Flow and Heat Transfer in the Tree-Like Branching Microchannel with/without Dimples
Abstract
:1. Introduction
2. Experimental System and Data Reduction
2.1. Experimental Setup
2.2. Data Reduction
3. Numerical Method
4. Results and Discussions
4.1. Experiment Results and Numerical Verification
4.2. Comparison of Flow and Heat Transfer Characteristics between Smooth and Dimpled Branching Microchannel
4.3. Thermal Enhancement Performance of Dimpled Branching Microchannels
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Han, J.C. Turbine blade cooling studies at Texas A&M University: 1980–2004. J. Thermophys. Heat Transf. 2006, 20, 161–187. [Google Scholar]
- Burgess, N.K.; Ligrani, P.M. Effects of dimple depth on Nusselt numbers and friction factors for internal cooling in a channel. In Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria, 14–17 June 2004. [Google Scholar]
- Ekkad, S.V.; Nasir, H. Dimple enhanced heat transfer in high aspect ratio channels. J. Enhanc. Heat Transf. 2003, 10, 395–405. [Google Scholar] [CrossRef]
- Moon, H.K.; O’connell, T.; Glezer, B. Channel height effect on heat transfer and friction in a dimpled passage. J. Eng. Gas Turbines Power 2000, 122, 307–313. [Google Scholar] [CrossRef]
- Rao, Y.; Li, B.; Feng, Y. Heat transfer of turbulent flow over surfaces with spherical dimples and teardrop dimples. Exp. Therm. Fluid Sci. 2015, 61, 201–209. [Google Scholar] [CrossRef]
- Syred, N.; Khalatov, A.; Kozlov, A.; Shchukin, A.; Agachev, R. Effect of Surface Curvature on Heat Transfer and Hydrodynamics Within a Single Hemispherical Dimple. In Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air, Munich, Germany, 8–11 May 2000. [Google Scholar]
- Zhao, P.; Liu, G.W.; Zhu, X.H.; Liu, Y.F. Influence of dimple space on heat transfer enhancement and pressure loss in a dimpled rectangular channel. J. Aero Power 2009, 24, 2267–2271. [Google Scholar]
- Schukin, A.V.; Kozlov, A.P.; Agachev, R.S. Study and application of hemispheric cavities for surface heat transfer augmentation. In Proceedings of the ASME 1995 International Gas Turbine and Aero Engine Congress and Exposition, Houston, TX, USA, 5–8 June 1995. [Google Scholar]
- Ligrani, P.M.; Harrison, J.L.; Mahmmod, G.I.; Hill, M.L. Flow structure due to dimple depressions on a channel surface. Phys. Fluids 2001, 13, 3442–3451. [Google Scholar] [CrossRef]
- Mahmood, G.I.; Sabbagh, M.Z.; Ligrani, P.M. Heat Transfer in a Channel with Dimples and Protrusions on Opposite Walls. J. Thermophys. Heat Transf. 2001, 15, 275–283. [Google Scholar] [CrossRef]
- Murata, A.; Mochizuki, S. Centrifugal buoyancy effect on turbulent heat transfer in a rotating two-pass smooth square channel with sharp 180-deg turns. Int. J. Heat Mass Transf. 2004, 47, 3215–3231. [Google Scholar] [CrossRef]
- Xie, G.N.; Sunden, B.; Wang, Q.W. Predictions of enhanced heat transfer of an internal blade tip-wall with hemispherical dimples or protrusions. In Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air, Glasgow, UK, 14–18 June 2010. [Google Scholar]
- Shen, Z.; Xie, Y.; Zhang, D. Heat Transfer Performance of U-Shaped Coolant Channel with Dimple Structure. J. Xi’an Jiaotong Univ. 2013, 47, 108–113. [Google Scholar]
- Kanokjaruvijit, K.; Martinez-Botas, R.F. Heat transfer and pressure investigation of dimple impingement. J. Turbomach. 2008, 130, 1–11. [Google Scholar] [CrossRef]
