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Abstract: In this work, we consider extended irreversible thermodynamics in assuming that the
entropy density is a function of both common thermodynamic variables and their higher-order
time derivatives. An expression for entropy production, and the linear phenomenological
equations describing diffusion and chemical reactions, are found in the context of this approach.
Solutions of the sets of linear equations with respect to fluxes and their higher-order time derivatives
allow the coefficients of diffusion and reaction rate constants to be established as functions of
size of the nanosystems in which these reactions occur. The Maxwell-Cattaneo and Jeffreys
constitutive equations, as well as the higher-order constitutive equations, which describe the processes
in reaction-diffusion systems, are obtained.

Keywords: extended irreversible thermodynamics; thermodynamic postulates; linear irreversible
thermodynamics; nanosystems; non-classical transport phenomena; diffusion and chemical reactions
in nanosystems

1. Introduction

Actually, irreversible processes which occur in micro and nanostructures attract more attention
of researchers. Extensive development of nanotechologies and creation and construction of
devices at micro- and nanoscales has promoted numerous theoretical studies in this field of
science [1,2]. One of the most promising routes to study properties of nanosystems and multilayer
systems is non-equilibrium thermodynamics. Classical irreversible thermodynamics is based on
the local-equilibrium hypothesis, which implies equilibrium in each small volume of the system,
although the non-uniform system as a whole remains in non-equilibrium [3–5]. Due to the fact that in
a locally equilibrium system it is possible to have gradients of state variables, the entropy density in
each small volume depends on the internal energy density per unit volume and on the partial densities
of the medium components. Such an approach enables to pass from thermodynamic description
of equilibrium systems to non-equilibrium ones and to formulate the main theses of irreversible
thermodynamics, such as the theorem of minimum entropy production and the general evolutionary
criterion [6,7].

If we meanwhile consider the very fast or very abrupt processes, then many properties of
non-equilibrium systems cannot be described in the context of local-equilibrium approximation.
The validity of local equilibrium is determined by criteria associated to internal microscales of the
medium and to external macroscales [8–10]. Microscales of a medium are the characteristic scales of the
medium microstructure and characteristic relaxation times of dissipative fluxes, which are determined
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by the parameters of atoms and molecules (e.g., for gases they are mean free path and mean time
between two collisions of molecules, respectively). Macroscales is the characteristic macroscale of the
system and characteristic time of changing of macroscopic parameters. In our case, spatial macroscale
is a linear dimension of a system whether it is a particle size or a nanolayer thickness. When a spatial
macroscale is much larger than the relevant microscale (at constant time scales), then local-equilibrium
hypothesis remains valid that enables us to use classical irreversible thermodynamics. In turn, if a
spatial macroscale is comparable or smaller than the microscale, there is no local equilibrium and the
non-equilibrium system has to be described in the contents of more general theory.

The latest development in irreversible thermodynamics led to elaboration of extended
irreversible thermodynamics (EIT) which allowed study of fast and steep phenomena [11–15].
Extended irreversible thermodynamics involves investigations of irreversible processes with high
frequencies and small length scales, which take place in nanosystems [16]. Heat conduction in thin
layers [1,2], diffusion and chemical reactions in nanoparticles [17], as well as nanocatalysis [18,19]
are of great interest in the context of EIT, where memory and non-local effects are taken into
consideration [20].

Extended irreversible thermodynamics is based on the generalization of classical local-equilibrium
theory by using additional thermodynamic variables (or extra variables). Their choice is an important
problem which can be solved by different ways. The most common route to extend a classical theory is
the introduction of dissipative fluxes as extra variables [11–14]. For this kind of EIT, variables are both
well-known fluxes, which arise in balance equations, and higher-order fluxes (fluxes of the fluxes) that
allows the unlimited number of extra variables.

Another type of EIT involves the time derivatives of common thermodynamic variables as extra
variables [21–25]. In this case, the local-equilibrium hypothesis is not applicable, and we must proceed
from a less strict postulate. Such a hypothesis is the local uniformity hypothesis [26]. It implies that the
system which is non-uniform as a whole will be considered uniform at each point. Then the entropy
density depends on the higher-order time derivatives of the density of the internal energy and the
partial densities. Based on this postulate, one can construct the thermodynamic formalism which is
similar to classical, where the main laws and consequences of non-equilibrium thermodynamics are
preserved [27]. In this paper, we have used for the first time the approach based on the works [21–27]
for describing the properties of nanosystems.

The process of thermal conduction has been widely investigated, and we turn our attention to
the reaction-diffusion processes. Our theory will be based on the linear extended thermodynamics
which avoids using the Fourier’s transform and some additional simplifications. Therefore, we hope to
obtain a new higher-order constitutive equations. The linear theory will lead to Equations (63) and (64),
which describe the dependence of the diffusion coefficient and the rate of chemical reaction on the size
of nanoparticles. Apart from this, we will introduce a new definition of the generalized temperature
and chemical potentials, which will allow extension of a class of constitutive equations, the Jeffreys
type equations included.

In Section 2, we will focus on heat transport and reaction-diffusion processes in the context of
classical irreversible thermodynamics that is based on the local-equilibrium hypothesis. Section 3
is devoted to a study of the properties of nanosystems, using the traditional EIT, where the extra
variables are higher-order fluxes of heat flux. The atypical version of EIT will be considered in
Section 4, where we will characterize non-equilibrium systems relying on a postulate in which the
additional variables are the higher-order time derivatives of partial densities of the components.
Section 5 is dedicated to two-component systems, where we will consider the appropriate constitutive
equations. In particular, the diffusion processes and chemical reaction occurring in nanosystems will
be studied. As a result, using linear systems of phenomenological equations, we will obtain for the
first time Equations (63) and (64) describing the dependence of the diffusion coefficient and the rate
of chemical reaction on the size of nanoparticles. The characteristic parameters—relaxation times,
spatial characteristic magnitudes and relevant characteristic rates—will be discussed in Section 6.
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In Sections 7 and 8, the multi-dimensional case of phenomenological equations and the appropriate
higher-order constitutive equations, which describe the reaction-diffusion processes in nanosystems,
will be considered.

