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Abstract: For historic reasons, industrial knowledge of reproducibility and restrictions imposed
by regulations, open-loop feeding control approaches dominate in industrial fed-batch cultivation
processes. In this study, a generic gray box biomass modeling procedure uses relative entropy as a key
to approach the posterior similarly to how prior distribution approaches the posterior distribution
by the multivariate path of Lagrange multipliers, for which a description of a nuisance time is
introduced. The ultimate purpose of this study was to develop a numerical semi-global convex
optimization procedure that is dedicated to the calculation of feeding rate time profiles during the
fed-batch cultivation processes. The proposed numerical semi-global convex optimization of relative
entropy is neither restricted to the gray box model nor to the bioengineering application. From the
bioengineering application perspective, the proposed bioprocess design technique has benefits for
both the regular feed-forward control and the advanced adaptive control systems, in which the
model for biomass growth prediction is compulsory. After identification of the gray box model
parameters, the options and alternatives in controllable industrial biotechnological processes are
described. The main aim of this work is to achieve high reproducibility, controllability, and desired
process performance. Glucose concentration measurements, which were used for the development of
the model, become unnecessary for the development of the desired microbial cultivation process.

Keywords: gray box; relative entropy; microbial cultivation; numerical convex optimization;
parsimony; nuisance time

1. Introduction

Theoretical aspects for the practical application of adaptive control systems that operate in
unknown, nonlinear, and time-varying biotechnological environments are still to be developed,
investigated and implemented. For historic reasons, and reproducibility and restrictions imposed by
regulations, the open-loop control approach dominates in industrial cultivation processes. The scope
of industrial challenges, when dealing with adaptive control, consists of but is not limited to adequate
(sufficient) modeling methods, the lack of direct measurements of the state variables and their indirect
estimation tools, and the reliability of sensors.

To speed up the implementation of advanced control systems for the control of biotechnological
processes the USA Food and Drug Administration (FDA) has announced a well-known Process
Analytical Technology (PAT) Initiative [1]. One of the central topics of this initiative is the requirement
to accelerate the elaboration and implementation of advanced control systems in the biotechnological
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industry. The FDA have stated that “the goal of PAT is to understand and control the manufacturing
processes, which is consistent with our current drug quality system: quality cannot be tested into products,
it should be built-in or should be by design” [1].

Feeding of glucose solution serves as the main limiting factor to assure the controllability of an
aerobic cultivation of Escherichia coli [2,3]. The purpose of controllability is to ensure the conditions
by which the control action (substrate feed rate) allows the control of the growth rate and avoids
substrate inhibition on biomass growth and/or phase conversions to metabolisms which lead to
the formation of inhibiting products, e.g., acetates [4–6]. Efficient substrate feeding strategies should
ensure controllability of the process and secure sufficient bioprocess productivity [7]. Depending on the
particular bioprocess, productivity is considered as the total amount of biomass [8] or target product
accumulated at the end of the cultivation process, e.g., the target is a recombinant protein [9,10].

Recent modeling approaches of varying complexity have aimed to speed up the development of
biotechnological processes [6,11–15]. The established bioprocess model not only allows the process
behavior to be forecasted and its performance to be increased with feedback control [3], but it also
increases its reproducibility [16] and makes model-based verification possible [17]. Another advantage
of bioprocess modeling is that it enables the indirect estimation of the bioprocess state and helps
to produce feedback control on the cultivation system variables based on fundamental knowledge.
One example of this is controlling the level of dissolved oxygen pO2 [18]. This avoids excess feedback
control when disturbances in sensors occur, e.g., during the addition of antifoam to a bioreactor.

The development of desired bioprocess should involve designing a feeding rate time profile by
relying on Occam’s razor [19]. Consequently, the motivation is that the gray box model [20] should
represent basic regularities of microbial cultivation processes. The behavior of the biomass growth
model should reflect the majority (to follow the Pareto principle) of industrial cultivation processes.
The main assumption of the current work is that 80% of cultivation process variation depends on a
substrate feeding rate and effectively on substrate concentration in the cultivation medium.

After choosing the gray box model to be used for fitting and smoothing the glucose consumption
data, the authors’ choice is to apply the maximum (relative) entropy (ME) as a method to update from
the prior probability distribution to the posterior distribution [21]. A similar choice by Caticha and
Preuss in 2003 followed their successful applications of ME in statistical mechanics. In 2007, Giffin and
Caticha [22] showed that a Bayesian updating approach is a special case of the maximization of entropy,
and this idea later worked as catalyst to develop applications in other fields of science, including,
but not limited to, information flows in dynamic [23] and complex systems [24], new inspirations
in frameworks analyzing the bounds of estimation error variances for a general state estimation
system [25], or a tool for generating random bits in microprocessors dedicated for bio-signals [26],
etc. A recent review [27] contains further references describing the path from communication systems
(information theory) to control theory.

In this study, Gaussian prior distribution represents the data noise but with the additional
assumption that the model’s uncertainty is equal to the square of the model’s local mean. This idea
originates from an optimal resource allocation study by Renaldas Urniezius (R.U.) [28] where the
deviation of bank remittances to a common ATM network warehouses was proportional to the bank’s
market share. Thus, over time such a technique “by-design” forced banks to follow a “fair game” rule.

The current work’s convex optimization routines’ analogy to statistical mechanics is important:
Lagrange multipliers and their estimation procedures are treated similarly to how convex optimization
routines using ME criterion are implemented in model fitting problems. In 2013, R.U., in cooperation
with Adom Giffin, applied the ME numerical convex optimization implementation. That was the
first attempt of a generic implementation of any number of boundary constraints for the criterion
of the ME on any prior distribution. The effort involved the development of a generic ME package
for the R project of statistical computing [29]. As a result, upon numerical verification the results
matched global extremum numerical solutions found in several public papers, e.g., [30,31]. Later in
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this paper, the description of a nuisance time is used for the purpose of explaining the implementation
of numerical convex optimization.

A study of optimal resource allocation [28] introduced a numerical semi-global optimization
approach which is relevant to other models (although not necessarily restricted to the models of
econometrics). This work is an example of how ME helps to develop high-speed numerical semi-global
optimization routines for a multivariate problem of gray box model fitting. This study represents the
authors’ effort to develop substrate solution feeding profile in bioengineering.

