
entropy

Article

Uncertainty Assessment of Hyperspectral Image
Classification: Deep Learning vs. Random Forest

Majid Shadman Roodposhti 1,*, Jagannath Aryal 1 , Arko Lucieer 1 and Brett A. Bryan 2

1 Discipline of Geography and Spatial Sciences, School of Technology, Environments and Design, University
of Tasmania, Hobart 7018, Australia; jagannath.aryal@utas.edu.au (J.A.); arko.lucieer@utas.edu.au (A.L.)

2 Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood
3125, Australia; b.bryan@deakin.edu.au

* Correspondence: majid.shadman@utas.edu.au

Received: 16 December 2018; Accepted: 10 January 2019; Published: 16 January 2019
����������
�������

Abstract: Uncertainty assessment techniques have been extensively applied as an estimate of accuracy
to compensate for weaknesses with traditional approaches. Traditional approaches to mapping
accuracy assessment have been based on a confusion matrix, and hence are not only dependent on
the availability of test data but also incapable of capturing the spatial variation in classification error.
Here, we apply and compare two uncertainty assessment techniques that do not rely on test data
availability and enable the spatial characterisation of classification accuracy before the validation
phase, promoting the assessment of error propagation within the classified imagery products. We
compared the performance of emerging deep neural network (DNN) with the popular random forest
(RF) technique. Uncertainty assessment was implemented by calculating the Shannon entropy of
class probabilities predicted by DNN and RF for every pixel. The classification uncertainties of DNN
and RF were quantified for two different hyperspectral image datasets—Salinas and Indian Pines.
We then compared the uncertainty against the classification accuracy of the techniques represented
by a modified root mean square error (RMSE). The results indicate that considering modified RMSE
values for various sample sizes of both datasets, the derived entropy based on the DNN algorithm is
a better estimate of classification accuracy and hence provides a superior uncertainty estimate at the
pixel level.
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1. Introduction

Assessing and mapping the state of the Earth’s surface is a key requirement for many global
researches in the context of natural resources management [1], natural hazards modelling [2,3], urban
planning [4,5] etc., where all these mapping products need to be validated [6,7]. With the initiation of
more advanced digital satellite remote sensing techniques, accuracy assessment of emerging methods
has received major interest [6]. The conventional way to report classification and/or prediction of map
accuracy is through an error matrix estimated from a test dataset, which is independent of the training
process [8]. Accuracy metrics such as Cohen’s Kappa coefficient [9], overall accuracy (OA) [7] and
class-specific measures such as user’s and producer’s accuracies are usually estimated based on an
error matrix [10]. However, it is not clear how these accuracy metrics relate to per-pixel accuracy [11]
as these types of accuracy metrics are incapable of understanding the spatial variation of classification
accuracies despite its importance in modelling spatial phenomena [12,13].

Different approaches have been proposed to characterise the quality of classified maps at the
local scale [8]. One method is to apply empirical models to link classification accuracy (dependent
variable) to different independent (predictor) variables, such as land cover class [14,15]. As the
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dependent variable is dichotomous (i.e., classified correctly or not), logistic regression is the most
frequently applied algorithm for this purpose. Another approach to characterizing map quality at the
local scale involves spatial interpolation of classification accuracy of the test dataset [16]. The most
recent approach is introduced by Khatami et al. [8], built on Stehman [17]. Here, a per-pixel accuracy
prediction is implemented by applying different accuracy prediction methods based on four factors,
including predictive domain (spatial or spectral), interpolation function (constant, linear, Gaussian,
and logistic), incorporation of class information (interpolating each class separately versus grouping
them together), and sample size. The fourth and most popular approach [8] is to use the probabilities
of class memberships or prediction strength (i.e., tree votes in the random forest (RF) or probabilities
in neural networks) as indicators of classification uncertainty. The idea is that for a certain pixel,
the greater the probability of class membership for a given labelled class, the lower the uncertainty
associated with that class and analytical functions can be used to quantify the uncertainty measures
instead of using only the membership value of the most probable class. Examples of these functions
include ignorance uncertainty [18], Shannon entropy [19,20], and α-quadratic entropy and maximum
probability [21], where entropy summarizes the information from membership values of all classes.