2. Classical Irreversible Thermodynamics of Heat Conduction, Diffusion and Chemical Reactions

Classical irreversible thermodynamics (CIT) [3–7] is based on the local-equilibrium hypothesis,
which leads to the fundamental equation in the local form:

T∂ts = ∂tu−∑
i

µi∂tρi (1)

where T is the local-equilibrium temperature, µi are the chemical potential (i = 1, 2, . . . , K); u is the
density of the internal energy per unit volume, s is the density of entropy per unit volume, ρi is the
partial density of the i-th component (i = 1, 2, 3, . . . , K, at that all components are assumed to be
independent [28]), t is the time.

First, we will consider the classical heat conduction in rigid bodies, which is the simplest
thermodynamics theory. Then Equation (1) can be simplified as:

T∂ts = ∂tu (2)

that means the entropy density is a function of the internal energy: s = s(u). The balance equation
that connects u with the heat flux q is being written, as follows:

∂tu = −∇ · q (3)

The fundamental Equation (2) and the balance Equation (3) lead to the standard entropy balance
equation (i.e., in the form ∂ts = −∇ · Js + σs):

∂ts = −∇ ·
(

T−1q
)
+ q · ∇T−1 (4)

The expression for the entropy flux Js = T−1q and the entropy production results from
Equation (4):

σs = q · ∇T−1 ≥ 0 (5)

where a sign is defined by the second law of thermodynamics. The linear relationship between the flux
q and the thermodynamic force ∇T−1 results in one phenomenological equation:

∇T−1 = Rqq (6)

which ensures the positivity of entropy production (5) at Rq > 0. The phenomenological Equation (6)
allows the heat flux to be expressed as:

q = − 1
RqT2∇T (7)

Relation (7), by comparing it with the Fourier’s law:

q = −λq∇T

defines the coefficient Rq:

Rq =
1

λqT2 (8)



Entropy 2018, 20, 802 4 of 19

Thus, introducing the linear relationship between the flux and the force, we have adapted the
Fourier’s law for heat conduction that guaranties the positiveness of entropy production within the
framework of CIT.

Next we will consider only dissipative processes [6] at constant density of internal energy u
(∂tu = 0) in the absence of convective motion (diffusion and chemical reactions at v = 0 and dv/dt = 0,
where v is the velocity of the multicomponent medium). The fundamental equation in the local form
(1) is therefore reduced to the following:

∂ts = −∑
i

T−1µi∂tρi (9)

As is seen in Equation (9), the entropy density in the considered case is a function of partial
densities of the independent components:

s = s(ρ1, ρ2, . . . , ρK) (10)

Any changes in partial densities over time ∂ρi/∂t obey the balance equations [4,5]

∂tρi = −∇ · Ji + ∑
r

νirwr, i = 1, 2, . . . , K (11)

where Ji is the diffusion flux of the i-th component, wr is the velocity of a chemical reaction r
(r = 1, 2, . . . , Q), νir is the stoichiometric coefficient of the i-th component in the reaction r. In the
present work we will pay attention to the following chemical reactions:

ν1rX1 + ν2rX2 + . . . νLrXL = ν(L+1)rYL+1 + ν(L+2)rYL+2 + . . . + νKrYK, r = 1, 2, . . . , Q (12)

The fundamental Equation (9) and the balance Equation (11) define the formalism of classical
non-equilibrium thermodynamics. Using Equation (11), we substitute ∂ρi/∂t in Equation (9).
After some transformations, we have the entropy balance equation:

∂ts = −∇ ·
(

∑
i

T−1µiJi

)
+ ∑

i
Ji · ∇

(
T−1µi

)
+ ∑

r
T−1wr Ar (13)

where Ar = −∑i νirµi is the affinity of chemical reaction in Equation (12) (stoichiometric coefficients
for the initial components are taken with a negative sign, and those for products are denoted with a
positive sign). The balance Equation (13) is written in a standard form, resulting in the entropy flux
Js = ∑i T−1µiJi and entropy production:

σs = ∑
i

Ji · ∇
(

T−1µi

)
+ ∑

r
T−1wr Ar ≥ 0 (14)

The inequality sign in Equation (14) (positivity of entropy production) is determined by the
second law of thermodynamics. Entropy production has a bilinear form, where the vector fluxes Ji
are multiplied by the appropriate vector forces ∇

(
T−1µi

)
, and the scalar fluxes wr are multiplied by

the scalar forces Ar/T. According to the Curie principle, there is no interaction between the diffusion
fluxes and with the velocity of chemical reaction. Then each term in (14) is non-negative:

σdiff
s = Ji · ∇

(
T−1µi

)
≥ 0, i = 1, 2, . . . , K (15)

σreact
s = T−1wr Ar ≥ 0, r = 1, 2, . . . , Q (16)

According to the Equations (15) and (16), each of fluxes J1, J2, . . . , JK and w1, w2, . . . , wQ
depends only on the corresponding thermodynamic force ∇

(
T−1µ1

)
,∇
(
T−1µ2

)
, . . . ,∇

(
T−1µK

)
and
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T−1 A1, T−1 A2, . . . , T−1 AQ, respectively. Further we will focus on the linear correlation between force
and flux:

∇
(

T−1µi

)
= R(i)Ji, i = 1, 2, . . . , K (17)

T−1 Ar = λ(r)wr, r = 1, 2, . . . , Q (18)

where R(1), R(2), . . . , R(K) and λ(1), λ(2), . . . , λ(Q) are the phenomenological coefficients. Expressing the
flux through the thermodynamic force in Equation (17) results in a well-known Fick’s law.
Assuming that the chemical potential µi depends on the component concentration ni (= ρi/Mi,

where Mi is the molar mass of the i-th component), we obtain Ji =
1

R(i)∇
(
T−1µi

)
= 1

R(i)
∂(T−1µi)

∂ni
∇ni.

Denoting the coefficient before ∇ni through −D0i, we have Fick’s law:

Ji = −D0i∇ni, r = 1, 2, . . . , K (19)

In accordance with Equation (19), the concentration gradient ∇ni induces one diffusion flux Ji.
We have therefore justified the Fick’s law in the context of classical non-equilibrium thermodynamics.

