Evaluating Sustainability of Regional Water Resources Based on Improved Generalized Entropy Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generalized Entropy Method
2.2. Materials
2.2.1. Evaluation System
2.2.2. Study Regions
3. Results
3.1. Random Generation of Standard Evaluation Samples and Data Preprocessing
3.2. Relative Entropy and Index Weight
3.3. WCI and Evaluation Function
3.4. Assessment the Grade of RWRS in Two Study Regions
4. Discussion
4.1. Discriminability Analysis
4.2. Rationality Analysis of Evaluation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.L.; Fu, J.; Wei, Y.M.; Jiang, S.M.; Zhou, Y.L.; Liu, L.; Wang, Y.Z.; Wu, C.G. Integrated risk assessment method of waterlog disaster in Huai River Basin of China. Nat. Hazards 2015, 75, 155–178. [Google Scholar] [CrossRef]
- Jin, J.L.; Wei, Y.M.; Zou, L.L. Forewarning of sustainable utilization of regional water resources: A model based on BP neural network and set pair analysis. Nat. Hazards 2012, 62, 115–127. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Wang, M.W.; Wang, X.; Shen, F.Q.; Jin, J.L. Land Eco-Security Assessment Based on the Multi-Dimensional Connection Cloud Model. Sustainability 2018, 10, 2096. [Google Scholar] [CrossRef]
- Pan, H.; Xu, Q. Quantitative Analysis on the Influence Factors of the Sustainable Water Resource Management Performance in Irrigation Areas: An Empirical Research from China. Sustainability 2018, 10, 264. [Google Scholar] [Green Version]
- Stevovic, S.; Nestorovic, Z.; Lutovac, M. Water management and sustainability of water resources. Water Sci. Technol. Water Supply 2018, 18, 976–983. [Google Scholar] [CrossRef]
- Chen, Y.; He, L.; Lu, H.; Li, J.; Ren, L. Planning for Regional Water System Sustainability through Water Resources Security Assessment Under Uncertainties. Water Resour. Manag. 2018, 32, 3135–3153. [Google Scholar] [CrossRef]
- Archer, D.R.; Forsythe, N.; Fowler, H.J.; Shah, S.M. Sustainability of water resources management in the Indus Basin under changing climatic and socio economic conditions. Hydrol. Earth Syst. Sci. 2010, 14, 1669–1680. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.T.; Li, Y.P.; Huang, G.H.; Liu, J. Modeling of Water Resources Allocation and Water Quality Management for Supporting Regional Sustainability under Uncertainty in an Arid Region. Water Resour. Manag. 2017, 31, 3699–3721. [Google Scholar] [CrossRef]
- Pires, A.; Morato, J.; Peixoto, H.; Botero, V.; Zuluaga, L.; Figueroa, A. Sustainability Assessment of indicators for integrated water resources management. Sci. Total Environ. 2017, 578, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Vilela de Moura Leite, F.B.; Bertolo, L.S.; Santos, R.F. Practices and perceptions on water resource sustainability in ecovillages. Water Resour. Res. 2016, 52, 6004–6017. [Google Scholar] [CrossRef]
- Yang, J.F.; Lei, K.; Khu, S.; Meng, W. Assessment of water resources carrying capacity for sustainable development based on a system dynamics model: A case study of Tieling City, China. Water Resour. Manag. 2015, 29, 885–899. [Google Scholar] [CrossRef]