Uncertainty assessment techniques can provide an uncertainty map as a spatial approximator
of classification accuracy, which can be used to locate and segregate unreliable pixel-level class
allocations from reliable ones. In addition, this approach is independent of test data availability.
This uncertainty assessment may be implemented using two types of classification approaches:
unsupervised schemes using no training dataset [22,23], and supervised schemes [19,24–26]. Although
unsupervised approaches can be applied regardless of the training dataset availability (i.e., by applying
unsupervised algorithms), their relevant uncertainty assessment results may be misleading due to
incorrect classification of pixels. In terms of supervised methods, various algorithms have been
applied to evaluate the uncertainty of correct/incorrect classified pixels including RF as one of the
most popular algorithms. RF [27,28] has a rich and successful history in machine learning including
applications in hyperspectral image classification [29–33] and uncertainty assessment [34–36]. It
has been demonstrated to outperform most state-of-the-art learners when it comes to handling
high-dimensional data [37], such as hyperspectral image datasets. Nonetheless, we assumed that
considering high-dimensional hyperspectral data, newly emerging deep learning algorithms may
be efficient for uncertainty assessment, but they have been rarely applied for this purpose. On the
other hand, the deep learning algorithms have also been found to be more accurate than traditional
algorithms, especially for image classification [38–40]. Further, with multiple layers of processing, they
may extract more abstract, invariant features of data, which is considered beneficial for uncertainty
assessment studies.

Uncertainty assessment techniques have been repeatedly applied to assess the quality of
hyperspectral image classification [23,41,42]. While deep learning has attracted broad attention as a
classification algorithm [43–46], it has not been applied to uncertainty assessment of hyperspectral
image classification nor compared to other methods. Thus, here we aim to apply deep neural network
(DNN) for uncertainty assessment of correct/incorrect classification for every pixel and then compare
it with RF. Due to its high performance in uncertainty assessment studies, the RF algorithm provides an
appropriate benchmark for comparing the performance of uncertainty assessment derived from deep
learning. This paper aims to explore, quantify and compare the capability of DNN and RF algorithms
for uncertainty assessment of hyperspectral imagery using two different hyperspectral datasets. To this
end, by applying DNN in this study, we compare the uncertainty assessment of hyperspectral image
classification using probability values derived from deep learning neurons and popularity votes of RF
trees combined with uncertainty values using Shannon entropy.
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2. Methods and Dataset

2.1. Method

This study followed two major steps (Figure 1). In step 1, the whole dataset was randomly divided
into training (50%) and test data (50%). For each dataset, the hyper-parameters of the optimum DNN
and RF algorithms (Table 1) were configured using a 5-fold cross-validation of the training data in
the pre-processing stage. This was done only for hyper-parameters with a significant effect on the
datasets and the remaining hyper-parameters were kept at the default values. Although test data
were always a constant sub-set of the whole dataset, the training procedure was done using different
portions of training sample (i.e., 10%, 20%, . . . , 100%) to assess the effects of training sample size in
uncertainty assessment. Thus, the training sample itself was sliced into 10 equal random portions,
and then applied for training the tuned algorithms. The algorithms were then trained 10 times each,
from 10% to 100%, every time by a 10% increase of training samples, i.e., x = {10%, 20%, . . . , 100%},
where x is a set of applied training samples. Here, the test dataset was always the same. In addition, to
achieve more consistent results and to account for sensitivity analysis, each algorithm was applied in
five consecutive runs, where the sampling strategy was the same but the locations of initial sampling
seeds (i.e., random training (50%) and test data (50%)) were modified by a different random function.
As the hyper-parameters of the DNN and RF algorithms were optimised using a validation sample,
they were not modified for the other sample sizes. Here, for both DNN and RF, the probability of
belonging to each possible class was estimated for every pixel and used to compute the uncertainty of
classification for the pixel using Shannon entropy [20], where entropy represents uncertainty in this
research [8].

Table 1. The optimised hyper-parameters of DNN and RF using 5-fold cross-validation data for
uncertainty assessment.

Algorithm Hyper-Parameter Description Salinas Indian Pines

DNN hidden Hidden layer sizes (100, 100) (200, 200)

DNN epoch How many times the dataset
should be iterated (streamed) 300 300

DNN activation Activation function for
non-linear transformation. “Maxout” “Maxout”

DNN stopping metric A metric that is used as a
stopping criterion “RMSE” “RMSE”

DNN l1 Only allows strong values to
survives 0.0001 0.0001

DNN l2 Prevents any single weight
from getting too big 0.001 0.001

DNN epsilon Prevents getting stuck in local
optima 1 × e−10 1 × e−10

RF ntree Number of trees to grow 100 100

RF mtry Number of variables available
for splitting at each tree node 14 15

* For deep learning, this optimisation is done using “Grid Search” by h20.grid() function, and for random forest it
has been done manually for the number of trees while tunerf() function is used to optimise mtry.