The linear dependence of the velocity of chemical reaction on thermodynamic force is being found
from Equation (18):

wr =
1

λ(r)
Ar

T
, r = 1, 2, . . . , Q (20)

On the other hand, the velocity of chemical reaction wr depends on the forward rate
w+

r = k+0rnν1r
1 nν2r

2 . . . nνLr
L and the reverse rate w−r = k−0rnνL+1

L+1 nνL+2
L+2 . . . nνK

K ; i.e., wr = w+
r − w−r , where k+0r

is the constant of the forward rate, k−0r is the constant of the reverse rate. Using the known expression
for the chemical potential µi = µi

0 +<T ln ni, we obtain [7]:

Ar = −∑
i

νirµi = <T ln
w+

r

w−r
(21)

where < is the universal gas constant. The relationship between the rates of forward and reverse
reactions follows from Equation (21): w−r = w+

r exp
(
− Ar
<T

)
and the velocity of chemical reaction in the

linear approximation is:

wr = w+
r − w−r = w+

r

[
1− exp

(
− Ar

<T

)]
≈ w+

r
<

Ar

T
(22)

Comparing Equations (20) and (22), we have:

λ(r) =
<

w+
r

(23)

Expressing w+
r through the component concentrations, the velocity of reaction is being established

from Equation (22) in the form:

wr = k+0rnν1r
1 nν2r

2 . . . nνLr
L

Ar

<T
(24)

The analogous equality can be obtained by expressing the velocity of reaction through w−r .
The classical thermodynamic theory will be expanded below for both the heat conduction

and diffusion and chemical reaction, using in the context various initial postulates of extended
irreversible thermodynamics.
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3. Traditional Version of EIT and Higher-Order Heat Fluxes

Extended non-equilibrium thermodynamics is a generalization of classical one by introducing
extra variables [11]. In this section we will consider the approach in the context of EIT, which implies
that the extra variables are the higher-order fluxes (fluxes of the fluxes):

q(1), q(2), . . . , q(N) (25)

where q(1) = q, q(2) is the flux of the flux q(1) (second-order tensor), q(3) is the flux of q(2), and so on.
Higher-order fluxes (Equation (25)) satisfy a set of the balance equations:

∂tq = −∇ · q(2) + σ(2)

∂tq(2) = −∇ · q(3) + σ(3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂tq(N) = −∇ · q(N+1) + σ(N)

(26)

where σ(1), σ(2), . . . , σ(N) is the production terms of these fluxes. Then the proper fundamental equation
will be the generalization of the classical theory Equation (2)

∂ts = T−1∂tu− α1q(1) ⊗ ∂tq(1) − . . .− αNq(N) ⊗ ∂tq(N) (27)

where a sign ⊗means the tensor contraction. By analogy with classical irreversible thermodynamics,
the rate of entropy density change is assumed to be representable in the form of a standard equation.
In that case, expressing a flux as:

Js = T−1q(1) − β1q(2) · q(1) − . . .− βNq(N) ⊗ q(N−1) (28)

it is easy to obtain the expression for the entropy production:

σs = q(1) ·
[
−α1∂tq(1) + β1∇ · q(2) +∇T−1

]
+

N
∑

m=2
q(m) ⊗ [−αm∂tq(m)

+βm∇ · q(m+1) + βm−1∇q(m−1)]
(29)

where σs ≥ 0 obeys the second law of thermodynamics. The expressions in square brackets in
Equation (29) are the thermodynamic forces, and the simplest phenomenological equations that satisfy
non-negativity of the entropy production are the following linear equations:

−α1∂tq(1) + β1∇ · q(2) +∇T−1 = µ1q(1)

−α2∂tq(2) + β1∇ · q(3) + β1∇q(1) = µ2q(2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−αN∂tq(N) + βN∇ · q(N+1) + βN−1∇q(N−1) = µNq(N)

(30)

The coefficients in the phenomenological equations are related to the relaxations times
(τ1 = α1/µ1, . . . , τN = αN/µN) and correlation lengths (l2

1 = β2
1/(µ1µ2), . . . , l2

N = β2
N/(µNµN+1)).

In addition to this fact, α1 = −β1, . . . , αN = −βN . Unlike the unique classical theory of Equation (6),
the EIT results in the infinite hierarchy of phenomenological equations at N → ∞ .

Applying the Fourier’s transform to the phenomenological Equation (26), we have the following
expression for the heat flux q̂(ω, k):

q̂(ω, k) = −ikλ(ω, k)T̂(ω, k) (31)

where T̂(ω, k) is the Fourier’s transform of the local-equilibrium temperature, λ(ω, k) is the generalized
thermal conductivity coefficient, which can be presented as the continued fraction expansion:
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λ(ω, k) =
λ0(T)

1 + iωτ1 +
k2l2

1

1+iωτ2+
k2 l22

1+iωτ3+...

(32)

where λ0(T) is the bulk thermal conductivity, k is the wave vector (we are considering a
one-dimensional case). It is assumed that all relaxation times and correlation lengths are equal
(τ1 = . . . = τN = τq, l1 = . . . = lN = lq) and Equation (32) depends only on one relaxation time τq and
one correlation length lq. Thus, the asymptotic limit is, as follows:

λ(ω, k) = λ0(T)
−
(
1 + iωτq

)
+
√(

1 + iωτq
)2

+ k2l2
q

(1/2)k2l2
q

(33)

If considering only the steady states ( ω → 0) and determining the vector k as k = 2πL, where L
is the characteristic length, then Equation (33) is reduced to the form:

λ
(

L/lq
)
= λ0(T)

L2

2π2l2
q

√1 + 4π2
l2
q

L2 − 1

 (34)

Equation (34) is the required dependence of the generalized thermal conductivity on the parameter
lq
L = Kn, which is the well-known Knudsen’s number.

For a stationary state, truncations of Equation (33) are of interest. For example, the second
truncation is:

λ
(

L/lq
)
= λ0(T) f

(
L/lq

)
= λ0(T)

1

1 +
l2q

4π2 L2

1+
l2q

4π2 L2

(35)

where f
(

L/lq
)

is the dimensionless function which takes values from zero to one. Thus, in the context
of the considered theory with increasing L/lq, we have λ

(
L/lq

)
→ λ0 , and at L/lq → 0 , we have the

linear dependence λ
(

L/lq
)
= λ0L/

(
πlq
)
. The obtained dependence from Equation (34) describes the

experimental data well [16].

