
entropy

Article

Early Fault Detection Method for Rotating Machinery
Based on Harmonic-Assisted Multivariate Empirical
Mode Decomposition and Transfer Entropy

Zhe Wu 1,*, Qiang Zhang 2,3, Lixin Wang 1, Lifeng Cheng 1 and Jingbo Zhou 1

1 School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;
wanglx@hebust.edu.cn (L.W.); clf2001_0@163.com (L.C.); zhoujingbo@hebust.edu.cn (J.Z.)

2 School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing 100081, China;
15092148939@163.com

3 Key Laboratory of Vehicle Transmission, China North Vehicle Research Institute, Beijing 100072, China
* Correspondence: meishan6082@163.com

Received: 24 September 2018; Accepted: 1 November 2018; Published: 13 November 2018 ����������
�������

Abstract: It is a difficult task to analyze the coupling characteristics of rotating machinery fault signals
under the influence of complex and nonlinear interference signals. This difficulty is due to the strong
noise background of rotating machinery fault feature extraction and weaknesses, such as modal
mixing problems, in the existing Ensemble Empirical Mode Decomposition (EEMD) time–frequency
analysis methods. To quantitatively study the nonlinear synchronous coupling characteristics and
information transfer characteristics of rotating machinery fault signals between different frequency
scales under the influence of complex and nonlinear interference signals, a new nonlinear signal
processing method—the harmonic assisted multivariate empirical mode decomposition method
(HA-MEMD)—is proposed in this paper. By adding additional high-frequency harmonic-assisted
channels and reducing them, the decomposing precision of the Intrinsic Mode Function (IMF) can
be effectively improved, and the phenomenon of mode aliasing can be mitigated. Analysis results
of the simulated signals prove the effectiveness of this method. By combining HA-MEMD with
the transfer entropy algorithm and introducing signal processing of the rotating machinery, a fault
detection method of rotating machinery based on high-frequency harmonic-assisted multivariate
empirical mode decomposition-transfer entropy (HA-MEMD-TE) was established. The main features
of the mechanical transmission system were extracted by the high-frequency harmonic-assisted
multivariate empirical mode decomposition method, and the signal, after noise reduction, was used
for the transfer entropy calculation. The evaluation index of the rotating machinery state based on
HA-MEMD-TE was established to quantitatively describe the degree of nonlinear coupling between
signals to effectively evaluate and diagnose the operating state of the mechanical system. By adding
noise to different signal-to-noise ratios, the fault detection ability of HA-MEMD-TE method in the
background of strong noise is investigated, which proves that the method has strong reliability and
robustness. In this paper, transfer entropy is applied to the fault diagnosis field of rotating machinery,
which provides a new effective method for early fault diagnosis and performance degradation-state
recognition of rotating machinery, and leads to relevant research conclusions.
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1. Introduction

Components like rolling bearings and gears are the most extensively used and vulnerable
components in a mechanical transmission system, and they may frequently fail under highly variable
loads resulting from complex operating conditions. Vibration analysis technology has been extensively
used for mechanical fault diagnosis and mode recognition [1,2]. The existence of various complex
excitations and strong noise in vibration signals tremendously limit the possibility of extracting effective
rotating machinery fault features from the original vibration signal, impairing the accuracy rate of
fault diagnosis [3]. Hence, it is necessary to use nonlinear research methods to identify bearing and
gear faults so as to improve the signal-to-noise ratio of vibration signals. As the equipment becomes
increasingly complex, it becomes progressively more difficult to extract the features accurately. How to
extract fault feature information of a bearing has effectively become the core problem of bearing fault
diagnosis [4].

In recent years, fault diagnosis technology for rotating machinery has developed rapidly.
Researchers have conducted many investigations on the condition assessment and diagnosis of rotating
machinery faults based on vibration signals [5,6]. Singh [7] combined continuous wavelet transform
and angle resampling for gearbox fault diagnosis under variable working conditions. However,
wavelet transform requires the setup of a wavelet base and parameters, since it is not capable of
adaptive data processing. Empirical Mode Decomposition (EMD) [8] and Local Mean Decomposition
(LMD) [9] are data-driven adaptive nonlinear analysis methods proposed respectively by Huang and
Smith in 1998 and 2005. EMD adaptively decomposes a nonstationary nonlinear signal into a series of
Intrinsic Mode Function components with clear instantaneous frequency and physical significance.
Guo [10] proposed an improved empirical mode decomposition method based on multi-objective
optimization. Particle Swarm Optimization (PSO) was used to find the optimal intrinsic mode function
(IMF) and determine the optimal shape control parameters. The vibration signal of the failed rolling
bearing is effectively extracted. Despite the fact that EMD and LMD have a good many merits, EMD
exhibits defects, such as mode mixing and end effect, so as to affect the noise reduction effect and
fault state identification of the vibration signal of the mechanical transmission system under complex
operating conditions.

