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Abstract: A Toda–chain symmetry is shown to underlie the van der Waals gas and its close cousin,
the ideal gas. Links to contact geometry are explored.
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1. Introduction

The contact geometry of the classical van der Waals gas [1] is described geometrically using
a five-dimensional contact manifoldM [2] that can be endowed with the local coordinates U (internal
energy), S (entropy), V (volume), T (temperature) and p (pressure). This description corresponds to
a choice of the fundamental equation, in the energy representation, in which U depends on the two
extensive variables S and V. One defines the corresponding momenta T = ∂U/∂S and −p = ∂U/∂V.
Then, the standard contact form onM reads [3,4]

α = dU + TdS− pdV. (1)

One can introduce Poisson brackets on the four-dimensional Poisson manifold P (a submanifold ofM)
spanned by the coordinates S, V and their conjugate variables T, −p, the nonvanishing brackets being

{S, T} = 1, {V,−p} = 1. (2)

Given now an equation of state

f (p, T, . . .) = 0, (3)

one can make the replacements T = ∂U/∂S, −p = ∂U/∂V in order to obtain

f
(
−∂U

∂V
,

∂U
∂S

, . . .
)
= 0. (4)

In Ref. [5], we have called Equation (4) a partial differential equation of state (PDE of state for short).
It plays a role analogous to that played by the Hamilton–Jacobi equation in classical mechanics [2,6,7].
With respect to the latter, however, there is one fundamental difference. While in mechanics the
Hamilton–Jacobi equation is just one equation (regardless of the number of degrees of freedom),
in thermodynamics, we have one PDE of state per degree of freedom because the defining equation of
each momentum qualifies as an equation of state.
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2. The PDEs of State of the van der Waals Gas

Let us consider one mole of particles of van der Waals gas (i.e., Avogadro’s number N of particles).
The fundamental equation in the energy representation U = U(S, V) reads [1]

U(S, V) = U0

(
V0

V − b

)2/3
exp

(
2S

3NkB

)
− a

V
, (5)

with U0, V0 certain fiducial values; setting a = 0 and b = 0, one recovers the ideal gas. The variables T
and −p, conjugate to S and V, are

T =
∂U
∂S

= U0

(
V0

V − b

)2/3
exp

(
2S

3NkB

)
2

3NkB
(6)

and

p = −∂U
∂V

=
2
3

U0 exp
(

2S
3NkB

)
V2/3

0
(V − b)5/3 −

a
V2 . (7)

Equations (6) and (7) lead to the van der Waals equation of state(
p +

a
V2

)
(V − b) = NkBT (8)

and the equipartition theorem:

U(T, V) =
3
2

NkBT − a
V

. (9)

The first PDE of state follows from Equation (8),(
∂U
∂V
− a

V2

)
(V − b) + NkB

∂U
∂S

= 0, (10)

while, from Equation (9), we obtain the second PDE of state:

U − 3
2

NkB
∂U
∂S

+
a
V

= 0. (11)

when a = 0 and b = 0, systems (10) and (11) correctly reduce to the corresponding system of PDEs for
the ideal gas, obtained in Ref. [5]. One readily verifies that integration of the systems (10) and (11) lead
back to the fundamental Equation (5) we started off with.

3. Relation to the Toda Chain

Although well studied in the literature [8–10], for the benefit of the reader, we very briefly
summarise the essentials of Toda lattices needed for our purposes here. The Toda chain is a model
for a nonharmonic lattice describing the motion of a chain of particles subject to nearest-neighbour
interactions. The statement that interactions are restricted to nearest neighbours translates into
an equation of motion for the n–th particle

mn ẍn(t) = ∇V(xn+1(t)− xn(t))−∇V(xn(t)− xn−1(t)), (12)

where xn(t) is its displacement from equilibrium, and V is a certain potential function. Toda assumes
the latter to be given by the exponential of the relative displacements:

V = exp (−(xn − xn−1)) . (13)

Although the resulting model turns out to exhibit many interesting properties, integrability being one
of them, the succinct summary just given is all we will need for our purposes.
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Returning now to our problem, a succession of changes of variables in configuration space C (the
submanifold ofM spanned by the extensive coordinates S, V) will relate the fundamental Equation (5)
for the van der Waals gas to the potential energy of the Toda chain. We define the new variables S′, V′

S′ := S, V′ := V − b, (14)

and s, v

s :=
S′

NkB
, v := ln

(
V′

V0

)
, (15)

in terms of which the fundamental Equation (5) reads

U(s, v) = U0 exp
[

2(s− v)
3

]
− a

V0ev + b
. (16)

The transformations (14) and (15) are both diffeomorphisms: they can be inverted, regardless of the
values of the van der Waals parameters a, b. However, the final change of variables

x := s− v, U0 exp
(

2y
3

)
:=

a
V0ev + b

(17)

becomes singular when a = 0. For the moment, we proceed under the assumption that a 6= 0,
so Equation (17) is invertible. Then, the fundamental Equation (16) becomes

