Turbulence through the Spyglass of Bilocal Kinetics
Abstract
:1. Introduction
2. Two-Particle Kinetics
2.1. Generalized Molecular Chaos
2.2. Two-Particle Kinetic Equation
2.3. Collisional Invariants
3. Balance Equations
4. Non-Viscous Hydrodynamics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Batchelor, G.K. The Theory of Homogeneous Turbulence; Cambridge University Press: Cambridge, UK, 1953. [Google Scholar]
- Davidson, P.A. Turbulence: An Introduction for Scientists and Engineers; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- De Kármán, T.; Howarth, L. On the Statistical Theory of Isotropic Turbulence. Proc. R. Soc. A 1938, 164, 192–215. [Google Scholar] [CrossRef] [Green Version]
- Onsager, L. Statistical hydrodynamics. Nuovo Cimento Suppl. 1949, 6, 279–287. [Google Scholar] [CrossRef]
- Eyink, G.L.; Sreenivasan, K.R. Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys. 2006, 78, 87–135. [Google Scholar] [CrossRef] [Green Version]
- Kraichnan, R.H. Structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 1959, 5, 497–543. [Google Scholar] [CrossRef]
- Kreuzer, H.J. Nonequilibrium Thermodynamics and Its Statistical Foundations; Oxford University Press: Oxford, UK, 1981. [Google Scholar]
- Liboff, R.L. Kinetic Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Chliamovitch, G.; Malaspinas, O.; Chopard, B. A Truncation Scheme for the BBGKY2 Equation. Entropy 2015, 17, 7522–7529. [Google Scholar] [CrossRef] [Green Version]
- Chliamovitch, G.; Malaspinas, O.; Chopard, B. Kinetic Theory beyond the Stosszahlansatz. Entropy 2017, 19, 381. [Google Scholar] [CrossRef]
- Sznitman, A. Equations de type de Boltzmann, spatialement homogènes. Wahrscheinlichkeitstheor. Geb. 1984, 66, 559–592. (In French) [Google Scholar] [CrossRef]
- Mischler, S.; Mouhot, C. Kac’s program in kinetic theory. Invent. Math. 2013, 193, 1–147. [Google Scholar] [CrossRef]
- Stephens, G.J.; Bialek, W. Statistical Mechanics of Letters in Words. Phys. Rev. E 2010, 81, 066119. [Google Scholar] [CrossRef] [PubMed]
- Jaynes, E.T. On the rationale of maximum entropy methods. Proc. IEEE 1982, 70, 939–952. [Google Scholar] [CrossRef]
- Sagara, K.; Tsuge, S. A bimodal Maxwellian distribution as the equilibrium solution of the two-particle regime. Phys. Fluids 1982, 25, 1970–1977. [Google Scholar] [CrossRef]
- Huang, K. Statistical Mechanics; John Wiley & Sons: New York, NY, USA, 1963. [Google Scholar]
- Harris, S. An Introduction to the Theory of the Boltzmann Equation; Holt, Rinehart, and Winston: New York, NY, USA, 1971. [Google Scholar]
- Cercignani, C. The Boltzmann Equation and Its Applications; Springer: New York, NY, USA, 1988. [Google Scholar]
- Pareschi, L.; Russo, G.; Toscani, G. Modelling and Numerics of Kinetic Dissipative Systems; Nova Science Publishers: Hauppauge, NY, USA, 2006. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chliamovitch, G.; Thorimbert, Y. Turbulence through the Spyglass of Bilocal Kinetics. Entropy 2018, 20, 539. https://doi.org/10.3390/e20070539
Chliamovitch G, Thorimbert Y. Turbulence through the Spyglass of Bilocal Kinetics. Entropy. 2018; 20(7):539. https://doi.org/10.3390/e20070539
Chicago/Turabian StyleChliamovitch, Gregor, and Yann Thorimbert. 2018. "Turbulence through the Spyglass of Bilocal Kinetics" Entropy 20, no. 7: 539. https://doi.org/10.3390/e20070539
APA StyleChliamovitch, G., & Thorimbert, Y. (2018). Turbulence through the Spyglass of Bilocal Kinetics. Entropy, 20(7), 539. https://doi.org/10.3390/e20070539