To avoid mode mixing when EMD is used in an environment where a decomposition intermittent
noise signal exists, Huang and Wu proposed the Ensemble Empirical Mode Decomposition (EEMD)
method in 2009: by adding white noise to the target signal, EEMD enables a uniform ratio of signal
in time–frequency space. As a noise-assisted data analysis technique, EEMD was developed to
successfully suppress mode mixing [11–13]. Amarnath [14] used EEMD to extract fault-related
characteristics from the vibration signal acquired from a gearbox; furthermore, this research took into
account the estimation of the specific lubricating film thickness and the effect on the increase of the
gear tooth surface fault. Support Vector Machine (SVM) [15] is a machine-learning algorithm proposed
by Vapnik based on the principle of structural risk minimization. Tabrizi [16] denoised the early fault
signal of bearings using EEMD and combined it with an SVM to propose an automatic detection
method of bearing microdefects based on EEMD and SVM.

To further improve the decomposition capacity of LMD and achieve decomposition results with
more accurate physical significance, Sun [17] added white noise with a limited amplitude to the target
signal and averaged the results of several decompositions, thereby proposing Ensemble Local Mean
Decomposition (ELMD). Soon after, ELMD, as an improvement of LMD, was successfully introduced
to the field of fault diagnosis and state monitoring for rotating machinery [18]. The ELMD method is
largely dependent on the correct selection of the model parameters. Zhang et al. [19] used the error
index of relative Root Mean Square Error (RMSE) and the Signal-to-Noise Ratio (SNR) as indicators for
signal decomposition effect evaluation, and, having identified an optimal set of ELMD parameters,
proposed an optimized integrated LMD technique.

By integration averaging, EEMD and ELMD eliminated the white noise components contained in
IMF, which, to some extent, reduced the mode mixing phenomenon, but integration averaging led to
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the generation of a new endpoint effect and a longer operation time [20]. Rehman [21] proposed the
Multivariate Empirical Mode Decomposition (MEMD) algorithm to make up for the drawbacks of
EMD, i.e., that it can only process one-dimensional signals. MEMD enables multichannel simultaneous
signal analysis. As an extension of multichannel signal processing, MEMD offers an effective means
of gaining insight into complicated nonstationary nonlinear real signals [22,23]. Research scholars
have successfully applied the MEMD method to EEG signal [24] and mechanical signal processing [25].
As a new time–frequency analysis algorithm, MEMD encounters some technical barriers in practical
situations, such as modal aliasing, which hinders its development in the signal processing field and
impedes further application to mechanical fault diagnosis.

To mitigate the modal mixing of MEMD, Rehman [26] proposed Noise-assisted Multivariate
Empirical Mode Decomposition (NA-MEMD), which added several auxiliary white noise channels to
the decomposition and achieved the oscillating mode multivariate of the corresponding IMFs from
several signal channels through averaging. As opposed to EEMD, the white noise is not directly added
to the target signal; hence, NA-MEMD is not encumbered by the various problems of EEMD mentioned
above. NA-MEMD is considered an effective data analysis technique, since it alleviates the spectrum
loss that occurs during the decomposition of EEMD, thereby leading to a more accurate IMF spectral
distribution of the decomposition result than that achieved with EEMD. Relevant studies indicate,
however, that although NA-MEMD improves the modal aliasing in MEMD, it has not completely
resolved this problem, so further studies are needed. Wu [27] proposed the adaptive high-frequency
harmonic LMD method by adding high-frequency harmonics to the target signal and suppressing
modal aliasing through the change in extreme point locations of the target signal [28].

Although accurate state recognition and feature extraction are the basis for rotating machinery
fault diagnosis, it is impossible to obtain accurate state feature information merely from time-domain
and frequency-domain feature information, since a rotating machinery fault signal is highly nonlinear,
non-Gaussian, and nonstationary. The nonlinear characteristics of a vibration signal change with the
evolution of rolling bearing and gear failures, so the most important task is to establish accurate and
sensitive state regression indicators [29].