In step 2, for a better demonstration of classification performance considering the low and high
uncertainty values, we mapped the uncertainty outputs along with the mode of correct/incorrect
classified test pixels for all applied training samples (i.e., from 10% to 100%). Whenever an optimised
algorithm is applied in the context of uncertainty assessment, the uncertainty value for a correctly
classified pixel should be minimised (i.e., “0”) while it should be maximised (i.e., “1”) for misclassified
pixels. Thus, we then calculated root mean square error (RMSE) of every prediction implemented by
each algorithm [20] to quantify the degree of deviation from this optimum state. For this purpose,
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entropy values were normalised between 0 and 1. This whole process was implemented in R [47] using
three major packages namely “H2O” [48], “randomforest” [49], and “entropy” [50].
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Figure 1. Flowchart of methodology implementation labelled with the main R packages utilized.

2.1.1. Supervised Uncertainty Assessment Approach

The most popular and accurate way of uncertainty assessment is based on a supervised scheme
using a machine learning algorithm. Here, we implemented a model that can assess the uncertainty
values of a classified hyperspectral image containing various class labels. We first collected ground
truth data labelled with their class categories such as corn, grass, hay, oats, and soybean. During
training, the algorithm was provided with a training example and produced a response in the form
of a vector of probabilities, one for each class. Then, the best-case scenarios would be the highest
probability score for one class and the lowest possible probability score for the other remaining classes.
The least desirable case, on the other hand, would be equal probability scores for all the existing class
labels (Figure 2). We then computed the uncertainty of probability scores for all potential class labels
for a pixel by using entropy. An ideal algorithm, for uncertainty assessment, is not only capable of
classifying input data with the highest possible accuracy but also capable of producing class labels
with low uncertainty for correctly classified pixels and vice versa.
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In this study, the uncertainty derived from deep learning neurons and popularity votes of RF trees
was quantified using Shannon entropy [51]. Entropy summarizes the information from membership
values of all classes using Equation (1):

ex = −
h

∑
i=1

Pi log2 Pi (1)

where Pi is the probability of class membership for h class labels. Further, the selection of the logarithm
base is unimportant, as it only affects the units of entropy [25].

2.1.2. Deep Neural Network (DNN)

The deep learning algorithm applied in this research is based on R studio deep neural network
(DNN) from H2O package [48], which is a feed-forward artificial neural network, trained with
stochastic gradient descent using backpropagation. Here, multiple layers of hidden units were applied
between the inputs and the outputs of the model [52–54].

Each hidden unit, j, typically uses the logistic function β the closely related hyperbolic tangent is
also often used and any function with a well-behaved derivative can be used) to map its outputsing yj

total input from xj:

yi = β
(
xj
)
=

1
1 + e−xj

(2)

For multiclass classification, such as our problem of hyperspectral image classification, output
unit j converts its total input, xj, into a class probability, Pj, by using a normalised exponential function
named “softmax”:

Pj =
exp

(
Xj
)

∑h exp(Xh)
(3)

where h is an index over all classes. DNNs are discriminatively trained by backpropagating derivatives
of a cost function that measure the discrepancy between the target outputs and the actual outputs
produced for each training case [55]. When using the softmax output function, the natural cost function
C is the cross-entropy between the target probabilities d and the softmax outputs, P:

C = −∑
i

dj ln Pj (4)

where the target probabilities, typically taking values of one or zero, are the supervised information
provided to train the DNN algorithm.
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2.1.3. Random Forests as a Benchmark

To measure and quantify DNN performance for uncertainty assessment of hyperspectral
classification, we implemented the RF algorithm applied to the same datasets [49]. The RF algorithm
provides an appropriate benchmark for assessing the performance of the DNN scheme because of its
high performance found in hyperspectral data classification [30–32,56,57]. RF is also computationally
efficient and suitable for training datasets with many variables and can solve multiclass classification
problems [58]. We compared the uncertainty assessment results of DNN and RF using two
different datasets.