- Shen, Z.; Xie, Y.; Zhang, D. Experimental and numerical study on heat transfer in trailing edge cooling passages with dimples/protrusions under the effect of side wall slot ejection. Int. J. Heat Mass Transf. 2016, 92, 1218–1235. [Google Scholar] [CrossRef]
- Lauffer, D.; Weigand, B.; Liebe, R. A study on local heat transfer enhancement in a rectangular dimpled channel with a large aspect ratio. In Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, NV, USA, 6–9 June 2005. [Google Scholar]
- Chang, S.W.; Liou, T.M.; Lee, T.H. Thermal performance comparison between radially rotating ribbed parallelogram channels with and without dimple. Int. J. Heat Mass Transf. 2012, 55, 3541–3559. [Google Scholar] [CrossRef]
- Bunker, R.S. Gas Turbine Cooling: Moving from macro to micro cooling. In Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, TX, USA, 3–7 June 2013. [Google Scholar]
- Bjan, A. Shape and Structure, from Engineering to Nature; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- West, G.B.; Brown, J.H.; Enquist, B.J. A general model for the structure and allometry of plant vascular systems. Nature 1999, 400, 664–667. [Google Scholar] [CrossRef]
- Pence, D.V. Reduced pumping power and wall temperature in microchannel heat sinks with fractal-like branching channel networks. Microsc. Thermophys. Eng. 2003, 6, 319–330. [Google Scholar] [CrossRef]
- Senn, S.M.; Poulikakos, D. Laminar mixing heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells. J. Power Sources 2004, 130, 178–191. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, P. Heat transfer and pressure drop in fractal tree-like microchannel nets. Int. J. Heat Mass Transf. 2002, 45, 2643–2648. [Google Scholar] [CrossRef]
- Wang, X.Q.; Mujumdar, A.S.; Yap, C. Numerical analysis of blockage and optimization of heat transfer performance of fractal-like microchannel nets. J. Electron. Packag. 2006, 128, 38–45. [Google Scholar] [CrossRef]
- Wechsatol, W.; Lorente, S.; Bejan, A. Optimal tree-shaped networks for fluid flow in a disc-shaped body. Int. J. Heat Mass Transf. 2002, 45, 4911–4924. [Google Scholar] [CrossRef]
- Chen, L.; Feng, H.; Xie, Z. Thermal efficiency maximization for H-and X-shaped heat exchangers based on constructal theory. Appl. Therm. Eng. 2015, 91, 456–462. [Google Scholar] [CrossRef]
- Xia, C.; Fu, J.; Lai, J. Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motor-ized spindle cooling. Appl. Therm. Eng. 2015, 90, 1032–1042. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Yi, D. Numerical studies on different two-dimensional micromixers basing on a fractal-like tree network. Microsyst. Technol. 2017, 23, 755–763. [Google Scholar] [CrossRef]
- Sun, J.N.; Deng, J.; Deng, H.W. Structure Design of a New Cooling System Combined Microchannel and Film Cooling in the Turbine Blade. J. Beijing Univ. Aeronaut. Astronaut. 2012, 38, 702–706. [Google Scholar]
- Devore, M.A.; Kaufman, E.D. Branched Airfoil Core Cooling Arrangement. U.S. Patent 8449254, 2013. [Google Scholar]
- Ahmad, F.; Burzych, T.; Hummel, E. Arrangement of Cooling Channels in a Turbine Blade. U.S. Patent 15023392, 2014. [Google Scholar]