Richman [30] proposed sample entropy, a new method for measuring the complexity of a time
series. Ni [31] uses Sample Entropy characteristics to detect and evaluate early faults of rolling
bearings, and verifies the effectiveness of the method through wind power measured data. A new
method called “permutation entropy” (PE) [32] has recently been proposed as a measure for complex
nonlinear and linear time series. Tiwari [33] proposed a permutation entropy and adaptive neural
fuzzy classifier (ANFC) -based bearing fault diagnosis method that employs permutation entropy for
feature extraction. To alleviate the complexity of the feature vector, the extracted features are entered
in to the ANFC for automatic fault diagnosis.

None of the above-noted nonlinear time series measuring methods can effectively describe the
correlation between related time series. Schreiber [34] proposed a new method for measuring nonlinear
system correlation in 2000, namely, Transfer Entropy, which can not only quantify the information
coupling strength between the two systems, but also calculate the direction of information transfer.
Since it was proposed, the Transfer Entropy has been widely used. In addition to their extensive
application in the field of physical communication, the transfer entropy and related entropy theories
have been employed in many fields, including chemistry, biology, and medicine [35–37].

As a measure of information flow between Markov processes, transfer entropy has been confirmed
by recent research to be applicable to analyses of the degree of coupling in structural dynamics.
Kaiser and Schreiber [38] proved that transfer entropy more appropriately quantified the dynamic
relationship between time series data than mutual information; additionally, transfer entropy can
capture the asymmetry of the information sharing method between two different dynamic processes.
Since transfer entropy captures the dynamic dependence in a more favorable manner, it may be more
suitable for determining the degree of nonlinear correlation in system dynamics. Simulation and
test results show that transfer entropy is more sensitive to nonlinearity than the delayed mutual
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information function, thus being an effective structural damage testing tool. Nichols [39] performed an
analysis based on the vibration response of a transfer entropy composite material, detected structural
damage based on the change in degree of nonlinear coupling between various locations on the
structure, and proved the effectiveness of the method through a spring-mass-damping model test
and the impact damage test of a Unmanned Aerial Vehicle wing under an environmental gust load.
It was found that transfer entropy could favorably identify the nonlinear behavior of the structure
under the effect of certain noise, which demonstrated the high sensitivity and robustness of transfer
entropy in structural damage identification. Liu and Xie [40] identified the damage of a concrete
simple-supported beam using the mean transfer entropy at different time scales, studied the damage
quantification and localization capacity of the transfer entropy, and verified the rationality of the direct
use of the linearized transfer entropy theory by the kernel density estimation technique. Sun [41]
proposed a transmission path identification method based on delayed transfer entropy for the vibration
transmission path and the transmission direction of the coupled power system of a power generator set;
the effectiveness of this method was demonstrated through simulation analysis and testing. Although
transfer entropy has been successfully used in the field of structural damage testing, the nonparametric
one-, two-, and three-dimensional probability density functions must be estimated for the calculation
of transfer entropy; hence, external noise-induced random disturbances may result in significant
differences in transfer entropy. Overbey evaluated the effect of input and output noise on transfer
entropy through numerical simulation of a spring oscillator system and steel frame test, and studied
the damage identification capacity of transfer entropy in the presence of noise by adding noises with
different SNRs; it was found that the sensitivity of the transfer entropy in the estimation of the damage
characteristics was reduced by generating low variance through the reduction of [42].

With the occurrence and development of an internal fault in components such as bearings and
gears in rotating machinery in the running state, a strong nonlinear relationship exists between its
vibration signal characteristics and the running state, so a nonlinear research approach must be used to
identify a gear fault. Most recognition methods for existing rotating machinery fault diagnosis are not
capable of simultaneous fault quantification and location, so the introduction of transfer entropy theory
into the field of rotating machinery fault diagnosis is of great theoretical and practical significance.

To quantitatively study the nonlinear synchronous coupling characteristics and information
transfer characteristics of rotating machinery fault signals between different frequency scales under
the influence of complex and nonlinear interference signals, a rotating machinery fault testing method
based on high-frequency harmonic-assisted multivariate empirical mode decomposition-transfer
entropy is proposed for the quantitative study of the nonlinear synchronous coupling characteristics
and information transfer between the rotating machinery fault signal and zero fault between different
time–frequency scales. The running status of the mechanical system was effectively evaluated
and diagnosed through the quantitative description of the degree of nonlinear coupling between
signals by (1) extracting the principal characteristics of the mechanical transmission system through
high-frequency harmonic-assisted multivariate empirical mode decomposition; (2) subjecting the
denoised signal to transfer entropy calculation; and (3) establishing an HA-MEMD-TE (High-frequency
harmonic-assisted multivariate empirical mode decomposition-transfer entropy)-based rotating
machinery status evaluation index. This study employed transfer entropy for rotating machinery fault
diagnosis, providing a new effective means and relevant research findings for the early fault diagnosis
and performance degradation status identification of rotating machinery.