The implementation of numerical semi-global optimization routines is analyzed simultaneously,
paying attention to enforcing initial and boundary conditions. Practical benefits in new industrial
process design are also highlighted. Finally, options and alternatives are discussed, which help to
achieve high reproducibility, controllability, and desired process performance. The software tool and
its graphical user interface, which were developed for this purpose, are also introduced in this paper.

In this paper, Section 2 lays out the workflow of biomass growth model identification. First,
the maximum substrate consumption profile is found by performing fed-batch cultivation with feeding
carried out in portions; the next subsection describes the motivation for gray box model selection and
its probabilistic assumptions; the third subsection contains the derivation of the optimization criterion
for model fitting; the fourth subsection exposes the relationship of this study’s numerical routines to
the convex pathway, which is inherited from physical applications; and the fifth subsection describes
the implementation of the numerical algorithm to identify the gray box model parameters. The third
section presents a flexible software tool which was developed for the generation of limited biomass
growth substrate feeding profiles. The fourth section consists of experimental analysis: a practical
illustration of bioprocess reproducibility and controllability achievement; an assessment of goodness
of fit to dataset, acquired from a third party; and sensitivity analysis of the numerical routines to the
seed values of initial parameters, which shows the practically beneficial outcome of the convex outlook
in this work.

2. Identification of Biomass Growth Model

Prior to the calculation of the substrate feeding rate time profile, the time profile of the maximum
glucose consumption rate must be identified. The obtained maximum glucose consumption rate,
under controlled penetration into the area of aerobic fermentation, is the most important parameter for
determining the maximal available specific growth rate µ during different cultivation phases, where µ

is estimated from:
µ =

dX
dt
· 1
X

(1)

where X is the total biomass. The specific growth rate µ is the most important precondition to ensure
process controllability [32]. By choosing a different limitation level the desired performance of the
controlled process can be realized. There are several ways to approach this task. Here, a classical
straightforward procedure helps to identify the maximal oxidative capacity of cells, assuming that
during whole cultivation process:

• the biomass yield on substrate (i.e., YX/S = dX
dS [g/g], where S represents the substrate) does

not change.
• limited feeding rate will ensure avoidance or changes in metabolic pathways.

The time profile of the maximum rate of substrate consumption can be determined from fed-batch
processes with feeding carried out in portions, which represent substrate dosing oscillation cycles [32].
At each oscillation cycle glucose concentration is measured. If it falls below the threshold, additional
substrate solution is added so that the glucose concentration reaches the desired level. The change
of the concentration’s decrease matches its actual consumption throughout the time discretization
interval. Another alternative to estimate glucose consumption is indirect calculation from the optical
density (OD) measurements.
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After the substrate consumption data is known, the selected gray box model is fitted to the
experimental data. This model contains a partial form of the theoretical information about microbial
strain growth properties and additional nuisance/perturbation dimensionless parameters. In the
beginning of the process, exponential growth is assumed. This can be explained by the fact
that, in the beginning of the process, specific biomass growth rate usually increases or remains
constant. After the exponential phase of a microbial cultivation, the induction (e.g., with isopropyl
β-D-1-thiogalactopyranoside (IPTG)) is performed [33]. After the induction, the specific growth rate
decreases; for a description of this phenomenon, the bioprocess model includes the nuisance parameter
for the linear decline of the specific growth rate over time. Both stages have the same first- and
second-order boundary condition to guarantee their smooth intersection by model fitting procedures
during ME optimization.

2.1. Fed-Batch Cultivation to Identify the Maximum Substrate Consumption Profile

The first step of process design is usually to estimate the maximal available specific growth rate at
different process phases. For this purpose, a common approach is to apply fed-batch cultivation with
dosed glucose feeding, i.e., to obtain both the glucose cumulative consumption data and high biomass
yield, fed-batch cultivation with feeding carried out in portions is a common choice [32]. At the start
of each episodic oscillation cycle, depending on the output of glucose concentration measurements,
the process involves periodic substrate refilling so that the glucose concentration reaches the desired
level. Normally, this level is selected so as to be high enough to still anticipate some of the glucose
concentration at the end of the step. Both a cultivation medium volume in the bioreactor, and the
glucose consumption, are recalculated at each oscillation cycle, which usually lasts around 30 min to
1 h. There are at least two practical choices to retrieve glucose consumption for every oscillation cycle:

1. Measuring glucose concentration prior to each cycle and after it finishes. Prior to each cycle,
immediately after the glucose concentration has reached the desired concentration due to
substrate addition, the glucose consumption is calculated during the most recent step by
subtracting the multiplication of the cultivation medium volume in the bioreactor and glucose
concentration, at the start of the interval, from the multiplication of the cultivation medium
volume in the bioreactor and glucose concentration at the end of the interval, immediately before
the next substrate prefill.

2. The second alternative is based on OD observations. To retrieve a cumulative glucose
consumption during each oscillation cycle, the OD value (in o.u.) is multiplied by both a
coefficient of biomass concentration (approximately 0.4 g/L/o.u.) and cultivation medium
volume in the bioreactor, and is then divided by a biomass yield of glucose (approximately
0.5 g/g) [34]. Subtraction of the cumulative glucose weight at the start of the oscillation cycle
from the one at the end of the same cycle gives the total glucose consumed during the step.

Choosing between glucose consumption calculation techniques depends on practical
considerations. Usually, due to the bioprocess lag phase immediately after inoculation to a bioreactor,
glucose concentration measurements are skipped. This happens at the beginning of a bioprocess.
The main reason for this is that it is sufficient to monitor the dynamics of a dissolved oxygen level
to decide whether the substrate feeding control must be started [35]. In such cases, the glucose
consumption can be estimated from OD measurements as described in the second alternative above.
However, after the lag phase of a cultivation, when the glucose concentration measurements are
started, the first alternative becomes a better solution.

