Vector Bundle Model of Complex Electromagnetic Space and Change Detection
Abstract
:1. Introduction
2. Vector Bundle Model
2.1. The Signal Model in CEMS
2.2. The Vector Bundle Model of CEMS
3. Change Detection
3.1. Framework of Detection Method
- Model the initial CEMS as section .
- Obtain the electromagnetic signals and estimate the probability distributions of them.
- According to the estimated distribution, get the estimated section .
- Judge the difference between and .
3.2. Distance on Statistical Manifold
3.3. Metric of Section
3.4. The Section of CEMS in Real Work
4. Simulation
4.1. Simulation Scene
4.2. Passive Detection
4.3. Active Detection
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. The proof of Theorem 1
Appendix B. The Derivation Process of Equations (21) and (22)
References
- Benren, T. An ECCM model and the technical development trends to the demands of the future EW combat. IEEE Aerosp. Electron. Syst. Mag. 1994, 9, 12–16. [Google Scholar] [CrossRef]
- Liu, C.; Wu, R.; He, Z.; Zhao, X.; Li, H.; Wang, P. Modeling and analyzing interference signal in a complex electromagnetic environment. Eurasip J. Wirel. Commun. Netw. 2016, 2016, 1. [Google Scholar] [CrossRef]
- Liu, C.; Wu, R.; He, Z.; Zhao, X.; Li, H.; Wang, P. Modeling and Analyzing Electromagnetic Interference Signal in Complex Battlefield Environments. In Proceedings of the 2015 International Conference on Communications, Signal Processing, and Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 351–361. [Google Scholar]
- Cai, X.F.; Song, J.S. Analysis of complexity in battlefield electromagnetic environment. In Proceedings of the IEEE Conference on Industrial Electronics and Applications, Xi’an, China, 25–27 May 2009; pp. 2440–2442. [Google Scholar]
- Amari, S.I. Information geometry on hierarchy of probability distributions. IEEE Trans. Inf. Theory 2001, 47, 1701–1711. [Google Scholar] [CrossRef] [Green Version]
- Bott, R. Homogeneous Vector Bundles. Ann. Math. 1957, 66, 203–248. [Google Scholar] [CrossRef]
- Zheng, J.; Su, T.; Liu, H.; Liao, G.; Liu, Z.; Liu, Q.H. Radar High-Speed Target Detection Based on the Frequency-Domain Deramp-Keystone Transform. IEEE J. Sel. Topi. Appl. Earth Obs. Remote Sens. 2016, 9, 285–294. [Google Scholar] [CrossRef]
- De Maio, A.; Orlando, D. Adaptive Radar Detection of a Subspace Signal Embedded in Subspace Structured Plus Gaussian Interference Via Invariance. IEEE Trans. Signal Process. 2016, 64, 2156–2167. [Google Scholar] [CrossRef]
- Bell, K.L.; Baker, C.J.; Smith, G.E.; Johnson, J.T.; Rangaswamy, M. Cognitive Radar Framework for Target Detection and Tracking. IEEE J. Sel. Top. Signal Process. 2015, 9, 1427–1439. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Himed, B. Multistatic Detection for Passive Radar With Direct-Path Interference. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 915–925. [Google Scholar] [CrossRef]
- Daniel, L.; Hristov, S.; Lyu, X.; Stove, A.G.; Cherniakov, M.; Gashinova, M. Design and Validation of a Passive Radar Concept for Ship Detection Using Communication Satellite Signals. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 3115–3134. [Google Scholar] [CrossRef]
- Tan, B.; Woodbridge, K.; Chetty, K. A wireless passive radar system for real-time through-wall movement detection. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2596–2603. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Himed, B. On the performance of the cross-correlation detector for passive radar applications. Signal Process. 2015, 113, 32–37. [Google Scholar] [CrossRef]
- Rao, C.R. Information and the Accuracy Attainable in the Estimation of Statistical Parameters. In Breakthroughs in Statistics: Foundations and Basic Theory; Springer: New York, NY, USA, 1992; pp. 235–247. [Google Scholar]
- Čencov, N.N. Statistical Decision Rules and Optimal Inference; American Mathematical Society: Providence, RI, USA, 1982. [Google Scholar]
- Efron, B. Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency). Ann. Stat. 1975, 3, 1189–1242. [Google Scholar] [CrossRef]
- Efron, B. The Geometry of Exponential Families. Ann. Stat. 1978, 6, 362–376. [Google Scholar] [CrossRef]
- Amari, S.I.; Nagaoka, H. Methods of Information Geometry; American Mathematical Society: Providence, RI, USA, 2007; p. 206. [Google Scholar]
- Amari, S.I. Differential Geometry of Curved Exponential Families-Curvatures and Information Loss. Ann. Stat. 1982, 10, 357–385. [Google Scholar] [CrossRef]