2. HA-MEMD

The HA-MEMD method adds a number of high-frequency harmonic channels as auxiliary
channels, establishes evenly distributed reference scales, decomposes the compound channel signal
to get multichannel independent multivariate IMF components, and finally, removes the IMFs from
the auxiliary channels and retains the IMFs of the target signal. The general steps of the HA-MEMD
algorithm are as follows (As shown in Figure 1):
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Figure 1. Flowchart of the HA-MEMD method.

(1) Add n high-frequency harmonic sequences vi(t) (i = 1, 2, 3 . . . n) to the target signal X(t) of
length T to form the n + 1 time series Y(t).
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(2) Using the hammersley importance sampling method [26] to obtain a uniform sample point set
on the (n + 1)-dimensional spherical surface, and obtain n + 1 vectors.

(3) Calculate the mapping bθk (t) of the input signal Y(t) on each direction vector xθk , where xθk

indicates the direction angle in the (n + 1)-dimensional unit ball.
(4) Find all the maximum and minimum values of the mapping signals of all directional vectors

bθk (t) and corresponding moments tθk
l , where l indicates the location of extreme points.

(5) Obtain K multivariate envelopes aθk (t) by using the multivariate spline interpolation function
value for all extreme points. The mean value of them (t) signal is:

Y(t) =
1
K

K

∑
k=1

aθk (t) (1)

(6) Define the IMF function h(t), which is extracted by h(t) = Y(t) − m(t).
(7) Defining the decomposition judgment function as f (t) = |m(t)/l(t)|, when f (t) is less than

the specified threshold, the first IMF component has been successfully extracted. Subtracting the first
extracted IMF h1(t) component from the original signal Y(t), as the input signal of step (3), continue the
iterative calculation of steps (3)–(7) to extract the new multivariate IMF component h(t), l(t) is:

l(t) = (1/K)∑K
k=1

∣∣∣eθk −m(t)
∣∣∣ (2)

(8) If h(t) does not satisfy the IMF criterion, use h(t) as the input of the step (3) signal, continue the
(3)–(7) step iteration, then cycle i times until h(t) satisfies the IMF criterion.

After a series of HA-MEMD decomposition processes, the original n + 1 element signal is
decomposed into a series of IMF hi(t) and additive r(t) forms:

Y(t) =
d

∑
i=1

hi(t) + r(t) (3)

In the above formula, d represents the number of multivariate IMF layers decomposed h(t), r(t)
is the n + 1 group signal IMF component, and n + 1 margins respectively correspond to the n + 1
element signal. Finally, the IMFs corresponding to the n high-frequency harmonic auxiliary channels
are deleted from the (n + 1) element IMFs, and the IMFs of the target signal are reserved.

3. Transfer Entropy

Transfer entropy (TE) can effectively measure the potential directional transfer of information
between two dynamic time series [43]. Given two stationary Markov processes x and y, the Markov
process indicates that the random sequence of x and y occurs at a certain time and is only affected by
the past finite time of the sequence. Then, the k-order Markov sequence defining x and y is:

P
(

xi(1)
∣∣∣xi

(k)
)
= P(xi(n + 1)|xi(n) , xi(n− 1),

. . . , xi(n− k + 1)
(4)

P
(

yi(1)
∣∣∣yi

(k)
)
= P(yi(n + 1)|yi(n) , yi(n− 1),

. . . , yi(n− k + 1)
(5)
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According to the historical dynamic cross-correlation of the two time-series x and y, the transfer
entropy Ty→x [34] can be defined as:

Ty→x

[
x(1)

∣∣∣x(k), y(l)
]
=

t
p
[

x(1)
∣∣∣x(k), y(l)

]
log2

[
p(x(1)|x(k),y(l) )

x(1)|x(k)
]

dx(1)dx(k)dx(l)
(6)

where k and l are Markov process orders. Assuming that both time series are first-order Markov
processes, then k = l = 1. The transfer entropy quantification describes the effect of the observed
time series y on the future occurrence of another time series x. Introducing the delay parameter into
Equation (6), it can be rewritten as the delay transfer entropy form [44,45]:

Ty→x

[
x(1)

∣∣∣x(k), y(l)(τ)
]
=

t
p
[

x(1)
∣∣∣x(k), y(l)(τ)

]
log2

[
p(x(1)|x(k),y(l)(τ) )

x(1)|x(k)
]

dx(1)dx(k)dy(l)(τ)
(7)

4. Early Degradation State Recognition Method of Rotating Machinery Based on HA-MEMD and
Transfer Entropy

The early failure signals of rotating machinery have the characteristics of weak features and low
signal-to-noise ratios. HA-MEMD can effectively improve signal decomposition accuracy, achieve
noise reduction of target signal, and improve signal to noise ratio. Transfer entropy can be used for the
quantitative study of nonlinear synchronous coupling characteristics and information transfer between
rotating machinery signals between different time–frequency scales, and it exhibits strong resistance to
noise disturbance. This paper proposes an early fault detection method for rotating machinery based on
the harmonic-assisted multivariate empirical mode decomposition method and transfer entropy, and
establishes a rotating mechanical state evaluation index based on the HA-MEMD-TE to quantitatively
describe the nonlinearity between historical state information under bearing fault conditions. To
quantitatively describe the nonlinear coupling information and signal transmission characteristics
between the historical state information under the condition of bearing fault., the following process is
performed. Firstly, the signal is decomposed by HA-MEMD, the signal to be analyzed is denoised,
the IMF component containing the main abnormal frequency characteristic information is selected
for reconstruction, and the signal-to-noise ratio is highlighted to highlight the fault feature. Then,
the transfer entropy algorithm, which is sensitive to the historical abrupt signal, is used. Passive
entropy analysis is performed on the reconstructed signal to quantitatively describe the degree of
nonlinear coupling between the signals to effectively evaluate and diagnose the operating state of the
mechanical system. The principal process is as follows (As shown in Figure 2):

(1) Test data acquisition and denoising: The vibration signal is subjected to active noise cancellation
by subjecting the acquired bearing vibration data to HA-MEMD decomposition, reconstructing
the IMF components that contain key information, and removing the false components.

(2) Time series transfer entropy analysis: The transfer entropy between various time series is
computed and the performance index for an accurate reflection of the bearing fault evolution
trend is established.

(3) Mechanical fault evolution analysis and fault diagnosis: The stable and accurate fault thresholds
are set based on early and stationary monitoring of transfer entropy variation, the transfer entropy
trend is monitored in real time, and the rotating machinery is subjected to state recognition and
fault diagnosis.
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5. Numerical Simulation

To verify the filter characteristics and noise robustness of the HA-MEMD method, two given
signals were chosen for a numerical simulation test, and a study was performed on the comparison
between the proposed method and the results of EEMD and NA-MEMD.

5.1. Intermittent Signal

Modal aliasing may cause the IMF components obtained through EMD decomposition to contain
different time scales. This leads to a chaotic time-frequency distribution, thereby making it difficult to
identify the physical significance of each modal component and impairing the bearing vibration signal
denoising effect and fault feature extraction.

To explain the effectiveness and superiority of HA-MEMD in the suppression of modal aliasing,
the simulation signal x(t) shown in Figure 3—which is composed of a high-frequency intermittent
signal x1(t) with an amplitude of 0.2 and a low-frequency cosine signal x2(t) with an amplitude of
1—was decomposed by EEMD, NA-MEMD, and HA-MEMD, respectively, and the results are shown
in Figure 4. The frequency resolution of the simulation signal is 1 Hz.
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Figure 4. Comparative analysis of intermittent simulation signals.

The EEMD decomposition result of the numerical simulation is shown in Figure 4a. The simulation
signal x(t) is decomposed into 11 MF components and a remainder term; the first 10 MF components
are shown in the figure. IMF2 and IMF3 are associated with the high-frequency intermittent signal x1(t),
while IMF5 is associated with the low-frequency cosine signal x2(t). The cross-correlation coefficients
are 0.9067 between IMF2 and the interrupted signal x1(t), 0.9352 between IMF3 and x1(t), and 0.9992
between IMF5 and the low-frequency cosine signal x2(t). The decomposition brings about many
noneffective IMF components (IMF6–IMF10). The figure indicates serious modal aliasing, where
decomposition results in many false components.