- Lou, W.G.; Liu, S.Q. On assessment of sustainable development level of regionalwater resource using artificial neural networks. Syst. Sci. Comp. Stud. Agric. 2004, 20, 113–119. (In Chinese) [Google Scholar]
- Wang, H.F.; Hu, J.M.; Li, C.Y. Comprehensive evaluation for water resources carrying capacity of Huai River Basin. Yangtze River 2010, 41, 53–57. (In Chinese) [Google Scholar]
- Jin, J.L.; Ding, J.; Wei, Y.M.; Fu, Q. An interpolation evaluation model for regional water resources sustainable utilization system. J. Nat. Res. 2002, 17, 610–615. (In Chinese) [Google Scholar]
- Zhang, M.; Jin, J.L.; Zhang, L.B. Pursuit Projection Evaluation Model Based on Principle of Maximum Entropy for River Basin Sustainability Evaluation. Sci. Geogr. Sin. 2007, 27, 177–181. (In Chinese) [Google Scholar]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Pan, Z.W.; Jin, J.L.; Li, C.H.; Ning, S.W.; Zhou, R.X. A connection entropy approach to water resources vulnerability analysis in a changing environment. Entropy 2017, 19, 591. [Google Scholar] [CrossRef]
- Fang, S.B.; Jia, R.F.; Tu, W.R.; Sun, Z.L. Research on the influencing factors of comprehensive water consumption by impulse response function analysis. Water 2017, 9, 18. [Google Scholar] [CrossRef]
- Peterson, H.M.; Nieber, J.L.; Kanivetsky, R.; Shmagin, B. Water Resources Sustainability Indicator: Application of the Watershed Characteristics Approach. Water Resour. Manag. 2013, 27, 1221–1234. [Google Scholar] [CrossRef]
- Zhou, R.X.; Pan, Z.W.; Jin, J.L.; Li, C.H.; Ning, S.W. Forewarning model of regional water resources carrying capacity based on combination weights and entropy principles. Entropy 2017, 19, 574. [Google Scholar] [CrossRef]
- Ulanowicz, R.E. Quantitative methods for ecological network analysis. Comput. Biol. Chem. 2004, 28, 321–339. [Google Scholar] [CrossRef] [PubMed]
- Cabezas, H.; Pawlowski, C.W.; Mayer, A.L.; Hoagland, N.T. Sustainable systems theory: Ecological and other aspects. J. Clean. Prod. 2005, 13, 455–467. [Google Scholar] [CrossRef]
- Eason, T.; Cabezas, H. Evaluating the sustainability of a regional system using fisher information in the San Luis basin, Colorado. J. Environ. Manag. 2012, 94, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Harte, J.; Zillio, T.; Conlisk, E.; Smith, A.B. Maximum entropy and the state-variable approach to macroecology. Ecology 2008, 89, 2700–2711. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.L.; Donovan, R.P.; Pawlowski, C.W. Information and entropy theory for the sustainability of coupled human and natural systems. Ecol. Soc. 2014, 19. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Feng, P.; Jin, J.L.; Liu, L. Water resources carrying capacity evaluation and diagnosis based on set pair analysis and improved the entropy weight method. Entropy 2018, 20, 359. [Google Scholar] [CrossRef]
- Li, F.; Chen, Y.; Li, W. The application of Set Pair Analysis based on entropy weight to evaluation of sustainable water resources utilization: A case study in the three sources of Tarim River. J. Glaciol. Geocryol. 2010, 32, 723–730. [Google Scholar]