4. Higher-Order Time Derivatives of Usual Variables

In this Section we will consider a thermodynamic theory stating that the entropy density is a
function of both usual thermodynamic variables and their higher-order time derivatives. It can be
considered as the postulate of continuous thermodynamics, as well as a consequence of the local
uniformity hypothesis [26], which is less strict if comparing with the local-equilibrium hypothesis.
According to the local uniformity hypothesis [26], a system that is non-equilibrium as a whole is
considered as uniform in each point, and that is why we may increase the number of state variables.
For diffusion and chemical reactions without convection, instead of Equation (3) we have [21,22]:

s = s (ρ1, ρ2, . . . , ρK; ∂tρ1, ∂tρ2, . . . , ∂tρK; . . . . . . ; ∂tN−1 ρ1, ∂tN−1 ρ2, . . . , ∂tN−1 ρK) (36)

where ∂tρi is the first-order derivative, ∂t2 ρi is the second-order derivative, . . . , ∂tN−1 ρi is the
(N − 1)-th-order derivative, and i = 1, 2, . . . , K.

Based on Equation (36), we write the fundamental equation which is the generalization of
Equation (2), as follows:

∂ts = −∑
i

θ−1µi∂tρi −∑
i

θ−1Γi2∂t∂tρi

−∑
i

θ−1Γi3∂t∂t2 ρi − . . .−∑
i

θ−1ΓiN∂t∂tN−1 ρi
(37)
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where θ is the generalized temperature, µi are the generalized chemical potential (i = 1, 2, . . . , K),
Γi1, Γi2, . . . , ΓiN are the new intensive quantities which correspond to the extra variables (Γi1 = µi).
All intensive quantities (θ, µi, Γi2, Γi3, . . . , ΓiN , i = 1, 2, . . . , K) depend on both usual and extra
variables. The transition to the generalized fundamental Equation (37) means that the local-equilibrium
hypothesis is invalid and the thermodynamic system becomes a non-equilibrium as a whole,
and at each small element of volume (locally non-equilibrium system). There is meanwhile the
thermodynamic formalism identical to classical with preserved basic statements of non-equilibrium
thermodynamics [27].

In addition to Equation (11), we will use the equations obtained by differentiating the left and
right sides of Equation (11) with respect to time:

∂t∂tρi = −∇ · (∂tJi) + ∑
r

νir∂twr,

∂t∂t2 ρi = −∇ · (∂t2Ji) + ∑
r

νir∂t2 wr,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂t∂tN−1 ρi = −∇ · (∂tN−1Ji) + ∑

r
νir∂tN−1 wr,

i = 1, 2, . . . , K, r = 1, 2, . . . , Q (38)

Like classical thermodynamics, the generalized fundamental Equation (37) and the set of balance
Equation (38) allow one to construct the formalism of extended irreversible thermodynamics, namely,
to obtain the entropy balance equation, to introduce the generalized fluxes and thermodynamic forces,
and to establish a relationship between them. In the extended case, the flux and the entropy production
instead Equations (15) and (16) are, as follows:

Js = θ−1 ∑
i

(
µiJi + Γi2

.
Ji + . . . + ΓiN

N−1
Ji

)
σdiff

s = ∑
i

[
Ji · ∇

(
θ−1µi

)
+ (∂tJi) · ∇

(
θ−1Γi2

)
+ . . . + (∂tN−1Ji) · ∇

(
θ−1ΓiN

)]
≥ 0,

σreact
s = θ−1 ∑

r

(
wr Ar +

.
wrBr2 + . . . +

N−1
wr BrN

)
≥ 0,

(39)

where Ar = −∑i νirµi is the generalized affinity, Brj = −∑i νirΓij is the analog of chemical affinity
corresponding to variables ∂tj−1 ρ1, ∂tj−1 ρ2, . . . , ∂tj−1 ρK (j = 1, 2, . . . , N; at j = 1 we have B1r = Ar).
As the result, we obtain a set of phenomenological equations which connect thermodynamic
forces ∇

(
θ−1µi

)
, ∇
(
θ−1Γi2

)
, ∇
(
θ−1Γi3

)
, . . . , ∇

(
θ−1ΓiN

)
and fluxes Ji, ∂tJi, ∂t2Ji, . . . , ∂tN−1J, as well

as θ−1 Ar, θ−1B2r + . . . + θ−1BNr and wr, ∂twr, . . . , ∂tN−1 wr. In the simplest case these quantities are
connected by the linear phenomenological equations, which ensure the positivity of entropy production.
For the diffusion process, we have:

∇
(
θ−1µi

)
= R(i)

11 Ji + R(i)
12 ∂tJi + . . . + R(i)

1N ∂tN−1Ji

∇
(
θ−1Γi2

)
= R(i)

21 Ji + R(i)
22 ∂tJi + . . . + R(i)

2N∂tN−1Ji
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∇
(
θ−1ΓiN

)
= R(i)

N1 Ji + R(i)
N2 ∂tJi + . . . + R(i)

NN ∂tN−1Ji

, i = 1, 2, . . . , K, . . . (40)

where R(i)
αβ are the phenomenological coefficients, α, β = 1, 2, . . . , N. The similar equations can be

obtained for the chemical reactions:

θ−1 Ar = λ
(r)
11 wr + λ

(r)
12 ∂twr + λ

(r)
13 ∂t2 wrwr + . . . + λ

(r)
1N∂tN−1 wr

θ−1Br2 = λ
(r)
21 wr + λ

(r)
22 ∂twr + λ

(r)
23 ∂t2 wr + . . . + λ

(r)
2N∂tN−1 wr

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ−1BrN = λ
(r)
N1wr + λ

(r)
N2∂twr + λ

(r)
N3∂t2 wr + . . . + λ

(r)
NN∂tN−1 wr

r = 1, 2, . . . , Q, (41)
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where λ
(r)
δγ are the phenomenological coefficients, δ, γ = 1, 2, . . . , N. Thus, for the extended case K

Equation (17) are substituted with NK phenomenological Equation (40), and Q Equation (18) are
replaced with NQ Equation (41).