- Shui, L.Q.; Huang, B.; Dong, K.K.; Zhang, C.Y. Investigation of Heat Transfer and Flow Characteristics in Fractal Tree-Like Microchannel with Steam Cooling. In Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, NC, USA, 26–30 June 2017. [Google Scholar]
- Shui, L.Q.; Huang, B.; Dong, K.K.; Shi, X.J. Experimental research on heat transfer characteristics of fractal tree-like microchannel for cooling gas turbine blade. J. Xi’an Jiaotong Univ. 2017, 51, 43–50. [Google Scholar]
- Shui, L.Q.; Huang, B.; Gao, F.; Rui, H.B. Experimental and numerical investigation on the flow and heat transfer characteristics in a tree-like branching microchannel. J. Mech. Sci. Technol. 2018, 32, 937–946. [Google Scholar] [CrossRef]
- Stephan, K.; Preußer, P. Wärmeübergang und maximale wärmestromdichte beim behältersieden binärer und ternärer flüssigkeitsgemische. Chem. Ing. Tech. 1979, 51, 37. (In German) [Google Scholar] [CrossRef]
- Filonenko, G.K. Hydraulic resistance in pipes. Teploergetica 1954, 1, 40–44. [Google Scholar]
- Bejan, A. Entropy Generation through Heat and Fluid Flow; John Wiley and Sons: New York, NY, USA, 1982. [Google Scholar]
- Kline, S.J.; McClintock, F.A. Describing experimental uncertainties in single-sample experiments. Mech. Eng. 1953, 75, 3–8. [Google Scholar]
- ANSYS CFX. CFX-5 Solver Models and Theory User Manual, version 5.6; ANSYS Company: Oxfordshire, UK, 2003. [Google Scholar]
- Shah, R.K.; London, A.L. Laminar Flow Forced Convection in Ducts. J. Fluids Eng. 1978, 102, 431–455. [Google Scholar] [CrossRef]
- Incropera, F.P.; De Witt, D.P. Fundamentals of Heat and Mass Transfer, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2007. [Google Scholar]
- Kakac, S.; Shah, R.K.; Aung, W. Handbook of Single-Phase Convective Heat Transfer; John Wiley and Sons: New York, NY, USA, 1987. [Google Scholar]
- Jeong, J.; Hussain, F. On the identification of a vortex. J. Fluid Mech. 1995, 285, 69–94. [Google Scholar] [CrossRef]
k | lk (mm) | dk (mm) | Hk (mm) | Wk (mm) | Sk (mm) |
---|---|---|---|---|---|
0 | 51.29 | 2.91 | 3 | 2.83 | - |
1 | 40.72 | 2.06 | 3 | 1.57 | 18.0 |
2 | 32.32 | 1.46 | 3 | 0.96 | 9.4 |
3 | 25.65 | 1.03 | 3 | 0.62 | 5.0 |
Nu | CFD Data (Standard k-ε Model) | CFD Data (RNG k-ε Model) | CFD Data (SSG Model) | Experimental Data |
---|---|---|---|---|
Re = 5400 | 9.6 | 8.8 | 7.9 | 6.3 |
Re = 11300 | 20.8 | 20.0 | 18.4 | 14.6 |
f | CFD Data (Standard k-ε Model) | CFD Data (RNG k-ε Model) | CFD Data (SSG Model) | Experimental Data |
---|---|---|---|---|
Re = 5400 | 0.0360 | 0.0305 | 0.032 | 0.0359 |
Re = 11300 | 0.0131 | 0.0124 | 0.0125 | 0.0129 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shui, L.; Sun, J.; Gao, F.; Zhang, C. Flow and Heat Transfer in the Tree-Like Branching Microchannel with/without Dimples. Entropy 2018, 20, 379. https://doi.org/10.3390/e20050379
Shui L, Sun J, Gao F, Zhang C. Flow and Heat Transfer in the Tree-Like Branching Microchannel with/without Dimples. Entropy. 2018; 20(5):379. https://doi.org/10.3390/e20050379
Chicago/Turabian StyleShui, Linqi, Jianhui Sun, Feng Gao, and Chunyan Zhang. 2018. "Flow and Heat Transfer in the Tree-Like Branching Microchannel with/without Dimples" Entropy 20, no. 5: 379. https://doi.org/10.3390/e20050379
APA StyleShui, L., Sun, J., Gao, F., & Zhang, C. (2018). Flow and Heat Transfer in the Tree-Like Branching Microchannel with/without Dimples. Entropy, 20(5), 379. https://doi.org/10.3390/e20050379