Until this point, the procedure consisted of the calculation of the glucose consumption profile
in liters per hour. The feeding substrate solution has a certain density and glucose concentration in
the solution. Therefore, the retrieval of the substrate solution weights still requires multiplication of
the current profile by substrate density value (g/L) and its division by the glucose concentration of
the feeding substrate. This finally yields the feeding solution profile to be processed by an industrial
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controller with weighing scales attached. This profile represents the maximum oxidation capacity,
which does not necessarily mean the maximum expression of a product. Therefore, the design of
the glucose feeding rate time profile would help to avoid glucose overfeeding and the metabolism
pathways associated with it. For this purpose, a time dependent model is necessary to effectively fit
the feeding profile data.

2.2. Gray Box Model Selection and Probabilistics Assumptions

Time dependence is one of the key properties of the “black box” model to assure that slowing
down the time variable with respect to actual physical time would help to preserve the shape of a
feeding profile. A parametric construction of model structure makes this model a gray one since
some of its structure is inherited from fundamental knowledge about the bioprocess. In other words,
the basic course of the process can be described by a family of exponential relationships, and this
partially matches fundamental principles of cell biomass growth. The whole bioprocess consists of two
stages, and may be described by two gray box models. The first one covers both lag and exponential
stages of the cultivation process:

xt<tinduction(t) = k11·ek12t − k13·t + k14, (2)

where x(t) is a one-dimensional variable containing the cumulative amount of feeding substrate to be
fed during the first stage at time t, tinduction is a time stamp of an induction moment (or a time close to it,
since the match is a soft requirement) and coefficients k1i are the gray box model’s nuisance parameters
for the first stage of the process. The undetermined character of the gray box model will be discussed
later. The exponential growth rate is a first-order reaction and is approximately linearly proportional
to the concentration of a biomass or the total cell number at a constant specific growth rate (in case
the substrate and other factors do not inhibit the specific growth [36]). Even if the parameter k12,
by theoretical exponential growth form, reflects the growth rate, its numerical value is not necessarily
equal to the value of µ. This is one of the benefits of ME optimization for such an undetermined system.

The second stage model defines how the process behaves after the time of induction (or after a
time close to the induction time stamp):

xt≥tinduction(t) = k21·ek22·t+k25·t2 − k23·t + k24, (3)

where coefficients k2j are the gray box model’s nuisance parameters, identified for the second stage of
the process. This second stage model represents the decelerating stage of the bioprocess cultivation.
It contains additional parameter k25, which reflects the dynamics of deceleration of the specific growth.
However, its numerical value does not necessarily match the value of the actual specific growth rate
deceleration divided by two. This is the abovementioned benefit of ME for undetermined systems.
To reiterate, numerical values of all the gray box model parameters might not necessarily have a
physical meaning, however, they still serve as a rational choice for model fitting to be used in later
scaling-up or scaling-down of the industrial processes using ME.

The application of the gray box model for time series probabilistic variables [37] in ME first
requires the selection and definition of the probabilistic distribution of the likelihood. For this purpose,
the gray box model’s expression is generalized to:

xm(t) = km1·ekm2·t+km5·t2 − km3·t + km4, (4)

where the index m is equal to 1 for the first-stage model and equal to 2 for the second-stage model,
and tk is the time when the cumulative glucose consumption xm(tk) for the k-th oscillation cycle has



Entropy 2018, 20, 779 6 of 19

been calculated. Similarly to the procedure in [37], Equation (4) is the constraint over the mean of a
probabilistic variable 〈xm,k〉, which also represents the prediction value of the proposed model:

〈xm,k〉 ≡ 〈xm(tk)〉 = km1·ekm2·tk+km5·t2
k − km3·tk + km4, (5)

where k15 is set to zero by default. Then posterior distribution at k-th oscillation cycle is:

Pposterior(xk) ∼ N(〈xm,k〉, σ2
〈x〉), (6)

which assumes that all posterior variances σ2
〈x〉 are the equal.

A probability density function defining the prior distribution is assumed also to be Gaussian,
represented by a joint prior [38]:

Plikelihood(xk, cxm,k) ∼ N(cxm,k, cx2
m,k), (7)

where cxm,k is observation value represented by substrate feeding profile value at the time discretization
step k.

Equation (7) shows that the mean of each observation (calculated value of cumulative substrate
feeding solution) is proportional to its deviation value. An idea of evaluation of the biomass prediction
error or bias through the percentage to the actual observed value is not new. Mean absolute percentage
error (MAPE) frequently serves as a tool for biomass prediction or estimation accuracy [39,40].
Interestingly, according to the authors’ practical experience with microbial cultivation processes,
such an assumption is also critical as a soft constraint for the fitting of substrate feeding solution
models. However, such a hypothesis of this numerical phenomenon requires further testing. There are
several possible explanations for it:

• The exponential stage is one of the main stages of the whole bioprocess. One of the exponential
distribution properties is that its variance matches the squared mean. The same applies to gamma
distribution, which is a special case of exponential distribution.

• Measurements of optical densities at higher densities involve increasing measurement errors due
to dilution of the samples, which might cause exponentially increasing bias.

• It is normal for optical densities to increase by more than 300 times during the process.
Consequently, any local or microscopic measurements, such as glucose concentration and OD
measurement, involve increasing bias from the macroscopic point of view.

• From the point of view of classical control theory, there are nonlinear system parts which will
influence the feedback, and their effect intensifies as the concentration of biomass increases—for
example, the permeability of the feeding hose, any external disturbance on the weighting scale
equipment, overpressure changes in bioreactor, etc.

MAPE evaluation has statistical disadvantages (none of which, however, is a major drawback for
biomass estimation):

(1) There will never be zero biomass concentration after inoculation into a bioreactor.
(2) The lag phase covers smaller OD values and smaller estimation errors are literally expected

during this period.
(3) The maximum OD values usually depend on the strain cultivated, so there are no expected

comparison issues when considering the repeatability of the estimator.

The idea of having process variable participate as uncertainty originates from financial
applications where a fair game condition, between banks of variable sizes, was achieved by treating
the annual bank turnover as the uncertainty for the bank’s remittances to ATM network. This showed
both performance and optimum wise satisfactory results [28].