NA-MEMD was used to decompose the simulation signal, and three white Gaussian noise
channels with a variance of 0.2 were added. The decomposition results are shown in Figure 4b.
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The simulated signal is decomposed into five IMF components and a remainder term. Components
x1(t) and x2(t) are clearly derived and respectively correspond to IMF2 and IMF6; the cross-correlation
coefficient between IMF2 and the interrupted signal x1(t) is 0.9749. The decomposition results of
HA-MEMD are shown in Figure 4c. The interrupted signal x1(t) and the low-frequency cosine
signal x2(t) are clearly and accurately derived and correspond to IMF1 and IMF2, respectively;
the cross-correlation coefficient is 0.9857 between IMF1 and the intermittent signal x1(t), and
the cross-correlation coefficient is 1 between IMF2 and the low-frequency cosine signal x2(t).
The decomposition result involves no modal aliasing.

According to the comparison result, the decomposition capacity of HA-MEMD is obviously
superior to the other two methods; when compared with EEMD and NA-MEMD, HA-MEMD offers
fewer iterations, as well as decomposition results that are more compliant with a practical signaling
situation, and it has more definite physical significance. To summarize, the proposed method is
superior to EEMD and NA-MEMD in terms of the suppression of modal aliasing and the improvement
in decomposition accuracy, which confirms the effectiveness and superiority of the HA-MEMD method
in the suppression of modal aliasing.

5.2. Rotating Machinery Early Fault Analog Signal

In order to test the capacity of the HA-MEMD decomposition shock modulation signal,
the following simulation signal was designed and simulated:

v(t) = x1(t)× x2(t) (8)

where x1(t) is a periodic exponential decay signal with a frequency of 18 Hz, the impact function per
week is 2e−50 sin(256πt), and the harmonic signal is x2(t) = cos(1200πt). To verify the noise reduction
capability of the HA-MEMD method, white noise with a signal-to-noise ratio of −5 dB was added to
the original analog signal. The frequency resolution of the simulation signal is 1 Hz.

The time-domain waveform and spectrogram of the noisy simulation signal are shown in
Figure 5a,b, according to which the 18 Hz impact characteristic frequency is drowned in noise. Only
8 Hz, 17 Hz, and 34 Hz unrelated frequencies can be seen in the spectrogram, which is difficult to
reflect on a spectrogram. The HA-MEMD decomposition result of the simulation signal is shown
in Figure 6a; Figure 6b shows the amplitude spectrum obtained through Hilbert demodulation
after signal reconstruction of the first three IMF components that contain the main information
of each channel. The 18 Hz shock signal and its doubling signal (36 Hz, 54 Hz) are accurately
extracted, while the amplitude of the white noise component is small in the amplitude spectrum.
The high-frequency harmonic-assisted multivariate empirical mode decomposition offers high local
decomposition accuracy, and the result shows that HA-MEMD decomposition can effectively suppress
a variety of harmonic signals and noise.
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1 2( ) ( ) ( )v t x t x t=   (8) 

where x1(t) is a periodic exponential decay signal with a frequency of 18 Hz, the impact function per 
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502 sin(256 )e t−

, and the harmonic signal is 2( ) cos(1200 )x t t= . To verify the noise 
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6000-pound radial load was applied to the shaft and bearing. Two high-sensitivity integrated 

circuits piezoelectric (ICP) accelerometers were mounted on each bearing block to acquire the 

acceleration signals in X and Y directions; the sensor layout is shown in Figure 7b. The test 

conditions are shown in Table 1. After the whole test, the tester demolished the outer ring of the 

bearing and found that there was an obvious outer ring fault (Figure 8). 
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6. Experimental Research

6.1. Test Introduction

The test data were from the U.S. Intelligent Maintenance Systems (IMS) [46]. On the test stand
shown in Figure 7a, the four bearings to be tested were respectively installed on the shaft, and a
6000-pound radial load was applied to the shaft and bearing. Two high-sensitivity integrated circuits
piezoelectric (ICP) accelerometers were mounted on each bearing block to acquire the acceleration
signals in X and Y directions; the sensor layout is shown in Figure 7b. The test conditions are shown in
Table 1. After the whole test, the tester demolished the outer ring of the bearing and found that there
was an obvious outer ring fault (Figure 8).
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6.2. The Effect of Time Series Length on the Calculation of Transfer Entropy

When it comes to large-sized mechanical equipment, accidental failures bring about huge financial
losses. To alleviate the risk of sudden failure arising from an early fault of rotating machinery,
fault feature extraction and diagnostic methods are required that accurately describe the fault status,
require a short length of data, etc. For the analysis and processing of a practical rotating machinery
fault signal, signal length is an important factor affecting real-time analysis; the fast and timely analysis
of a mechanical fault signal offers a strong guarantee for the establishment of a maintenance policy.