2.1.4. RMSE of Uncertainty Assessment

RMSE is the standard deviation of the residuals (prediction errors). Here, RMSE demonstrates
standard deviation of prediction for correct and erroneous estimates of test dataset. In other words, it
explains how concentrated the data are around the line of best fit considering entropy of correct and
erroneous estimates:

RMSE =

√
n

∑
i=1

(e − o)2/n (5)

where e represents the estimated entropy value from “0” (minimum entropy value) to “1” (maximum
entropy value) after normalisation; o represents classification result for the observed values, which is
“1” for erroneous predictions and “0” for correct answers. Here, RMSE is applied as a goodness of fit for
uncertainty assessment results. Therefore, the best-case scenarios would be those classification cases
where the algorithm is at both the maximum confidence and accuracy (e = 0 and o = 0) or minimum
confidence and minimum accuracy (e = 1 and o = 1). The worst-case scenarios, however, occurs when
the algorithm is at minimum confidence and maximum accuracy (e = 1 and o = 0) or vice versa (e = 0
and o = 1). Table 2 demonstrates the intuitions behind the proposed RMSE.

Table 2. The intuition behind the proposed RMSE.

Best-Case Scenarios e o RMSE Worst-Case Scenarios e o RMSE

Positive 0 0 0 Positive 0 1 1
Negative 1 1 0 Negative 1 0 1

* All other instances fall within intermediate states.

2.2. Datasets

In this study, two widely used hyperspectral datasets including the Salinas [59–61] and Indian
Pines [59,62,63] image datasets were used (Table 3) and divided into validation, train and test samples
(Figure 3). Both datasets contain noisy bands due to dense water vapour, atmospheric effects, and
sensor noise. These datasets are all available at http://www.ehu.eus/ccwintco/index.php?title%20=
%20Hyperspectral_Remote_Sensing_Scenes.

Table 3. The major attributes of the hyperspectral datasets.

Dataset Sensor Total Bands Excluded Bands Number of Classes Dimension Resolution

Salinas AVIRIS 224 20 16 512 × 217 20 metre
Indian Pines AVIRIS 224 24 16 145 × 145 20 metre

The Salinas image consists of 224 bands and each band contains 512 × 217 pixels covering 16
classes comprising different sub-classes of vegetables (nine sub-classes), bare soils (three sub-classes)
and vineyard (four sub-classes). It was recorded by AVIRIS sensor over the South of the city of
Greenfield in the Salinas Valley, CA, USA on October 9, 1998. This dataset is characterised by a spatial
resolution of 3.7 m, and the spectral information ranges from 0.4 to 2.5 µm. As shown in Figure 3, the

http://www.ehu.eus/ccwintco/index.php?title%20=%20Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title%20=%20Hyperspectral_Remote_Sensing_Scenes
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ground truth is available for nearly two-thirds of the entire scene. We used 204 bands, after removing
bands of the water absorption features.
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Figure 3. Ground truth data of two datasets including the Salinas (a) and the Indian Pines (b).
The bottom images represent the location of the train and test data for the Salinas (c) and the Indian
Pines (d).

The Indian Pines dataset is also an AVIRIS image collected over the Indian Pines test site location,
Western Tippecanoe County, Indiana, USA on June 12, 1992. This dataset consists of 220 spectral bands
in the same wavelength range as the Salinas dataset; however, four spectral bands are removed as
they contain no data. This scene is a subset of a larger scene and it contains 145 × 145 pixels covering
16 ground truth classes (Figure 3). The ground-truthing campaign consists of approximately 10,000
samples which are distributed over the area of 2.5 km by 2.5 km. The ground truth data were collected
by walking through the fields in the image. Plant species, as well as some more characteristics, were
recorded along with photos of sites in the field. In the present research experiment, 20 spectral bands
were removed because of the water absorption phenomena and noise.

3. Results

3.1. Salinas Simulation Experiments

The results of uncertainty assessment for the Salinas dataset using DNN and RF are presented in
Figure 4. However, to avoid redundancy in the representation of the results, only half of the achieved
uncertainty images are displayed (i.e., 10%, 30%, 50%, 70% and 90%). Regardless of the classification
scheme and/or training sample size, classes 8 (8: Grapes_untrained) and 15 (15: Vinyard_1) belonged to
the highest uncertainty level among all the available class labels. For both algorithms, this was followed
by concentration of incorrect predictions within the high-uncertainty areas, which are identified as
false values in the mode of correct/incorrect classified test data based on all training samples from
10% to 100%.
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Further, to better understand the capability of uncertainty measures as an estimate of accuracy, 
we plotted the correspondence between mean class uncertainty (i.e., entropy) and class accuracy 
(Figure 6). Nonetheless, to avoid unnecessary repetition of results, only the 50% training sample was 
plotted, which confirmed the accuracy of classification within the majority of image classes will be 
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Figure 4. Results of uncertainty assessment for DNN (a) and RF (b) using different portions of
training sample (S, in %) and mode of correct/incorrect classified test data for the Salinas dataset. The
estimated overall accuracy (OA, in %) of the whole classification scheme is also demonstrated for each
training sample.