Construction of prior and posterior distributions allows shifting to the actual model fitting.
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2.3. ME Criterion Derivation

Prior to model fitting, the resolution of expression of relative entropy for a single discrete time
moment k starts with:

Sk(Pposterior, Plikelihood) = −
∫ ∞

−∞
Pposterior(xk)· ln

Pposterior(xk)

Plikelihood(xk, cxk)
dxk (8)

Integration of Equation (8) yields:

Sk(Pposterior, Plikelihood) = −
(〈xm,k〉 − cxm,k)

2

2·cx2
m,k

− 1
2
+

σ2
〈x〉

2·cx2
m,k

+ ln
cxm,k

σ〈x〉
+ cint, (9)

where additive terms, integration constant cint and division by a factor of 2 can be omitted,
when constructing “cumulative” relative entropy for all steps of a bioprocess:

S(Pposterior, Plikelihood) = −∑ni
ki=1

(〈x1,ki〉 − cx1,ki)
2

cx2
1,ki

−∑
nj
kj=1

(〈x2,kj〉 − cx2,kj)
2

cx2
2,kj

, (10)

where ni and nj are the total number of cumulative feeding solution weights prior to and after the
induction time, 〈x1,ni〉 = 〈x2,1〉, and cx1,ni = cx2,1 due to intersection restriction.

There are two pieces of information that have still to be accounted for in the relative entropy:
initial and boundary conditions. The initial biomass concentration condition is relevant, because the
shake flask procedures, prior to inoculation, are usually standardized in such a way that biomass
concentration is known with smaller uncertainty at the beginning. Since ni + nj, i.e., the total number
of fed-batch steps, is usually less than 50, the reduction of the variance of the first step by a factor of 20
provides satisfactory results as a soft constraint for numerical ME optimization routines.

The main boundary condition of the optimization task is making certain that the model fitting
curves originating from Equations (2) and (3) intersect smoothly. The time at which both model
curves intersect usually corresponds to the induction time, however this is not a strict requirement.
The mismatch sometimes indicates that the bioreactor system failed or was planned improperly to
induce the IPTG at the right time. However, such discrepancy might be an expected designed behavior
which is subject to the requirements of the process development.

Three soft restrictions on the rate of change of substrate feeding profile eventually all lead to
satisfactory model fitting results. The first ensures that both curves should have the same rate of
change at the intersection. The uncertainty of this variance is divided by a factor of 2 compared to
Equation (10). The most recent substrate feeding value, prior to the intersection, and the first value
immediately after it, both conclude the remaining two loose data constraints. However, the variance is
multiplied by a factor of 100 this time, because there is more uncertainty introduced by a considerable
time difference. It is anticipated that these two last soft constraints improve smoothness from an
acceleration perspective at the intersection.

The rate of change of the statistical means Equation (5) has closed form parametric expressions by
differentiation:

〈x́m,k〉 = (2·km5·tk + km2)·km1·ekm2·tk+km5·t2
k − km3 (11)

Thus, the final form of ME Equation (10) criterion becomes:

S(kmi, kmj) ≡ S(〈xm,k〉, 〈x́m,k〉) = −
(〈x1,1〉−cx1,1)

2

0.05·cx2
1,1

−
ni
∑

ki=2

(〈x1,ki〉−cx1,ki)
2

cx2
1,ki

−
nj

∑
kj=1

(〈x2,kj〉−cx2,kj)
2

cx2
2,kj

− (〈x́1,ni〉−〈x́2,1〉)2

0.5·cx2
2,1

− (〈x́1,ni−1〉−〈x́2,0〉)2

100·cx2
1,ni−1

− (〈x́1,ni+1〉−〈x́2,2〉)2

100·cx2
2,2

.
(12)
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Equation (12) recovers the weighted sum of residuals [41,42] and manifests two benefits of
ME. The intuitive manipulation on uncertainty led to the introduction of weighting factors to
the optimization routine and made it possible to consider both initial and boundary conditions.
Thus, the criterion still preserves its form’s simplicity, circumventing variational Lagrangian or
Hamiltonian [43] formulations. As Equation (12) presents the same system as Equation (8), for the
purpose of numerical search for the unknowns kmi and kmj, the multivariate path can be explored in a
computationally efficient way, in the same manner as how Lagrange multipliers lead prior distribution
to a posterior one in physics [21,44], which is a topic of the following subsection.

2.4. Nuisance Time in Convex Optimization Trajectories

This work’s principle of convex optimization lies in the updating of a prior probability density
function to the posterior one by employing:

Pnew(θ) =
Pold(x́, θ) eβ· f (θ)∫
Pold(x́, θ) eβ· f (θ)dθ

, (13)

where all notation descriptions are presented in [41]. Equation (13) substitutes the idea of how the prior
distribution transforms to the posterior one. If the Lagrange multiplier β is zero, then the posterior
distribution recovers its prior knowledge. In other words, a prior function is a special case of a more
general posterior one and a scalar value of β (or any parameter(s) of the posterior function) increasing
from zero to a certain value defining the transformation “trajectory” between the two distributions.
It also ensures both the compliance with constraints and the maximization of entropy. A similar
conversion trajectory effect took place in a revisiting of the method of mirror images [45] and vector
normalization [46], where a variance approaching zero produced vector normalization expressions,
i.e., the spatial point with the Dirichlet boundary condition imposed.

Figure 1 depicts the transformation in the Lagrange multipliers configuration space, where the set
of Lagrange multipliers starts at zero value of a prior point and ends at the posterior solution axis.
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Figure 1 portrays nuisance trajectories for each Lagrange multiplier in λ configuration space,
where circles filled with a color portray the states in a pseudo time, which is defined as a nuisance
time. These states are the optimization stages of the entropy maximization, in case of sampling it while
updating from prior to posterior function. The meaning of nuisance time and nuisance trajectories
is similar to that of nuisance parameters [47], and these must be accounted for. Despite the fact
that there might be no interest in intermediate information when updating from prior to posterior
distribution, nuisance trajectory is important. The main reason for this is that in many cases there are
no closed-form solutions for such a transition, so iterative tactics remain the only choice, i.e., as in the
generic implementation of ME optimization for any set of constraints.
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The nuisance time and its trajectories define, from an algorithmic point of view, how numerical convex
optimization must be implemented.

Figure 1 shows that any subsequent step, receding from the prior information, must follow the
trajectories which all maximize the convex criterion. This implies that any progress towards posterior
function must be made simultaneously for all nuisance parameters. In other words, a set of changes
for all parameters should be chosen such that the next advance made maximizes the convex criterion.