5. Two-Dimensional Case of Phenomenological Equations

Let us further focus on the case N = 2. Then the set of Equation (40) can be written in a much
simpler form:

∇
(

θ−1µi

)
= R(i)

11 Ji + R(i)
12 ∂tJi (42)

∇
(

θ−1Γi2

)
= R(i)

21 Ji + R(i)
22 ∂tJi. (43)

It is well known that in EIT the Onsager-Casimir reciprocal relations [4,5] have not been proven.
However, we believe that there is the following basis for proving reciprocal relations out of
local equilibrium:

(i) the proposed theory is based on the local homogeneity hypothesis, which is a less rigorous
analogue of the local equilibrium hypothesis;

(ii) the classical Onsager-Machlup theory of fluctuations is applicable for systems with memory;
(iii) the additional variables considered in the proposed theory are independent variables.

We further assume that Onsager-Casimir reciprocal relations take place in the extended theory. It is
obvious that fluxes Ji are odd variables. Hence time derivatives ∂tJi should be viewed as even variables.
Therefore, the matrix of phenomenological coefficients in Equations (42) and (43) are untisimmetric,
i.e., R(i)

21 = −R(i)
12 .

Let us divide Equation (42) by a factor R(i)
11 and make the following substitution by analogy with

classical thermodynamics (Equation (19)):

τi ∂tJi + Ji =
1

R(i)
11

∇
(

θ−1µi

)
= −D0i∇ni

(here, the generalized temperature and chemical potentials are assumed to depend on the component
concentrations). Moreover, we imply that R(i)

12 /R(i)
11 = τi, where τi is the relaxation time. Therefore,

Equation (42) can be written as:
τi ∂tJi + Ji = −D0i∇ni (44)

being the Maxwell-Cattaneo Equation [11]. We further assume that θ−1Γi2 are the homogeneous
quantities; i.e., ∇

(
θ−1Γi2

)
= 0, and the diffusion of the components is defined by only the gradient

∇
(
θ−1µi

)
. Divide the second equation by the factor R(i)

11 and introduce the characteristic time of change

in macroscopic parameters τ0
2 = R(i)

22 /R(i)
11 , where τ0 shows no dependence on a certain component i.

Then the system of Equations (42) and (43) can also be simplified as:

− D0i∇ni = Ji + τi∂tJi (45)

0 = −τiJi + τ0
2∂tJi (46)

that allows it to be written in the matrix form:

− L0
2D0i∇ni = M2 · J2, (47)

where:

L0
2 =

(
1
0

)
, M2 =

(
1 τi
−τi τ2

0

)
, J2 =

(
Ji

∂tJi

)
. (48)
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As is seen, Equation (44) is the generalized Fick’s law (19) with adding a term τi ∂tJi. In this case,
the gradient∇ni induces both the diffusion flux Ji and the rate of its change ∂tJi. Equation (44) leads to
a delay in the propagation of diffusing components compared to classical thermodynamics. The greater
is the relaxation time τi, the further is the thermodynamic system from the local-equilibrium state.

By solving a system of Equations (45) and (46) relative to Ji and ∂tJi using the Kramers formula,
we get the following expressions for the flux and its time derivative:

Ji = −

∣∣∣M̃2

∣∣∣
|M2|

D0i∇ni = − f2(τi, τ0)D0i∇ni, τi∂tJi = −
τi

∣∣∣ ˜̃M2

∣∣∣
|M2|

D0i∇ni = −g2(τi, τ0)D0i∇ni (49)

where M̃2 =

(
1 τi
0 τ2

0

)
, ˜̃M2 =

(
1 1
−τi 0

)
.

f2(τi, τ0) =

∣∣∣M̃2

∣∣∣
|M2|

=
τ0

2

τi
2 + τ02 , g2(τi, τ0) =

τi

∣∣∣ ˜̃M2

∣∣∣
|M2|

=
τi

2

τi
2 + τ02 (50)

at that f2(τi, τ0) + g2(τi, τ0) = 1. Again, by comparing the first equality in Equation (49) with
Fick’s law, we get the diffusion coefficient D0i multiplied by the function f (τi, τ0) in the extended theory,
which takes values from zero to one. In this connection, one can introduce a generalized
diffusion coefficient:

Di = D0i f (τi, τ0) = D0i
τ0

2

τi
2 + τ02 (51)

The greater is the memory effect in the non-equilibrium system, i.e., the greater is τi, the lower
are the diffusion flux Ji in Equation (49) and the generalized diffusion coefficient Di in Equation (51).
Therefore, the memory effect reduces the diffusion coefficient and, consequently, the rate of diffusion
of components. In some cases diffusion may occur in the form of waves [11].

The similar results are obtained for the rate of chemical reaction. In a two-dimensional case (N = 2)
a set of Equation (41) is also reduced to two equations:

θ−1 Ar = λ
(r)
11 wr + λ

(r)
12 ∂twr, (52)

θ−1Br2 = λ
(r)
21 wr + λ

(r)
22 ∂twr, (53)

where λ
(r)
12 = −λ

(r)
21 . Let us divide the left and right sides of Equation (52) by the factor λ

(r)
11 and

introduce the relaxation time for a chemical reaction: τr = λ
(r)
12 /λ

(r)
11 . Taking into account Equation (23),

i.e., that λ
(r)
11 = <

w+
r

, we get the following equation from Equation (52):

τr∂twr + wr =
w+

r
<

Ar

θ
(54)

Equation (54) describes the changes over time in the rate of reaction r taking into account the
memory effect. By comparing Equations (22) and (54), it is evident that the linear equality (22) is
completed with a term τr∂twr. Then, as for diffusion, we assume Br2 = 0 and divide Equation (53)
by a factor λ

(r)
11 . It is evident that the ratio λ

(r)
22 /λ

(r)
11 is associated with the same characteristic time

of changes in macroscopic parameters τ0, i.e., for a chemical reaction τ0
2 = λ

(r)
22 /λ

(r)
11 . Thus, a set of

Equations (52) and (53) can be written as:

w+
r
<

Ar

θ
= wr + τr∂twr (55)

0 = −τrwr + τ0
2∂twr (56)
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and represented in a matrix notation:

L0
2

w+
r
<

Ar

θ
= M2 · J2, (57)

where:

L0
2 =

(
1
0

)
, M2 =

(
1 τr

−τr τ2
0

)
, J2 =

(
wr

∂twr

)
.