RF and DNN were comparable in terms of achieved OA of classification for the majority of
sample sizes, while the areas covered with the high uncertainty values were less obvious within DNN
results. This was observable for all corresponding sample sizes. Further, to quantify the capabilities
of DNN and RF for uncertainty assessment and potential application as an estimate of accuracy, we
then calculated the root mean square error (RMSE) of every sample size (Equation (5)) applied for
image classification for each algorithm. Following the mapping of uncertainty values, which represent
uncertainty levels, we plotted the RMSE of the classification (y-axis) of the test data for various training
sample sizes (x-axis). Here, lower RMSE values indicate better estimates of uncertainty (Table 2), and
vice versa. For the Salinas dataset, RMSE values for the DNN algorithm were lower than RF values for
all sample sizes while RMSE values derived from RF are more consistent (Figure 5).
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Figure 5. The estimated RMSE values of uncertainty assessment for test datasets (y-axis) where the
algorithm is trained with different portions of the training sample (x-axis) of Salinas dataset. Dashed
lines represent the minimum and maximum RMSE values for each sample size achieved in five
consecutive simulation runs.

Further, to better understand the capability of uncertainty measures as an estimate of accuracy, we
plotted the correspondence between mean class uncertainty (i.e., entropy) and class accuracy (Figure 6).
Nonetheless, to avoid unnecessary repetition of results, only the 50% training sample was plotted,
which confirmed the accuracy of classification within the majority of image classes will be reduced
by an increase in the uncertainty of pixels belonging to these classes and vice versa. In accordance
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with Figure 4, it was also demonstrated classes 8 and 15 of Salinas dataset with the highest mean
uncertainty values belong to the least accurate estimation.
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3.2. Indian Pines Simulation Experiments

The results of uncertainty assessment for the Indian Pines dataset using DNN and RF were similar
to those for the Salinas dataset. For both DNN and RF, classification uncertainty was reduced for larger
training samples while the OA values of classification increased. However, these phenomena were
less obvious for RF compared with those for DNN (Figure 7). In addition, the improvement of OA
values with an increase in training sample size was more distinctive than that for the Salinas dataset.
Remarkably, for every corresponding sample size, DNN was not only the more accurate algorithm
but also displayed fewer pixels with high uncertainty values. The mode of correct/incorrect classified
pixels demonstrated almost the same pattern for both algorithms while there were fewer misclassified
pixels within the results of DNN algorithm.
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The higher accuracy of DNN elevates the quality of implemented uncertainty assessment for
locating correct/incorrect classifications for this dataset. Nonetheless, to quantify the difference in the
quality of uncertainty the assessment between the two algorithms, the RMSE values were estimated
for every training sample. The RMSE values also confirmed the superiority of DNN for the majority of
training sample sizes in a way that less uncertainty was estimated for correct classified pixels while
incorrect classified pixels were identified by more levels of uncertainty. However, the same as the
Salinas dataset, RMSE values derived from five consecutive simulation runs of RF are more consistent.
This can be easily observed by comparing the difference between the minimum and maximum RMSE
values for each sample size that is observable in Figure 8. Obviously, DNN is coupled with more
variation between minimum and maximum RMSE values for almost all different sample sizes.
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Figure 8. The estimated RMSE values of uncertainty assessment for test datasets (y-axis) where the
algorithm is trained with different portions of training sample (x-axis) of Indian Pines dataset. Dashed
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Finally, the correspondence between mean class uncertainty (i.e., entropy) and class accuracy of
Indian pine dataset is demonstrated in Figure 9 for 50% of training sample size using both DNN and
RF algorithms. Similar to Salinas dataset results, the achieved results of Indian Pines demonstrated a
negative relationship between uncertainty and accuracy for the majority of class labels.
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4. Discussion