Similarity of the nuisance time and its implications exists to the parsimony principle [48],
where a parsimonious model is the “one, in which many of the entries of the parameter matrices are
zero” [49]. By comparison, with the nuisance time, the numerical convex optimization starts with
all zeros, i.e., banks are frugal, unwilling to use resources, and prefer not to remit their portion [28]
or a posterior distribution stays in the form of a prior function, if no updating is performed or
constraints imposed [38]. Moreover, the nuisance time and parameter trajectories play similar roles
when parameters are dependent on other functions, as adjoint variables are dependent on time in
Hamiltonian formulations of Pontryagin’s maximum principle [50]. If the values of adjoint variables
contain zero values for any time, the constraints to which these adjoint variables are assigned to have
no effect on the Hamiltonian output.

A trade-off between goodness of fit [51] and parsimony is resolved by the undetermined gray
box model formulation, which potentially has an infinite number of local extrema. The interesting
fact is that there is no major distinction between the goodness of fit properties at these extrema, so the
one which leads to the solution by following the convex pathway is chosen as the rational choice.
The investigation of physical nuisance parameter values is out of interest in this study, and their
projections to the coordinate space of compiler’s variable types is an acceptable supposition to achieve
the goal for model fitting. By comparison, the authors of [48] state that “if a model has many free
parameters—for instance, a complex budget constraint or complex household preferences—then the
model is relatively nonparsimonious”. Such a statement is not relevant, and overfitting issues [52] do
not occur in the scope of ME optimization for the profile fitting. On the contrary, both parsimony and
multiple parameters helped to arrive at a competitive local extremum, which has equivalent goodness
of fit compared to others extremum candidates. Moreover, the gray box model itself inherits some
of the known theoretical structure and the convex pathway through nuisance time and trajectories
produces local extremum choices that result from ME.

2.5. Identification of the Gray Box Model Parameters Using Nuisance Time

The workflow of numerical identification of the gray box model parameters consists of two
proactive parts (Figure 2). The first part involves choosing the best unique parameter change,
which maximizes entropy. The second part involves reducing the parameter progress when the
relative entropy is no longer increasing.

The entropy calculation of numerical blocks #1 and #2 (Figure 2) uses Equation (12). The identification
of gray box parameters in numerical block #2 (Figure 2) uses both Equations (3) and (4) and consists of
two major steps:

1. For historic reasons, the resolution of km1, km3, km4 is performed by a linear regression through the
maximization of the following measure:

S(km1, km3, km4) = −∑ni
ki=1 (〈x1,ki〉 − cx1,ki)

2 −∑
nj
kj=1 (〈x2,kj〉 − cx2,kj)

2, (14)

This ends with the closed-form km1, km3, km4 expressions, with the only exception being that
k14 := −k11 due to the preference to keep the estimate of the initial magnitude of the profile between
zero and the value of the first calculated substrate feeding. The values of k12, k22, k25 are passed from
the second step, which encloses this step; and
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2. This step is the major convex optimization step which follows the trajectories of nuisance time and
deals mainly with the determination of k12, k22, k25 parameters by following the maximum entropy
direction, which is elaborated below.
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At the beginning, numerical block #1 in Figure 2, the gray box model in Equation (12) is
parsimonious, i.e., all k12, k22, k25 values are set to zero, the first step is executed and initial entropy
using Equation (12) is acquired. Then, in numerical block #2 of Figure 2, all combinations of
k12, k22, k25 are checked by adding to each of them step12, step22, step25 step sizes originating from
the following candidate collection: −6.4, −1.6, −0.4, −0.1, 0.1, 0.4, 1.6, and 6.4. Thus, entropy Equation
construction of the step size 12 is calculated in total for 512 combinations between the all three
parameters. The rule of trial collection is the following:

• At the start of program execution, the initial base step sizes are basestep12 := 0.1, basestep22 :=
0.1, basestep25 := 0.1 for all three parameters.

• Then, ±basestep12, ±4·basestep12, ±42·basestep12, ±43·basestep12 all compose the step collection
for step12, and similarly candidate enumerations are formed for both step22 and step25.

There are other sampling window strategies which depend on the threshold dedicated for relative
entropy [53], however, the authors’ rational choice was to keep sampling sparse enough for the
model fitting purposes and postpone investigating sophisticated approaches for a future. After all 512
combinations of step12, step22, step25 are tested for their entropies, the best one is chosen, i.e., the one
which has the maximum entropy compared to the other candidates, and the program permanently
updates the search parameters by:

k12 := k12 + step12, k22 := k22 + step22, k25 := k25 + step25 (15)

This revision procedure of k12, k22, k25 is repeated until the maximum entropy stops increasing.
This means that the program execution most likely approached the region of the local extremum and
step granularity became too sparse to converge further. Then, the program decreases the base step
sizes as in numerical block #3 of Figure 2 as follows:

basestep12 := basestep12/1.1, basestep22 := basestep22/1.1, basestep25 := basestep25/1.1, (16)
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and the program again proceeds with the same construction of a trial collection and entropy
maximization as earlier.

When three base steps all reach a convergence precision tolerance of lower than 0.0001 (numerical
block #4 in Figure 2), the parameters converged to the optimal solution. Finally, several safeguards
are put into effect against abnormal numerical scenarios, which return minimum variable type value,
so that these cases do not interfere with the maximization of entropy. These safety measures mainly
reject a candidate collection, if a solution for Equation (14) does not exist for that set, e.g., omitting
cases with infinitesimal solutions or divisions by zero.

In conclusion, a nuisance time implicitly plays a significant role in this algorithm. After each
ME iteration, when the new maximum entropy value is acquired, the program returns a set of so far
optimal combinations of the gray box model parameters. This interim set of parameters belongs to the
same nuisance time, so the program knows exactly which parameters progress faster than others in
the nuisance time coordinate system. A software progress bar would reflect this effect of a numerical
optimization. Thus, the program follows the convex pathway of the whole functional as with the
Lagrange multipliers and update the prior distribution to the posterior one—interestingly by going
along the maximum relative entropy pathway, which supposedly is a rational choice as well.

