, U] is bigger than M = γi N, with confidence βi, is

Ip(M, N − M + 1) = βi (A7)

Once we know the probability p, which depends on N, γi, and βi values the next step is to use
this probability p to obtain the parameter values of the probability distribution. Then, the probability p
that an element xi ∈ SN of this sample belongs to the interval [L, U] can be expressed in terms of the
difference of the CDF at U and L

p = FX(U; θ1, θ2) − FX(L; θ1, θ2) (A8)

where FX(x; θ1, θ2) is the CDF of the random variable X, defined as

FX(x; θ1, θ2) = prob(X ≤ x) =
x∫

−∞

fX(t; θ1, θ2)dt (A9)

This equation can be used, in addition to the moment equations, to calculate the parameters of
the PDF that fulfill the TS and the moment restrictions.

Appendix B. Some Probability Distributions Functions Obtained by the Application of the MEP
to Some Particular Cases

Appendix B.1. Application of the MEP When the Support of the Distribution is Known [0, ∞) and the
Information Provided is 〈x〉 = µ1, and 〈log(x)〉 = E(log(x)) = µ2

The MEP applied to this case yields, because the result obtained in Section 3.1, the following
results for the PDF

PX(x) = exp(−1 + λ0 + λ1x + λ2 log(x)) (A10)

where the Lagrange multipliers have unknown values that must be obtained from the restriction
conditions

∞∫
0

PX(x)dx = 1,
∞∫

0

x PX(x)dx = µ1,
∞∫

0

log(x)PX(x)dx = µ2 (A11)

Equation (A10) can be rewritten as

PX(x) = D xλ2 exp(λ1x) = D xα exp(−βx) (A12)

where we have renamed in Equation (A12) the Lagrange multipliers with the symbols λ2 = α and
λ1 = β. Then, the unknown constant D = exp(−1 + λ0) can be obtained from the first of the conditions
shown in Equation (A11), i.e., from the normalization condition of the PDF. The constant D is related
to the Euler gamma function as

D−1 =
∫ ∞

0
xα exp(−βx)dx =

Γ(1 + α)

β1 + α
(A13)
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Therefore, the PDF PX(x), that it is obtained applying the MEP, is given by the expression

PX(x, α, β) =
β1 + α

Γ(1 + α)
xα exp(−βx) with β > 0 and α + 1 > 0 (A14)

The condition β > 0 is necessary to assure the convergence of the integral that follows from the
normalization condition, while α + 1 > 0 follows from the region of existence of Γ(x), as stated in the
Handbook of Mathematical Functions [42].

The problem is now to obtain the values of the parameters α and β from the second and third
conditions of (A11). The second condition of (A11) provides the first equation to obtain the α and
β values

∞∫
0

x PX(x, α, β)dx =
β1 + α

Γ(1 + α)

∞∫
0

xα+1 exp(−βx)dx =
β1 + α

Γ(α + 1)
Γ(α + 2)

β2 + α
=

α + 1
β

= µ1, (A15)

The second equation, to obtain the α and β values, is obtained from the third condition of (A11)

β1 + α

Γ(1 + α)

∞∫
0

log(x)xα exp(−βx)dx =
β1 + α

Γ(1 + α)

∞∫
0

log(x) exp(α log(x) − βx)dx = µ2, (A16)

The integral appearing in Equation (A16) can be calculated on account that the integral appearing
inthis equation is related to the partial derivative of Γ(α + 1) with respect to the parameter α.
Therefore, we can write

β1 + α

Γ(1 + α)

∞∫
0

log(x)xα exp(−βx)dx =
β1 + α

Γ(1 + α)

∂

∂α

∞∫
0

exp(α log(x) − βx)dx

=
β1 + α

Γ(1 + α)

∂

∂α

(
Γ(1 + α)

β1 + α

)
= µ2,

(A17)

Now we remind the definition of the Digamma function, denoted as ψ(z) = Γ′(z)
Γ(z) with

Γ′(z) = d
dz Γ(z). Then the following result from Equation (A17) is obtained

ψ(α + 1) − log(β) = µ2 (A18)

The Equation (A18) together with Equation (B6), i.e., α+1
β = µ1, provide the equation system

that must be solved to obtain the α and β values. If µ1 and µ2 are known, to obtain the value of the
unknown parameter β we need to solve equation

ψ(βµ1) − log(β) = µ2 (A19)

Figure A1 displays the PDF computed with Equation (A14) for the following (α,β) values: data1
(1, 1), data2 (3, 2), data3 (5, 3), data4 (8, 4). The corresponding (µ1, µ2) values for these cases are:
(2, 0.4228), (2, 0.5630), (2, 0.6075), (2.25, 0.7543).
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Appendix B.2. Application of the MEP When the Support of the Distribution is Known (0, ∞) and the
Information Provided is 〈logx〉 = µlog, and 〈(log(x)− µlog)

2〉 = σ2

The application of the MEP in this case, according to the results of Section 3, gives the
following result

PX(x) = D exp(λ1 log(x) + λ2

(
log(x) − µlog)

2
)

(A20)

where the constant D and the Lagrange multipliers λ1 and λ2 are obtained using the normalizing
condition of the PDF and the moment restrictions

∞∫
0

PX(x)dx = 1,
∞∫

0

log(x) PX(x)dx = µlog,
∞∫

0

(log(x) − µ)2 PX(x)dx = σ2 (A21)

Performing the change of variables log(x) = t in the second of the Equation (A21), and because
Equation (A20), gives

∞∫
−∞

t D exp((λ1 + 1)t + λ2

(
t − µlog)

2
)

dt = µlog, (A22)

Next, we perform the change of variables u = t− µlog and we consider the first equation of (A21).
This yields

D exp((λ1 + 1)µlog)

∞∫
−∞

u exp((λ1 + 1)u + λ2u2)du = 0, (A23)

Because u is an odd function and exp(λ2u2) is an even function, the only possibility that the
integral in Equation (A23) yields zero is that λ1 = −1. Also, to be convergent, the integral is obvious
that λ2 < 0. Therefore, the density function reduces to the form

PX(x) =
D
x

exp(λ2

(
log(x) − µlog)

2
)

(A24)

The value of the constant D is obtained directly from the normalization condition of the PDF, first
of Equation (A21)

D =

√
−λ2√

π
(A25)
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To obtain the value of the unknown parameter value λ2, we proceed from the third equation of
(A21), performing the change of variables z = log(x) − µlog, which gives the result

∫ +∞

−∞
z2

√
−λ2

π
exp

(
λ2z2

)
dz = σ2 (A26)

Because the following result, see the Handbook of Mathematical Functions [39]

∫ +∞

−∞
z2 exp

(
λ2z2

)
dz =

1
2(−λ2)

√
π

−λ2
(A27)

Therefore, from Equations (A26) and (A27), it is deduced λ2 = −1/
(
2σ2). Finally, we obtain the

PDF given by the expression

PX(x) =
1√

2πσx
exp(−1

2
(

log(x) − µlog

σ
)2) (A28)

That is the log normal distribution.
The information entropy of this distribution is easily calculated and yields

S = −
∫ ∞

0
PX(x) log(PX(x))dx =

1
2

[
1 + log

(
2πσ2

)]
+ µlog (A29)

It is convenient to find the relation between the population mean µ = < x > and the distribution
parameters. This relation is given by [32]

µ = exp (µlog +
σ2

2
), or µlog = log µ − σ2

2
(A30)
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