U(x, y) = U0

[
exp

(
2x
3

)
− exp

(
2y
3

)]
= W(x)−W(y), (18)

where we have defined the new function

W(z) := U0 exp
(

2z
3

)
. (19)

The function W(z) coincides with the potential function of the Toda chain; we have already encountered
it in Ref. [5] in the context of the ideal gas. Since the latter has a = 0, which causes the change of
variables (17) to be singular, one must proceed differently in this case. Instead of Equation (17),
a nonsingular change of variables to consider for the ideal gas is

x′ := s− v, y′ := s + v. (20)

As already seen in Ref. [5], this yields a fundamental equation depending on x′, but not on y′:

Uideal(x′) = W(x′). (21)

On the other hand, from Ref. [8], we know that, in the limit of small wave amplitudes, the time average
of the momentum variable in a thermal ensemble of Toda chains is directly proportional to the product
of Boltzmann’s constant kB times the temperature T (see Equation (3.20) of Ref. [8], the right-hand side
of which is independent of the lattice site n). We conclude that, in the limit of small amplitudes, a thermal
ensemble of waves in the Toda chain behaves exactly as an ideal gas.

Returning now to the van der Waals gas in Equation (18), the new canonical momenta read

px =
∂U
∂x

=
2
3

W(x), py =
∂U
∂y

= −2
3

W(y). (22)

While the momentum px is the same as for the ideal gas, the negative sign in py can be traced back to
the reduction in energy, with respect to the ideal case, due to the van der Waals parameter a. The PDEs
of state read, in the new variables x, y,
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∂U
∂x
− 2U0

3
exp

(
2x
3

)
= 0,

∂U
∂y

+
2U0

3
exp

(
2y
3

)
= 0. (23)

Compared to Equations (10) and (11), we see that, in the new variables x, y, the PDEs of state decouple
into a system of two identical equations (up to a sign), one for each independent variable. Moreover,
the equation corresponding to the variable x equals that PDE of the ideal gas, which expresses the
equipartition theorem. Finally the contact form (1) reads, in terms of x, y and the corresponding
momenta px, py,

α = dU + pxdx + pydy. (24)

In the limit when the gas is ideal, the momentum py vanishes identically [5], and the physics is
described in terms of the three-dimensional contact submanifold N spanned by x, px and U.

4. Discussion

The physics of the classical van der Waals gas is usually described by a five-dimensional contact
manifoldM endowed with the contact form given in Equation (1). In this paper, we have identified
one particular diffeomorphism that neatly disentangles the (rather abstruse) fundamental Equation (5)
to the much more manageable form given by Equations (18) and (19). This latter form is not just easier
to work with; it is also more inspiring. Namely, the fundamental equation of the van der Waals gas
now equals the difference of two terms (one term per independent variable x, y), each one of which is
a copy of the Toda potential function [8–10].

From the point of view of contact geometry, the only difference between the van der Waals gas
and the ideal gas lies in the fact that the contact manifold describing the van der Waals gas remains
five-dimensional, instead of reducing to the three-dimensional contact submanifold N we found in
the ideal case [5]. However, as we have proved in Equation (18), the fundamental equation can be
expressed in terms of the Toda potential function in both cases.

Why the precisely Toda potential should arise in this thermodynamical context, instead of some
other potential function, is a question that arises naturally. We believe the answer is the following.
The distinguishing feature of the Toda potential is the exponential function. In thermodynamics,
the exponential function arises naturally through Boltzmann’s principle: the number of microstates
that are compatible with a given macrostate specified by the value S of the entropy is proportional
to exp(S/kB). That the latter factor is present in the fundamental Equation (5) should come as no
surprise, since the internal energy should be an extensive variable of the system.

Another intriguing feature of the above correspondence between the fundamental equation
of a gas (either ideal or van der Waals) and the Toda potential function is the following.
The small–amplitude limit considered in Ref. [8] is the limit of vanishing kinetic energy; this fact
is reflected in the vanishing (to first order of approximation) of the time average of the generalised
velocities ṡn in Ref. [8]. This limit has been called the topological limit in Ref. [11]; roughly speaking,
it amounts to cancelling the kinetic term while keeping only the potential term in the Hamiltonian.
This fact allows us to sharpen our previous correspondence, which we can now state more precisely
as follows: the classical thermodynamics of the (ideal or van der Waals) gas has a dual theory which, to first
order of approximation, coincides with the topological limit of a thermal ensemble of waves in the Toda chain.
Surprising here is the fact that, for the ideal gas, all energy is purely kinetic, and the potential energies
introduced by the van der Waals parameters a, b are almost negligible compared to the kinetic energy.
Thus, the theory of gases, where energies are completely or mostly kinetic, is mapped by this correspondence
into a dual theory in which kinetic energies are negligible. Vanishing or at least negligible kinetic energies
are strongly reminiscent of topological field theory [12]; we hope to report on this issue in the future,
as well as on its relation to Riemannian fluctuation theory [13,14].
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