After the optimal gray box model parameters are known, the software tool’s graphical user
interface allows manipulation by various options of the profile shape, which can later help in
attempting to maximize a product or seek a better target protein expression.

3. Bio-Engineering Software Tool for the Design of Feeding Rate Time Profiles and the
Development of Cultivation Processes

The development process of achieving reproducibility, controllability, and desired process
performance requires not only the feeding profile identification representing the maximal oxidation
capacity of a microbial culture, but also a flexible engineering tool (Figure 3) to change how the
feeding profile is reshaped in order to gain high reproducibility, controllability, and desired cultivation
process performance.
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represent the cumulative substrate values acquired from fed-batch E. coli cultivation with feeding
carried out in portions to a 1 L bioreactor. The total fed substrate mass was 400 g and the cultivation
took approximately 12 h after the inoculation. Estimated parameter values were k01 = 1.170474,
k02 = 0.540259, k03 = 0.583979, k04 = −1.170474, k05 = 0, k11 = 0, k12 = 48.279174, k13 = −71.943295,
k14 = −485.412949 and k15 = −2.758384. The calculation took 6244 ms and the relative entropy value
was −0.3256.

As can be seen in the left of Figure 3, there are multiple options and alternatives available to a
user. These are described, from the top to bottom, below. The first option is to choose an induction
time, which determines the intersection point of the two models used in this work. The user can test
various time intersections and choose the one that best suits their needs. Sometimes this feature helped
the authors to both analyze the client’s data profiles and identify when the true induction activity
happened. The initial glucose concentration in a bioreactor defines the expected glucose concentration
which must be consumed by bacteria prior to the start of feeding. Therefore, this amount is deducted
from the cumulative feeding profile’s start, and the exact time when the feed should be started is
recalculated. The start of a feed should be slightly earlier than the time the glucose in cultivation media
is exhausted. The glucose reserve option allows starting the feed sooner. The total effect of these latter
options result in a feeding start at 4.38 h (bottom of Figure 3).

Next, there is an option, no matter whether limitation is applied to the feeding profile or not,
to extend or extrapolate the existing feeding rate time profile compared to the one acquired originally.
Otherwise, when no extra hours are defined, the limited total cumulative substrate weight would
exactly match the final value of the cumulative substrate value of the original cultivation performed at
the maximum feed rate. The first option establishes a linear decrease at the hourly percentage rate,
while the second one extrapolates the gray box model by a time variable’s progress according to the
exponential model, which already exists inside of the gray box.

The weight of a bottle which contains the substrate solution, if defined, would split the
whole feeding profile into multiple interim profiles so that bottles can be replaced during a feed.
The developed feeding software also encapsulates a feeding controller, which controls Masterflex
pumps and reads the feeding substrate solution weight from weighing scales (e.g., Mettler Toledo, Kern,
Axis, or controller with load cells attached, etc.). This allows the user to not only qualitatively change
the composition of the feeding solution, but also makes it possible to use smaller, more economical
weighing solutions for the cumulative glucose profiles that exceed the maximum measurement range
of the weighing mechanism.

The last option includes an actual limitation tool for the feed rate limitation. This is a key feature
of the gray box model-based design allowing the avoidance of changes in metabolic pathways during
the cultivation process and tracking the desired glucose consumption trajectory. Scenario 1 contains a
single limiting percentage factor for the whole cultivation, and Scenario 2 has two separate limiting
percentage factors—the first one for the model prior to the intersection of the profile curves and the
other one for the remaining time after the intersection moment. Figure 4 shows the substrate feeding
rate profile associated with the cumulative substrate feeding solution in Figure 3.

In Figure 4 the feeding starts at the feeding rate of 6.17 g/h. However, when the profile is limited
to 95%, the maximum feed rate is set to 80% and the feeding profile is extrapolated by 2 h, the controller
would then start at feeding rate of 5.86 g/h (see Figure 5).

Depending on the product to be maximized, the strain cultivation capabilities, and process
duration trade-offs, different limitation alternatives should be designed. A general recommendation is
to start with at least three parallel cultivations prior to proceeding with any scale-up. Depending on
the output, the gradient direction on what to change next will become evident.

The substrate feeding profile design software tool has a separate dialog for scaling up or scaling
down procedure, where the profiles can be scaled relying on the ratio between the initial volumes in a
bioreactor vessel. This procedure is also determined by the same gray box model and its optimization
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using ME. An efficient scale-down procedure has to create conditions that will be representative for
the conditions occurring at a large scale.

Entropy 2018, 20, x 12 of 19 

 

and reads the feeding substrate solution weight from weighing scales (e.g., Mettler Toledo, Kern, 
Axis, or controller with load cells attached, etc.). This allows the user to not only qualitatively change 
the composition of the feeding solution, but also makes it possible to use smaller, more economical 
weighing solutions for the cumulative glucose profiles that exceed the maximum measurement range 
of the weighing mechanism. 

The last option includes an actual limitation tool for the feed rate limitation. This is a key feature 
of the gray box model-based design allowing the avoidance of changes in metabolic pathways during 
the cultivation process and tracking the desired glucose consumption trajectory. Scenario 1 contains 
a single limiting percentage factor for the whole cultivation, and Scenario 2 has two separate limiting 
percentage factors—the first one for the model prior to the intersection of the profile curves and the 
other one for the remaining time after the intersection moment. Figure 4 shows the substrate feeding 
rate profile associated with the cumulative substrate feeding solution in Figure 3. 

 

Figure 4. Feeding rate profile view from the right side of the operator dialog screen. 

In Figure 4 the feeding starts at the feeding rate of 6.17 g/h. However, when the profile is limited 
to 95%, the maximum feed rate is set to 80% and the feeding profile is extrapolated by 2 h, the 
controller would then start at feeding rate of 5.86 g/h (see Figure 5). 

Depending on the product to be maximized, the strain cultivation capabilities, and process 
duration trade-offs, different limitation alternatives should be designed. A general recommendation 
is to start with at least three parallel cultivations prior to proceeding with any scale-up. Depending 
on the output, the gradient direction on what to change next will become evident. 