To study the effect of signal length on phase transfer entropy, the authors performed an analysis
based on test data acquired at different time points of the bearing fault test stand operation. The transfer
entropy of the operation was computed for the following: 30 h→ 70 h (T30 h→ 70 h), 70 h→ 110 h
(T70 h→ 110 h), and 110 h→ 150 h (T110 h→ 150 h). Then, 1000, 2000, 3000, . . . , 20,000 data points
were taken respectively for the three sets of data. The variation of the phase transfer entropy value
with the signal length was determined through simulation; the time series length-specific transfer
entropy is shown in Figure 9.
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(a) Time-domain waveform of the test signal 

Figure 9. The transfer entropy of the length of different time series.

As shown in Figure 9, when the data length is less than 6000, the transfer entropy fluctuates
significantly, but it tends to be stable when the data length is more than 6000. Considering the stability
of the computation result and the computation cost, this paper sets the data length at 10,240.

6.3. Early Fault Detection of Rotating Machinery Based on the HAMMED-TE Method

The test data (h30 and h90) the time-domain plots, frequency-domain plots, and HA-MEMD
decomposition results of the operation data acquired at both time points are given in Figures 10 and 11.
are shown in Figures 10 and 11. HAMEMD-TE was used for the analysis of the test data. First, any
sample that was taken approx. 30 h after the stable operation of the test was randomly chosen as
the bearing health data, which was set to Xi(t) (“i" was obtained randomly). Unknown operation
data samples taken thereafter were set to Yn(t) (n = i + 1, i + 2, . . . ,984 − i). Xi(t) and Yn(t) were
subjected to to HA-MEMD adaptive decomposition, respectively. As shown in Figures 10 and 11,
the fourth component of the decomposition result only contains a little time-domain information, so
the top three IMF components containing the main fault information were subjected to summation and
reconstruction. Finally, the signal reconstruction for both statuses was subjected to transfer entropy
calculation to the nonlinear coupling information and signal transfer characteristics between the status
information of the bearing fault being subjected to quantitative description, as follows: and the transfer
entropy of failure-free status data→ unknown operation status data TX→Y (Figure 12). and the transfer
entropy of unknown operation status data→ failure-free status data TY→X (Figure 12) being calculated.
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Figure 12. Transfer entropy of unknown operation data→ failure-free data TX→Y (λ = 1).

As shown in Figure 12, TX→Y is totally dependent on historical data, and the entropy is relatively
stable before h90, which means no early fault has developed in the bearing. The TX→Y value rises
progressively after h90, indicating that the variation of the bearing operation status is increasingly
correlated with its own status, and that the bearing enters the early fault state from the failure-free
state when the transfer entropy changes greatly. After 120 h of bearing operation, the TX→Y transfer
entropy fluctuates obviously, which indicates the mid-to-late stage of the bearing fault; that is to say,
the fault is serious.

Figure 13 shows the transfer entropy TY→X of unknown operation data → failure-free data.
As shown in the figure, the variation trend of the transfer entropy TY→X accurately characterizes
the entire operation status of the bearing. It is observed that no fault develops in the bearing before
h90 when the transfer entropy is high and stable, which indicates that the unknown operation data
of the bearing is significantly affected by previous failure-free data, and that the coupling is strong
between time series. After 90 h of operation, bearing 1 develops an early fault in the outer race, and
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the vibration signal randomness changes, while the dynamic behavior changes suddenly. As shown in
Figure 13, TY→X tends to decrease, which demonstrates that the effect of the previous failure-free data
on the unknown operation data of the bearing decreases progressively, and that the degree of nonlinear
coupling between time series decreases; after 120 h of the bearing operation, TY→X drops sharply.
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For further study on the coupling characteristics of the rotating machinery fault signal between
different frequency bands at different time points in different coupling directions, the HA-MEMD-TE
for two different statuses at the time points h30 (failure-free state), h50 (failure-free state), and h110
(fault state) of operation of the rolling bearing test stand were chosen for analysis. First, HA-MEMD
adaptive decomposition was performed to get several IMF components from high to low frequencies.
Then, the transfer entropy values T30h→50h and T50→30, corresponding to the IMF for the data acquired
at h30 and h50, and the transfer entropy values T30h→110h and T110→30, corresponding to the IMF
for the data acquired at h30 and h110, were calculated. The results are given in Figures 14 and 15.
According to the comparison, as shown in Figure 14a, the strength of the coupling from components
IMF1–IMF5 obtained through HA-MEMD decomposition of the data acquired at h30 of the test stand
operation to the high-frequency component IMF1 obtained at h110 is better than before. In T110h→30h,
the strength of the coupling from IMF1–IMF5 to IMF4–IMF5 is high.
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Figure 15. HAMEMD-TE values in different directions and different frequency bands during the 30th
and 110th hours of the test bed operation.