Solving the linear system of Equations (52) and (53) with respect to wr, ∂twr, we get the expressions
identical to those for diffusion:

wr = f2(τr, τ0)
w+

r Ar

<θ
, τr∂twr = g2(τr, τ0)

w+
r Ar

<θ
, (58)

where:

f2(τr, τ0) =

∣∣∣M̃2

∣∣∣
|M2|

=
τ0

2

τr2 + τ02 , M̃2 =

(
1 τr

0 τ2
0

)
, (59)

g2(τr, τ0) =
τr

∣∣∣ ˜̃M2

∣∣∣
|M2|

=
τ2

r

τ2
r + τ2

0
, ˜̃M2 =

(
1 1
−τr 0

)
.

Taking into consideration the expression for the rate of direct reaction w+
r = k+0rn1

ν1r n2
ν2r . . . nL

νLr ,
we introduce the generalized rate constant for:

k+r = k+0r f (τr, τ0) = k+0r
τ0

2

τr2 + τ02 , (60)

where the function f (τr, τ0) takes values from zero to one. A similar expression is valid for the rate
constant for the reverse reaction k−r , as well. Comparing the first expression in Equation (58) with a
classical one (Equation (22)), it is obvious that the greater is the relaxation time τr (i.e., the further is the
system from the local-equilibrium state), the more is delayed the chemical reaction and the lower are the
rates of direct and reverse reactions. Therefore, processes with delay reduce the diffusion coefficients,
as well as the rate constant of chemical reactions.

6. Characteristic Quantities of Nanosystems

The rates of diffusion and chemical reaction depend not only on τi, τr, and τ0. It is well
known [8–10] that the relaxation time of each component τi is related to the characteristic size of
microstructure of the medium li and to the rate of perturbation propagation in the medium V0i (the rate
of diffusion wave propagation): τi = li/V0i. The same dependence is valid for a chemical reaction:
τr = lr/V0r, where lr is the characteristic microscale corresponding to the chemical reaction, V0r is the
rate of approach to equilibrium due to the chemical reaction. The characteristic time τ0 is related to
the intrinsic macroscale of the medium L and to the rate of change in macroparameters on account of
external effects V: τ0 = L/V (all these quantities depend neither on the nature of components nor on
the chemical reaction). Then:

τ0

τi
=

L
li

V0i
V

,
τ0

τr
=

L
lr

V0r

V
, i = 1, 2, . . . , K, r = 1, 2, . . . , Q (61)

It is evident from Equation (61) that the time ratio τ0/τi linearly depends on two dimensionless
magnitudes: the linear parameter ratio L/li and the rate ratio V0i/V. In a similar way, τ0/τr depends
on L/lr and V0r/V. Once L >> li at a fixed rate ratio V0i/V or V << V0i at a fixed linear parameter
ratio L/li, the thermodynamic system tends to local equilibrium. Otherwise (L ≤ li at a fixed rate
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ratio or V ≥ V0i at a fixed linear parameter ratio), the latter is non-equilibrium. Similar regularities are
observed for parameters of the chemical reaction.

In this paper, the quantity L is a linear size of nanoparticles. We are interested to know whether
there is a relationship between the parameters L/li and L/lr and the rate of diffusion of components
in the nanoparticles and the rate of chemical reactions in nanoparticles. In this case V0i/V = const and
V0r/V = const, and we assume for simplicity that V0i/V = 1 and V0r/V = 1 and will consider the
dependence of the time ratio τ0/τi and τ0/τr on only the parameters L/li and L/lr, respectively:

τ0

τi
=

L
li

,
τ0

τr
=

L
lr

, i = 1, 2, . . . , K (62)

Using Equation (62), we present the diffusion coefficient (51) and the rate constant of the direct
reaction (Equation (60)) in the form:

Di = D0i f
(

L
li

)
= D0i

L2

li2

1 + L2

li2

, i = 1, 2, . . . , K (63)

k+r = k+0r f
(

L
lr

)
= k+0r

L2

lr2

1 + L2

lr2

, r = 1, 2, . . . , Q (64)

where f (L/li) =
L2

li
2

1+ L2
li

2

and f (L/lr) =
L2

lr2

1+ L2
lr2

. Equations (63) and (64) are the first result of

the proposed theory. These are the simplest functions obtained by solving a system of linear
phenomenological equations. The value L, which is the particle size, and the characteristic sizes
of microstructures, li and lr, determine the rates of the processes. As is seen from the Equations (63)
and (64) the finer are the nanoparticles (i.e., the lower is L at the constant medium parameters li and lr),
the lower are the values of functions f (L/li) and f (L/lr); i.e., the rates of diffusion of components and
chemical reactions decrease. Thus, the highest diffusion coefficient and the rate of chemical reaction
are observed in sufficiently large particles.

Equation (61) allow the rates of irreversible processes to be established not only as a function of
size of a nanosystem. If considering solidification of the undercooled melt, then the length ratio L/li
must be fixed and the diffusion coefficients have to be studied as a function of the rate ratio V/V0i,
where V is the velocity of propagation of the solidification front of the undercooled melt [9,29–31].

7. Multi-Dimensional Case

First of all, consider the general case of phenomenological equations at N > 2 in assuming that
diffusion and chemical reactions are still described by the Maxwell-Cattaneo Equations (44) and (54).
Then the matrix equations, which are a generalization of Equations (47) and (57), are being written as:

−L0
N D0i∇ni = MN · JN , and L0

N
w+

r
<

Ar

θ
= MN · JN , (65)

where the vector L0
N consists of the components (1, 0, . . . , 0), the vector JN includes the components

(Ji, ∂tJi, ∂t2Ji, . . . , ∂tN−1Ji) or (wr, ∂twr, ∂t2 wr, . . . , ∂tN−1 wr), and the matrix MN depends on the relaxation
times τ0 and τ, where τ denotes τi or τr. We have therefore omitted the indices i and r in the matrix MN .

If basing on the Maxwell-Cattaneo constitutive equation, then all coefficients starting from the
third in the first row of the matrix MN composed of phenomenological coefficients of Equations (40)
and (41) vanish. Thus, the first row of the matrix MN has a form (1, τ, 0, . . . , 0), and the first column in
MN is written as (1,−τ, 0, . . . , 0). We further assume that the diagonal coefficients in MN depend on
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only τ0, while the non-diagonal ones are the functions of τ. That’s why a three-dimensional case is
presented by the following expressions:

M3 =

 1 τ 0
−τ τ2

0 τ

0 −τ 1

 and f3(τ, τ0) =

∣∣∣M̃3

∣∣∣
|M3|

=
1

1 + a2

1+a2

, where a =
τ

τ0
. (66)

As is seen from Equation (66), we again assume that the Onsager-Casimir reciprocity relations
are valid. A function f3(τ, τ0) is the second-order truncation of continuous-fraction expansion,
which can be presented in the form:

fN→∞(τ, τ0) =
1

1 + a2

1+ a2

1+ a2
1+...