The substrate feeding profile design software tool has a separate dialog for scaling up or scaling 
down procedure, where the profiles can be scaled relying on the ratio between the initial volumes in 
a bioreactor vessel. This procedure is also determined by the same gray box model and its 
optimization using ME. An efficient scale-down procedure has to create conditions that will be 
representative for the conditions occurring at a large scale. 

In conclusion, the gray box model and convex ME optimization both help to design the profile 
and allow the design of the scale-up, scale-down and prediction strategies in the profile, which is 
essential for the adaptive control system of bioprocesses. 

Figure 4. Feeding rate profile view from the right side of the operator dialog screen.
Entropy 2018, 20, x 13 of 19 

 

 

Figure 5. Substrate feeding rate profiles limited to 95%, with the maximum feed rate set to 80% and 
feeding profile extrapolated, using gray box model, by 2 h. 

4. Experimental Verification of the Gray Box Model Approach 

Three types of verifications are provided by this paper’s gray box model approach. Firstly, OD 
curves were compared between multiple cultivation processes that had same substrate feeding 
profile applied. Such a test verifies the reproducibility of the approach and, thus, also its 
controllability, as defined by the Pareto principle earlier in this paper. Secondly, gray box model 
fitting to the third party [54] 30-min dataset showed the good descriptive property of this model 
when decompressing data for nine-second intervals and evaluating its MAPE. Thirdly, this work’s 
numerical convex approach was validated by analyzing its sensitivity to different combinations of 
initial computational conditions. The rationality of choosing relative entropy lies in the fact that the 
proposed convex routine is not sensitive to the initial parameter values, chosen for its iterative 
procedure, and the resulting MAPE of the estimated model parameters provides an acceptable fit. 
One of the problems with nonlinear systems is that the best optimization approach can be found for 
the specific problem and context, yet when initial computational conditions or the model parameters 
change this approach may no longer be efficient. In this study, a resulting MAPE sensitivity to the 
artificial choice of different extreme initial parameter seed values demonstrates why this convex 
approach, when using relative entropy, is a rational practical choice. 

4.1. Verification of Reproducibility and Controlability 

As shown in Figure 6, a fed-batch cultivation with dosed glucose feeding provides a profile of 
glucose concentration in the bioreactor. This profile, as described earlier, with substrate feeding 
carried out in portions, provides information on the cumulative profile representing the maximal 
oxidative capacity of cells. 

After the discussed application of the gray box model, the fed-batch cultivation with feeding 
carried out in portions produces the cumulative glucose feeding profile (Figure 7) that was tested 
with three cultivations. 

Figure 5. Substrate feeding rate profiles limited to 95%, with the maximum feed rate set to 80% and
feeding profile extrapolated, using gray box model, by 2 h.

In conclusion, the gray box model and convex ME optimization both help to design the profile
and allow the design of the scale-up, scale-down and prediction strategies in the profile, which is
essential for the adaptive control system of bioprocesses.
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4. Experimental Verification of the Gray Box Model Approach

Three types of verifications are provided by this paper’s gray box model approach. Firstly,
OD curves were compared between multiple cultivation processes that had same substrate feeding
profile applied. Such a test verifies the reproducibility of the approach and, thus, also its controllability,
as defined by the Pareto principle earlier in this paper. Secondly, gray box model fitting to the third
party [54] 30-min dataset showed the good descriptive property of this model when decompressing
data for nine-second intervals and evaluating its MAPE. Thirdly, this work’s numerical convex
approach was validated by analyzing its sensitivity to different combinations of initial computational
conditions. The rationality of choosing relative entropy lies in the fact that the proposed convex
routine is not sensitive to the initial parameter values, chosen for its iterative procedure, and the
resulting MAPE of the estimated model parameters provides an acceptable fit. One of the problems
with nonlinear systems is that the best optimization approach can be found for the specific problem
and context, yet when initial computational conditions or the model parameters change this approach
may no longer be efficient. In this study, a resulting MAPE sensitivity to the artificial choice of different
extreme initial parameter seed values demonstrates why this convex approach, when using relative
entropy, is a rational practical choice.

4.1. Verification of Reproducibility and Controlability

As shown in Figure 6, a fed-batch cultivation with dosed glucose feeding provides a profile of
glucose concentration in the bioreactor. This profile, as described earlier, with substrate feeding carried
out in portions, provides information on the cumulative profile representing the maximal oxidative
capacity of cells.

After the discussed application of the gray box model, the fed-batch cultivation with feeding
carried out in portions produces the cumulative glucose feeding profile (Figure 7) that was tested with
three cultivations.Entropy 2018, 20, x 14 of 19 

 

 

Figure 6. Glucose concentration profile in the bioreactor from the start of inoculation. 

 

Figure 7. Limiting substrate feeding profile. 

Each cultivation had an identical initial bioreactor volume, initial glucose concentration, 
medium OD, and E. coli strain inoculated at the beginning of the process. All three curves of optical 
densities are shown in Figure 8. 

 

Figure 8. The resulting optical density curves (in optical units) of all three limited growth cultivations. 

Identical substrate feeding solutions were prepared for all three cultivations and their 
bioreactors were equipped with identical means to perform the biosynthesis. The resulting optical 
density curves show that there is a reproducibility, as all optical curves have similarity and 
controllability since the final OD at the end of the limited growth process matched. 
  

Figure 6. Glucose concentration profile in the bioreactor from the start of inoculation.

Entropy 2018, 20, x 14 of 19 

 

 

Figure 6. Glucose concentration profile in the bioreactor from the start of inoculation. 

 

Figure 7. Limiting substrate feeding profile. 

Each cultivation had an identical initial bioreactor volume, initial glucose concentration, 
medium OD, and E. coli strain inoculated at the beginning of the process. All three curves of optical 
densities are shown in Figure 8. 

 

Figure 8. The resulting optical density curves (in optical units) of all three limited growth cultivations. 

Identical substrate feeding solutions were prepared for all three cultivations and their 
bioreactors were equipped with identical means to perform the biosynthesis. The resulting optical 
density curves show that there is a reproducibility, as all optical curves have similarity and 
controllability since the final OD at the end of the limited growth process matched. 
  

Figure 7. Limiting substrate feeding profile.