It can be observed from the analysis above that the entire evolution process (from nothing
through minor to obvious) of an early weak fault in a rolling bearing is accurately characterized
by the following tendency of the transfer entropy: TX→Y of failure-free data→ unknown operation
data and the transfer entropy TY→X of unknown operation data→ failure-free data. Compared with
time-domain statistics indicator, the HA-MEMD-TE technique detects an early weak fault more than
20 h in advance. It can more accurately reflect the real running status of the rolling bearing, which
demonstrates the effectiveness of HA-MEMD-TE in the testing of an early weak fault in a rolling
bearing, having provided a reliable basis for mechanical system status monitoring and evaluation.

6.4. Research on Noise Robustness of HAMEMD-TE Method

For further quantitative study on the noise robustness of the HA-MEMD-TE technique,
strong noise with SNRs of −5 dB, −10 dB, and −15 dB was additionally added to all data, respectively,
based on the background noise and the complex excitation of the mechanical transmission system
that disturb the test data described in the previous section. Figures 16–18 respectively show the
time-domain plot and spectrum containing the noise signal at a certain time point. The noisy data
were analyzed using the HA-MEMD-TE technique. The analysis results are shown in Figures 19–21,
where it is observed that, despite the disturbance by strong background noise, transfer entropy can
satisfactorily distinguish various stages of fault generation and evolution, and can accurately reflect
the degree of nonlinear correlation between different running statuses of the bearing. From this
point of view, HA-MEMD-TE remains effective for the detection of an early fault. As shown in
Figure 20, when disturbed by a strong noise of −10 dB, the transfer entropy fluctuates significantly
when the bearing runs for approx. 95 h, thereby accurately detecting the fault. This confirms the strong
sensitivity and noise robustness to an early fault of the rotating machinery. Strong background noise
and the complex excitation of the mechanical system cause a reduction in the sensitivity of transfer
entropy in the fault feature estimation capacity, which demonstrates the necessity of denoising the
data through HA-MEMD.
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7. Summary and Discussion

In this paper, a new nonlinear signal processing method—high-frequency harmonic-assisted
multi-empirical mode decomposition—is proposed to solve the problem of mode mixing in MEMD
and NA-MEMD. The decomposition results show that the IMF has a higher decomposition accuracy,
and the processing speed is more than 30% higher than that of NA-MEMD. Monitoring the variation
in the additional energy loss during the power transfer of mechanical equipment is a valuable
approach for equipment fault state recognition. The high-frequent harmonic-assisted multivariate
empirical mode decomposition-transfer entropy method proposed in this paper can (1) describe
the dynamic characteristics of energy coupling and information transmission directivity for the
interaction of rotating machinery fault signal between different time–frequency scales, (2) reflect
the multi-time–frequency scale function coupling characteristics of the rotating machinery fault signal,
and (3) enable the quantitation and localization of a fault. Thus, the method provides a basis for
mechanical fault evolution status recognition and fault diagnosis. A simulation signal and rolling
bearing test signal were used to demonstrate the superiority of HA-MEMD in modal alias suppression
and denoising capacity. The HA-MEMD decomposition of the test data and the appropriate IMF fusion
effectively removed the substantive noise, helping to maintain the status characteristic components.
For further quantitative study on the noise robustness of the HA-MEMD-TE technique, strong noise
with SNRs of −5 dB, −10 dB, and −15 dB was additionally added to all data, respectively, based on
the background noise and the complex excitation of the mechanical transmission system that disturb
the test data described in the previous section. The test results show that, despite the disturbance
by strong background noise, transfer entropy can satisfactorily distinguish various stages of fault
generation and evolution, and can accurately reflect the degree of nonlinear correlation between
different running statuses of bearing. The diagnosis of an early fault in rotating machinery is a subject
that deserves in-depth study. The author’s next major research emphasis will be on HA-MEMD
method improvement and its adaptation.
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