, a =
τ

τ0
. (67)

Similarly for all odd N, if a function fN(τ, τ0) is representable as finite truncation of Equation (67),
it must be assumed that the matrix MN satisfies the Onsager-Casimir relations. As in traditional
version of EIT, at τ0/τ → 0 the function fN(τ, τ0) tends to a non-vanishing limit. At N → ∞ for
fN(τ, τ0) we have the asymptotic function:

fN→∞(τ, τ0) =
τ2

0
2τ2

(√
1 +

4τ2

τ2
0
− 1

)
. (68)

In the present work we are interested in a relationship between the nanoparticle dispersity and
the rate of irreversible processes which occur in nanoparticles. In this connection, we focus on the
case when τ0/τ = L/l (Equation (62)). Figure 1 displays a typical function at odd N = 3 and an
asymptotical function fN→∞ depending on L/l.
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Figure 1. Behavior of dimensionless function f in terms of ratio L/l: 1—Equation (66), 2—Equations (67)
or (68), 3—Equation (69), and 4—Equation (70).

Then at even N consider MN which results in a function fN(τ, τ0) as the truncation of continuous
fraction expansion. Nevertheless, for this condition at N > 3 we have the matrices, for which the
Onsager-Casimir reciprocal relations are invalid. For instance, at N = 4:
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M4 =


1 τ 0 0
−τ τ2

0 0 τ

0 0 τ2
0 τ

0 −τ −τ 1

, f4(τ, τ0) =
1

1 + a2

1+ a2
1+a2

, (69)

where the function f4(τ, τ0) is representable as truncation of continued-fraction expansion. The matrix
MN is easily transformed into the matrix M∗N (by replacing a sign before some τ), for which the
Onsager-Casimir reciprocal relations hold. However, in this case the function MN cannot be presented
as truncation of continued-fraction expansion. For example, at N = 4 the replacement of the sign
before τ in the fourth row of the matrix M4 gives:

M∗4 =


1 τ 0 0
−τ τ2

0 0 τ

0 0 τ2
0 τ

0 τ −τ 1

, f ∗4 (τ, τ0) =
1

1 + a2 + a4 , (70)

Figure 1 displays the functions f4 and f ∗4 . As is seen in Figure 1, f4 is closer to the asymptotic limit,
rather than f ∗4 . A similar regularity is observed for all even N.

Consider now the general case N > 2, when the constitutive equation may contain up to N − 1
time derivatives of fluxes and depends on one relaxation time τ:

τN−1∂tN−1Ji+, . . . ,+τ2∂t2Ji + τ∂tJi + Ji = −D0∇ni (71)

or:

τN−1∂tN−1 wr+, . . . ,+τ2∂t2 wr + τ∂twr,+wr =
w+

r
<

A
θ

. (72)

Let N = 3 and constitutive Equations (71) and (72) contain the time derivatives of flux up to
the second order inclusive. For this, we replace the first row in the matrix M3 (Equation (66)) with(
1, τ, τ2) and the first column with

(
1,−τ,+τ2). In addition to this, let the degree τ or τ0 in each

subsequent element of the row or the column in the matrix M3 be higher that the degree τ or τ0 of
the previous element by one. Then the obtained matrix M(2)

3 and the function f (2)3 (τ, τ0) will take
the form:

M(2)
3 =

 1 τ τ2

−τ τ2
0 τ3

τ2 −τ3 τ4
0

, f (2)3 (τ, τ0) =
1 + a6

1 + a2 − a4 + 3a6 , a =
τ

τ0
. (73)

Similarly, the matrix M(3)
4 and the function f (3)4 (τ, τ0) can be obtained instead of Equation (73):

M(3)
4 =


1 τ τ2 τ3

−τ τ2
0 τ3 τ4

τ2 −τ3 τ4
0 τ5

−τ3 τ4 −τ5 τ5
0

, f (3)4 (τ, τ0) =
1− a2 + a4 − a8 + 2a10

1− a4 + 5a6 − 8a8 + 7a10 , (74)

where we assumed that M(2)
3 and M(3)

4 satisfy the Onsager-Casimir relations. Figure 2 shows the

functions f (2)3 (L/l) and f (3)4 (L/l) that seem to tend to a finite value at L/l → 0 . Meanwhile, if some

coefficients in these matrices are assumed to be zero, we obtain the functions f (2)3 (L/l) and f (3)4 (L/l)
which tend to zero at L/l → 0 . This is evident from Figure 2 at:

M(3)
4 =


1 τ τ2 τ3

−τ τ2
0 0 τ4

τ2 0 τ4
0 0

−τ3 τ4 0 τ5
0

, f (3)4 (τ, τ0) =
1 + a4

1 + a2 + 2a4 + a8 (75)
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M(2)
3 =

 1 τ τ2

−τ τ2
0 0

τ2 0 τ4
0

, f (2)3 (τ, τ0) =
1

1 + a2 + a4 . (76)
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We can see that Equations (73)–(76) cannot be representable as truncations of
continued-fraction expansion.