Entropy 2018, 20, 779 15 of 19

Each cultivation had an identical initial bioreactor volume, initial glucose concentration, medium
OD, and E. coli strain inoculated at the beginning of the process. All three curves of optical densities
are shown in Figure 8.
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Figure 8. The resulting optical density curves (in optical units) of all three limited growth cultivations.

Identical substrate feeding solutions were prepared for all three cultivations and their bioreactors
were equipped with identical means to perform the biosynthesis. The resulting optical density curves
show that there is a reproducibility, as all optical curves have similarity and controllability since the
final OD at the end of the limited growth process matched.

4.2. Verification of Decompression Property Using the Gray Box Model

For illustrative purposes, the third party’s [54] first cultivation dataset was used to compare
descriptive properties of the gray box model between 30-min and nine-second intervals. Both MAPE
coefficients showed a consistent match in Table 1.

Table 1. Gray box model 30-minute model verification with nine-second data.

Dataset MAPE (%) Samples Count

30-min 0.542 27
9 s 0.274 5200

The gray box model parameters were estimated from the dataset consisting of 30-min data. Then,
those parameters were used to decompress the profile to nine-second data and compare it with the
dataset provided in [54]. The resulting gray box model parameter values, estimated from the 30-min
dataset, were k01 = 4.967242, k02 = 0.519979, k03 = −0.013456, k04 = −4.967242, k05 = 0, k11 = −0.201855,
k12 = 1.945063, k13 = −114.651975, k14 = −385.93917 and k15 = −0.13398.

The next task is to assess the sensitivity of the numerical procedure described in this work to the
choice of initial seed values for the iterative procedure.

4.3. Verification of Sensitivity to Initial Seed Values of the Gray Box Model Parameters

Table 2 shows estimates for all gray box parameter values when different seeds are used for the
values of the initial parameters k02, k12, and k15 in numerical iterative routines. The execution time
was measured on a single process thread using a 2.5 GHz processor.



Entropy 2018, 20, 779 16 of 19

Table 2. Comparison between five tests with different seeds for parameters k02, k12, and k15.

Optimization Property

Original
Seeds:
k02 = 0;
k12 = 0;
k15 = 0

Test 1
Seeds:
k02 = 3;

k12 = −3;
k15 = 0

Test 2
Seeds:

k02 = −3;
k12 = 3;
k15 = 0

Test 3
Seeds:

k02 = −3;
k12 = −3;

k15 = 0

Test 4
Seeds:

k02 = −3;
k12 = −3;
k15 = −3

MAPE (%) 0.274 0.312 0.286 0.275 0.313
Execution time (ms) 888 451 482 1395 500

Relative entropy −0.0001415 −0.0001746 −0.0001401 −0.0001457 −0.0001764
k01 4.967242 4.970157 4.964 4.967 4.970163
k02 0.519979 0.519899 0.52 0.52 0.519899
k03 −0.013456 −0.011921 −0.017 −0.013 −0.011914
k04 −4.967242 −4.970157 −4.964 −4.967 −4.970163
k05 0 0 0 0 0
k11 −0.201855 −0.128734 −0.214 −0.182 −0.152797
k12 1.945063 2.046178 1.932 1.969 2.006798
k13 −114.651975 −115.72494 −114.414 −115.086 −115.0439
k14 −385.93917 −400.158251 −382.82 −391.63 −391.249
k15 −0.13398 −0.140025 −0.133 −0.135 −0.137536

Both of the parameters k02 and k12 correspond to the specific growth rate, so their chosen variation
is relatively extreme compared to the expected specific growth rates of E. coli strains, which are positive
and are usually less than 1. The parameter k15 corresponds to the acceleration component of the specific
growth rate, and normally could be kept 0 at its seed. However, an extreme value of −3 (in Test 4) was
used for this parameter’s seed to check that convex routines converge to the semi-globally optimal
answer and the MAPE is still acceptable. By monitoring MAPE values for different combinations of
initial seeds to the parameter values, there is evidence that the numerical program is not sensitive
to the seed values, which provides a significant practical benefit. It is clear that neither optimization
execution duration nor the value of relative entropy are dependent on the set of the seeds. The different
combinations of local extrema in parameter solution space confirms the property of the undetermined
model to have multiple local extrema which are very close to the global optimum, thus providing
semi-globally optimal solutions.

In conclusion, the MAPE values do not increase more than 0.32% (Table 2) at different initial
conditions, while process dynamics change (OD is proportional to biomass) by approximately 300 times
(Figure 8). All this shows that the proposed approach is practically acceptable and produces satisfactory
estimation results.

5. Discussion

In this study, a generic bioprocess gray box modeling approach is presented that uses entropy
maximization to derive an optimization criterion for planning and/or prediction of the feeding
solution profile. The proposed design procedure has benefits for the improvement of existing
industrial feed-forward and adaptive feedback control systems. Because of the proposed procedure,
process controllability is gained, ensuring good control qualities of pO2, PH, temperature, and substrate
feeding parameters, the signals of which all provide information for the implementation of gain
scheduling algorithms in such control systems. To find the gray box model parameters in both of the
feedback control scenarios, the cumulative glucose volume is introduced as uncertainty into the convex
optimization task. A description of nuisance time is provided, which explains how to efficiently arrive
at the multivariate solution. Additionally, experimental data analysis was conducted with practical
illustration of bioprocess reproducibility and controllability, assessment of goodness of fit to a dataset
acquired from a third party, and sensitivity analysis of the numerical routines to the seed values of
initial parameters, which shows one more practical benefit of the presented approach.
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In the scenario of a regular open-loop biotechnological system, in order to evaluate the specific
growth rate profile, the first fed-batch cultivation process with feeding carried out in portions is
performed. The volume of the substrate fed during fed-batch steps and observations of glucose
concentration in the bioreactor media all help to evaluate the substrate consumption. After the gray box
model parameters are identified through ME, the procedures to realize industrial cultivation processes
under growth-limited conditions are described, with emphasis on applying different limitation options
and alternatives. Glucose concentration measurements become unnecessary during these subsequent
cultivations to identify the best run time profile, which corresponds to the desired trajectories of
process variables (the specific growth rate and the total biomass). In the adaptive control system,
the authors’ approach serves as a short-term forecasting tool, which helps to both design the feed rate
time profiles and predict the induction time in the recombinant E. coli cultivation processes.
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