- Cheng, Y.; Hua, X.; Wang, H.; Qin, Y.; Li, X. The Geometry of Signal Detection with Applications to Radar Signal Processing. Entropy 2016, 18, 381. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, X.; Caelli, T.; Moran, B. Tracking and Localizing Moving Targets in the Presence of Phase Measurement Ambiguities. IEEE Trans. Signal Process. 2011, 59, 3514–3525. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, X.; Caelli, T.; Li, X.; Moran, B. Optimal Nonlinear Estimation for Localization of Wireless Sensor Networks. IEEE Trans. Signal Process. 2011, 59, 5674–5685. [Google Scholar] [CrossRef]
- Srivastava, A.; Klassen, E. Bayesian and Geometric Subspace Tracking. Adv. Appl. Probab. 2004, 36, 43–56. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, X.; Caelli, T.; Li, X.; Moran, B. On Information Resolution of Radar Systems. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 3084–3102. [Google Scholar] [CrossRef]
- Barbaresco, F. Innovative tools for radar signal processing Based on Cartan’s geometry of SPD matrices and Information Geometry. In Proceedings of the Radar Conference, Rome, Italy, 26–30 May 2008; pp. 1–6. [Google Scholar]
- Barbaresco, F. Robust statistical Radar Processing in Fréchet metric space: OS-HDR-CFAR and OS-STAP Processing in Siegel homogeneous bounded domains. In Proceedings of the International Radar Symposium, Leipzig, Germany, 7–9 September 2011; pp. 639–644. [Google Scholar]
- Hua, X.; Cheng, Y.; Wang, H.; Qin, Y. Robust Covariance Estimators Based on Information Divergences and Riemannian Manifold. Entropy 2018, 20, 219. [Google Scholar] [CrossRef]
- Hua, X.; Cheng, Y.; Wang, H.; Qin, Y.; Li, Y.; Zhang, W. Matrix CFAR detectors based on symmetrized Kullback-Leibler and total Kullback-Leibler divergences. Digit. Signal Process. 2017, 69, 106–116. [Google Scholar] [CrossRef]
- Hua, X.; Cheng, Y.; Wang, H.; Qin, Y. Information Geometry for Covariance Estimation in Heterogeneous Clutter with Total Bregman Divergence. Entropy 2018, 20, 258. [Google Scholar] [CrossRef]
- Hua, X.; Fan, H.; Cheng, Y.; Wang, H.; Qin, Y. Information Geometry for Radar Target Detection with Total Jensen-Bregman Divergence. Entropy 2018, 20, 256. [Google Scholar] [CrossRef]
- Chern, S.S.; Chen, W.H.; Lam, K.S. Lectures on Differential Geometry; World Scientific: River Edge, NJ, USA, 2009; p. i. [Google Scholar]
- Amari, S.I. Information Geometry and Its Applications, 1st ed.; Springer Publishing Company, Incorporated: College Park, MD, USA, 2016. [Google Scholar]
- Menendez, M.L.; Morales, D.; Pardo, L.; Salicru, M. Statistical tests based on geodesic distances. Appl. Math. Lett. 1995, 8, 65–69. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, X.; Morelande, M.; Moran, B. Information geometry of target tracking sensor networks. Inf. Fusion 2013, 14, 311–326. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Yosida, K. Functional Analysis; Springer-Verlag: Berlin/Heidelberg, Germany, 1978; pp. 528–529. [Google Scholar]
- Schmitt, W.M. Functional analysis. Zahnarzt 1977, 21, 251–259. [Google Scholar] [PubMed]
- Urkowitz, H. Energy detection of unknown deterministic signals. Proc. IEEE 1967, 55, 523–531. [Google Scholar] [CrossRef]
- Wasserstein, R. Monte Carlo: Concepts, Algorithms, and Applications. Technometrics 1996, 39, 338. [Google Scholar] [CrossRef]
- Turin, G.L. An introduction to matched filters. IEEE Trans. Inf. Theory 1960, 6, 311–329. [Google Scholar] [CrossRef]
- Miller, I.; Freund, J.E. Probability and Statistics for Engineers; Prentice Hall: Englewood Cliffs, NJ, USA, 1990; pp. 7–108. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Cheng, Y.; Hua, X.; Wang, H. Vector Bundle Model of Complex Electromagnetic Space and Change Detection. Entropy 2019, 21, 10. https://doi.org/10.3390/e21010010
Wu H, Cheng Y, Hua X, Wang H. Vector Bundle Model of Complex Electromagnetic Space and Change Detection. Entropy. 2019; 21(1):10. https://doi.org/10.3390/e21010010
Chicago/Turabian StyleWu, Hao, Yongqiang Cheng, Xiaoqiang Hua, and Hongqiang Wang. 2019. "Vector Bundle Model of Complex Electromagnetic Space and Change Detection" Entropy 21, no. 1: 10. https://doi.org/10.3390/e21010010
APA StyleWu, H., Cheng, Y., Hua, X., & Wang, H. (2019). Vector Bundle Model of Complex Electromagnetic Space and Change Detection. Entropy, 21(1), 10. https://doi.org/10.3390/e21010010