8. Constitutive Equations

In this section, we consider some constitutive equations that describe the diffusion
process in nanosystems. It should be noted that even in a two-dimensional case the obtained
constitutive equations are not limited by the Maxwell-Cattaneo Equation (44) and equations containing
the higher-order time derivatives of diffusion fluxes in Equations (71) and (72). Let us consider a
case when the generalized temperature θ and chemical potential µi depend on ni and ∂tni. Then the
thermodynamic force ∇

(
θ−1µi

)
is written as:

∇
(

θ−1µi

)
=

∂
(
θ−1µi

)
∂ni

∇ni +
∂
(
θ−1µi

)
∂∂tni

∇∂tni. (77)

Using Equation (77), we make a replacement in equation:

τi ∂tJi + Ji =
1

R(i)
11

∇
(

θ−1µi

)
(78)

that results in the Jeffreys type constitutive equation (dual-phase-lag transfer equation [22,25]) instead
of Equation (44), which describes the diffusion of components:

τi ∂tJi + Ji = −D0i∇(ni + η∂tni), (79)

where D0i =
1

R(i)
11

∂(θ−1µi)
∂ni

, η =
∂(θ−1µi)

∂∂tni

[
∂(θ−1µi)

∂ni

]−1
.
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Further, using the integral representation of the diffusion flux, we obtain the higher-order
diffusion equations. Let us consider the expression [32,33] for the diffusion flux:

Ji(t) = −κ
∫ ∞

0
exp

(
− t′

τi

)
∇ni

(
t− t′

)
dt′, (80)

where κ is a constant. Let us represent the right-hand side of the Expression (80) in the form

Ji(t) = −τκ∇ni(t) + τκ
∫ ∞

0
exp

(
− t′

τi

)
∂t∇ni

(
t− t′

)
dt′. (81)

Using (80) we obtain from (81) the Maxwell-Cattaneo type equation:

Ji(t) = −τκ∇ni(t)− τ∂tJi(t), (82)

where τκ = D0i Similarly, from (81) we can obtain the equality:

Ji(t) = −τκ∇ni(t) + τ2κ∂t∇ni(t)− τ3κ∂t2∇ni(t) + τ3κ
∫ ∞

0
exp

(
− t′

τi

)
∂t3∇ni

(
t− t′

)
dt′, (83)

which can be cast into equation:

τ3
i ∂t3Ji + Ji = −D0i∇

(
ni − τi∂tni + τ2

i ∂t2 ni

)
. (84)

The comparison of Equations (84) with (78) allows us to write the right-hand side of Equation (84)
in the form

(
1/R(i)

11

)
∇
(
θ−1µi

)
. As a result, we obtain the corresponding phenomenological equation:

∇
(

θ−1µi

)
= R(i)

11 Ji + R(i)
11 τ3

i ∂t3Ji, (85)

where:
θ−1µi = ni − τi∂tni + τ2

i ∂t2 ni. (86)

In this case the simplest matrix M(3)
4 and function f (3)4 (τ, τ0) have the form:

M(3)
4 =


1 0 0 τ3

0 τ2
0 0 0

0 0 τ4
0 0

−τ3 0 0 τ6
0

, f (3)4 (τ, τ0) =
1

1 + a6 , a =
τ

τ0
. (87)

It is obvious that higher-order equations can also be obtained in the same way. At L/l → 0 one
observes a decrease in the rates of diffusion and chemical reactions, and the higher-order constitutive
equations can be used for description of irreversible processes which occur in nanosystems.

We have, thus, obtained a wider class of constitutive equations compared to the traditional EIT.
For the completeness of thermodynamic theory, the following question is very important: whether
these constitutive equations can be transformed into the form which is independent of the frame
(material-invariant equations)? Several approaches are known for the Maxwell-Cattaneo equation.
The most well-known approaches use the Jaumann derivative instead of the usual local time
derivative [11]. The modified version of the objective time derivative was used to solve the problem of
Marangoni-Bénard instability [34]. In [35,36], the material derivative and the Oldroid’s derivative was
used to modify the Maxwell-Cattaneo equation. In this case, it was possible to obtain a single equation
for the temperature field [36] and to prove its Galilean invariance.

However, the question remains: is it possible to apply these approaches to other equations
considered in this paper? There is a problem even for the Jeffreys Equation (79) where the term
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D0iη∇∂tni is added, and is more complex for higher-order Equations (71), (72) and (84). In addition,
there is an opinion that frame-indifference is not satisfied in several disciplines [11]. Therefore, there is
doubt for its applicability in the general case.

9. Discussion and Conclusions

Thermodynamic theory of nanosystems assumes various approaches, which are based on the
introduction of additional variables. One of the first theories is inspired by statistical mechanics,
where an ensemble of equivalent systems is considered [37]. In this case, the number of systems is an
additional variable. Using this approach, we can generalize the equations of classical thermodynamics
and investigate systems at the nanoscale. Unfortunately, transfer processes are not considered in
this theory.

Another approach is based on the introduction of internal variables of nanoparticles (volume
or size of particles as additional variables) [38,39]. It is assumed that the system is in the local
equilibrium and the well-known formalism of thermodynamics of irreversible processes is used.
In this case, stochastic methods based on the Fokker-Planck equation and the Smoluchowski equation
can be applied.

In this paper, we proceeded from classical thermodynamic theory and considered the traditional
version of EIT of heat conduction, wherein the extra variables are the higher-order heat fluxes (fluxes
of the fluxes). Within this approach the heat transport in the nanosystems and the thermal conductivity
as a function of the size of the nanoscale structures were considered [1,2].

At the same time, assuming that the entropy density is a function of usual thermodynamic
variables and their higher-order time derivatives, we studied the irreversible processes which occur
in reaction-diffusion nanosystems. The entropy balance equations were obtained, and the linear
phenomenological equations were constructed based on the expression of the entropy production.
The characteristic relaxation times, which define the memory effects of irreversible processes connected
with the coefficients of phenomenological equations, were introduced, as well. Thus, the diffusion
coefficients and the rate constant of the chemical reaction were established as the functions of size
of nanosystems, using in the context the linear theory. The proposed thermodynamic theory can be
developed in the framework of the linear EIT and proceeds from the constitutive equations, at that the
matrix of phenomenological coefficients satisfies the Onsager-Casimir reciprocal relations in the case
of the odd number of phenomenological equations.

Solutions of a linear system of phenomenological equations relative to fluxes and their
higher-order time derivatives depend on the matrix of phenomenological coefficients. As in the case of
the traditional version of EIT, a series of matrices leads to the solutions which are representable in the
form of finite truncations of continued-fraction expansion. Therefore, obtained solutions with increased
number of phenomenological equations converge to the finite limit. The established expressions for
fluxes and their time derivatives reveal that the rates of diffusion and chemical reactions decreases
with reducing dimensions of nanosystems (Equations (63) and (64)). For a constitutive equation with
the higher-order time derivatives of flux one can also construct the linear theory, according to which
the greater is the dispersion of nanosystems, the lower are the rates of diffusion and chemical reactions.
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