- Sun, S.; Wang, Y.; Liu, J. Sustainability assessment of regional water resources under the DPSIR framework. J. Hydrol. 2016, 532, 140–148. [Google Scholar] [CrossRef]
- Sandoval-Solis, S.; McKinney, D.C.; Loucks, D.P. Sustainability Index for Water Resources Planning and Management. J. Water Res. Plan. Manag. 2011, 137, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Hernandez-Bedolla, J.; Solera, A.; Paredes-Arquiola, J.; Pedro-Monzonis, M.; Andreu, J.; Tatiana Sanchez-Quispe, S. The Assessment of Sustainability Indexes and Climate Change Impacts on Integrated Water Resource Management. Water 2017, 9, 213. [Google Scholar] [CrossRef]
- Jin, J.L.; Wei, Y.M.; Zou, L.L.; Liu, L.; Fu, J. Risk evaluation of China’s natural disaster systems: An approach based on triangular fuzzy numbers and stochastic simulation. Nat. Hazards 2012, 62, 129–139. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, J.L.; Zhu, J.Z.; Han, D.H. Water resources risk assessment model based on the subjective and objective combination weighting methods. Water Resour. Manag. 2016, 30, 3027–3042. [Google Scholar] [CrossRef]
Evaluation Index | Water Resources Sustainability Grade Criterion | |||
---|---|---|---|---|
Grade 1 | Grade 2 | Grade 3 | Grade 4 | |
X1 rate of irrigation (%) | ≥60 | 45 | 35 | ≤20 |
X2 rate of water resources utilization (%) | ≥60 | 45 | 35 | ≤20 |
X3 rate of water resources development (%) | ≥70 | 55 | 45 | ≤30 |
X4 modulus of water demand (104m3/(km2)) | ≥100 | 80 | 60 | ≤40 |
X5 modulus of water supply (104m3/(km2)) | ≥100 | 80 | 60 | ≤40 |
X6 water supply per capita(104m3/person) | ≤1000 | 1750 | 2250 | ≥3000 |
X7 rate of ecological water consumption (%) | ≤2 | 3 | 4 | ≥5 |
Regions | Sub regions | X1 | X2 | X3 | X4 | X5 | X6 | X7 |
---|---|---|---|---|---|---|---|---|
Hanzhong Basin [13] | R1 Mianxian | 39.1 | 22.5 | 43.5 | 95.5 | 46.0 | 1006.6 | 2 |
R2 Hanzhongxian | 37.6 | 26.7 | 50.3 | 98.4 | 50.7 | 885.2 | 2 | |
R3 Nanzheng | 40.3 | 25.6 | 49.5 | 106.8 | 53.9 | 1225.8 | 2 | |
R4 Chenggu | 31.3 | 25.8 | 48.4 | 76.5 | 36.7 | 1102.6 | 2 | |
R5 Yangxian | 32.7 | 28.9 | 53.0 | 95.2 | 37.7 | 1032.7 | 2 | |
R6 Pingba | 35.8 | 25.7 | 48.7 | 92.7 | 44.6 | 1041.4 | 2 | |
Huai River [14,15] | R7 Upstream of Hongze Lake | 55.3 | 51.1 | 42.9 | 13.5 | 12.9 | 244.1 | 1 |
R8 Downstream of Huai River | 90.5 | 71.5 | 94.2 | 29.2 | 43.3 | 495.8 | 1 | |
R9 Yishusi River | 69.1 | 72.1 | 68.4 | 20.0 | 26.7 | 319.3 | 1 | |
R10 All of Huai River basin | 63.4 | 59.3 | 55.8 | 17.2 | 23.7 | 296.8 | 1 | |
R11 Shandong Peninsula | 67.2 | 59.3 | 53.7 | 12.4 | 15.4 | 222.6 | 1 | |
R12 District of Huai River | 64.1 | 59.3 | 55.5 | 16.3 | 22.2 | 283.8 | 1 |
No. | X1 | X2 | X3 | X4 | X5 | X6 | X7 | Standard Grade | Calculated Grade | Error Grade |
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 86.3 | 86.1 | 81.2 | 109.4 | 155.9 | 565.8 | 0.3 | 1 | 0.96 | 0.041 |
2 | 89.3 | 64.2 | 81.3 | 308.8 | 143.3 | 978.4 | 1.4 | 1 | 0.99 | 0.008 |
3 | 65.6 | 79.3 | 89.4 | 240.7 | 128.8 | 726.5 | 0.2 | 1 | 1.01 | –0.007 |
4 | 85.0 | 99.8 | 85.2 | 285.4 | 196.0 | 483.1 | 1.3 | 1 | 0.96 | 0.042 |
5 | 84.3 | 66.4 | 84.1 | 238.7 | 114.2 | 318.3 | 0.3 | 1 | 0.98 | 0.021 |
6 | 60.4 | 72.6 | 70.9 | 177.0 | 137.6 | 596.7 | 0.8 | 1 | 1.07 | –0.074 |
7 | 64.0 | 79.9 | 98.6 | 346.4 | 126.5 | 720.2 | 1.7 | 1 | 0.98 | 0.024 |
8 | 96.7 | 60.9 | 96.6 | 168.0 | 177.7 | 88.7 | 0.7 | 1 | 1.03 | –0.026 |
9 | 86.8 | 86.3 | 90.6 | 330.4 | 102.0 | 154.9 | 1.1 | 1 | 1.00 | 0.001 |
10 | 99.2 | 91.6 | 80.8 | 310.3 | 135.6 | 947.4 | 1.7 | 1 | 0.96 | 0.036 |
… | … | … | … | … | … | … | … | … | … | … |
30 | 39.5 | 44.6 | 46.5 | 60.2 | 70.6 | 1765.5 | 3.3 | 3 | 2.88 | 0.122 |
31 | 32.2 | 24.6 | 35.5 | 43.2 | 53.6 | 2338.8 | 4.4 | 4 | 3.94 | 0.062 |
32 | 31.6 | 32.3 | 42.2 | 44.2 | 55.1 | 2971.9 | 4.7 | 4 | 3.71 | 0.290 |
33 | 22.3 | 22.9 | 34.8 | 54.3 | 44.6 | 2765.9 | 4.6 | 4 | 4.26 | –0.257 |
34 | 21.7 | 33.8 | 34.9 | 41.3 | 55.3 | 2386.9 | 4.7 | 4 | 3.98 | 0.019 |
35 | 25.8 | 20.3 | 37.4 | 58.4 | 55.9 | 2786.8 | 4.8 | 4 | 4.03 | –0.034 |
36 | 28.4 | 20.3 | 33.0 | 52.4 | 54.5 | 2454.9 | 4.3 | 4 | 4.08 | –0.077 |
37 | 33.1 | 20.0 | 34.1 | 48.1 | 41.0 | 2615.4 | 4.2 | 4 | 4.17 | –0.167 |
38 | 24.7 | 21.7 | 41.7 | 57.9 | 47.6 | 2651.4 | 5.0 | 4 | 4.05 | –0.048 |
39 | 26.8 | 26.8 | 34.2 | 52.8 | 52.7 | 2911.0 | 4.8 | 4 | 4.02 | –0.023 |
40 | 33.5 | 29.8 | 37.5 | 42.6 | 46.7 | 2428.6 | 4.7 | 4 | 3.87 | 0.126 |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | |
---|---|---|---|---|---|---|---|
REV | 0.179 | 0.182 | 0.145 | 0.309 | 0.175 | 0.522 | 0.511 |
1-hj | 0.821 | 0.818 | 0.855 | 0.691 | 0.825 | 0.478 | 0.489 |
wj | 0.165 | 0.164 | 0.172 | 0.139 | 0.166 | 0.096 | 0.098 |
Sub Regions | ANN [13] | FCE [14] | SP [15] | This Work |
---|---|---|---|---|
R1 Mianxian | 2.56 | - | 2.51 | 3.00 |
R2 Hanzhongxian | 2.69 | - | 2.52 | 2.76 |
R3 Nanzheng | 2.73 | - | 2.51 | 2.78 |
R4 Chenggu | 2.37 | - | 2.52 | 3.23 |
R5 Yangxian | 2.57 | - | 2.58 | 2.95 |
R6 Pingba | 2.56 | - | 2.50 | 2.97 |
R7 Upstream of Hongze Lake | - | 2.29 | 2.01 | 1.84 |
R8 Downstream of Huai River | - | 2.10 | 1.95 | 1.31 |
R9 YishusiRiver | - | 2.36 | 1.99 | 1.49 |
R10 All of Huai River basin | - | 2.29 | 2.00 | 1.68 |
R11 Shandong Peninsula | - | 2.49 | 2.00 | 1.51 |
R12 District of Huai River | - | 2.35 | 2.00 | 1.66 |
Variance | 0.126 | 0.128 | 0.279 | 0.734 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhou, J.; Zhou, R. Evaluating Sustainability of Regional Water Resources Based on Improved Generalized Entropy Method. Entropy 2018, 20, 715. https://doi.org/10.3390/e20090715
Zhang M, Zhou J, Zhou R. Evaluating Sustainability of Regional Water Resources Based on Improved Generalized Entropy Method. Entropy. 2018; 20(9):715. https://doi.org/10.3390/e20090715
Chicago/Turabian StyleZhang, Ming, Jinghong Zhou, and Runjuan Zhou. 2018. "Evaluating Sustainability of Regional Water Resources Based on Improved Generalized Entropy Method" Entropy 20, no. 9: 715. https://doi.org/10.3390/e20090715
APA StyleZhang, M., Zhou, J., & Zhou, R. (2018). Evaluating Sustainability of Regional Water Resources Based on Improved Generalized Entropy Method. Entropy, 20(9), 715. https://doi.org/10.3390/e20090715