4.1. Comparing the Quality of Uncertainty Assessment Based on RMSE

With reference to the fact that both DNN and RF algorithms may achieve an OA above 70%,
even for the minimum portion of training sample size (i.e., 10%), it was expected one algorithm may
perform a better uncertainty assessment if it successfully limits the high-uncertainty areas to the spatial
vicinity of incorrectly classified pixels while highlighting the remaining areas as low uncertainty.
This is regardless of achieved OA, although the RMSE values derived from five consecutive runs of
each algorithm indicate that results of uncertainty assessment using RF is more consistent compared
with DNN. Nonetheless, comparing the results of uncertainty assessment, for both utilised datasets
and every corresponding sample sizes, demonstrates that areas of high uncertainty values were less
abundant within the results of DNN algorithm compared with that for RF algorithm (Figures 4, 5
and 7). This may be due to the fact that DNN is optimized to reduce the difference between the
predicted distribution and the true data generating distribution by minimizing the cross-entropy of
the two probability distributions [64,65]. Therefore, the uncertainty assessment derived from DNN
algorithm was superior to RF combined with better OA for these two datasets. However, more studies
using different datasets are still required for generalizing the results.

4.2. Quality of Uncertainty Assessment for Different Sample Sizes

For both algorithms and both datasets, larger training samples were found to be more beneficial
for uncertainty assessment. The RMSE of uncertainty estimates, which was applied as a goodness of
fit to assess the quality of uncertainty maps, decreased from the initial (10%) to final (100%) training
sample sizes (Figures 5 and 8). However, this improvement was more obvious for DNN compared with
that for RF. This may be due to different formulations of RF and DNN algorithms, which are affecting
the performance of the two algorithms for uncertainty assessment. Usually, the training sample size
has a crucial role in classification accuracy [66]; thus, it will also affect the uncertainty assessment
process. The increased training sample size will typically increase the performance of an algorithm
from random sampling [67,68], but not all algorithms will be improved at the same level with a larger
sample size. Although RF can also benefit from a larger training sample by extracting more binary
rules [69], DNN may achieve a better performance. For DNN, the ratio of uncertainty assessment
improvement followed by larger training sample size and more accurate classification depends on
the abundance of contextual information per-pixel in the target dataset [70]. As many extensive
experimental results confirm the excellent performance of the deep learning-based algorithms matched
with rich spectral and contextual information [71], our study suggests this is also beneficial to increase
the training sample to achieve a better uncertainty assessment result.

4.3. Uncertainty vs. Accuracy

The existing uncertainties at different stages of the classification procedure influence classification
accuracy [66,72]. Therefore, understanding the relationships between the classification uncertainty
and accuracy is the key successful contribution to an estimate of accuracy for image classification.
Although a low uncertainty classification instance is accompanied with high accuracy, some exceptions
may apply to the high uncertainty, which usually belongs to low accuracy estimates. Thus, incorrect
predicted class labels are usually located inside high-uncertainty areas with very few exceptions within
low-uncertainty regions while correct classified pixel overlay the low uncertainty areas (Figures 4
and 7). In this research, for both applied datasets, the existing correspondence between uncertainty
and accuracy was better identified using the DNN algorithm. Having said that, in our study, DNN
is demonstrated more potential in uncertainty assessment for hyperspectral image classification.
Following accurate classifications combined with minimising high-uncertainty areas, DNN not only
offers a lower rate of RMSE but also offers a higher contrast between low and high uncertainty areas.
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At a wider scale, considering mean class uncertainty against the class accuracy of test data, it was
revealed that usually a lower uncertainty value of a class is followed by a higher accuracy (Figures 6
and 9). In other words, as low uncertainty indicates the probabilities of potential class labels for a
pixel are not equal (i.e., unimodal distribution). This simply specifies that based on the available
distribution of potential labels and their probability values (Figure 2), defined by either deep learning
neurons or tree votes, usually one of the potential class labels (i.e., 16 labels for each applied datasets)
has a significant preference to be selected as the estimated label. Accordingly, the concentration of
low uncertainty values corresponding to every pixel of the desired class label is anticipated by an
acceptable accuracy of classification. In terms of higher values of mean uncertainty for a class, the class
accuracy will be reduced due to the abundance of high uncertainty estimates within that class.

5. Conclusions

Due to the weaknesses of the traditional approaches of map accuracy assessment based on a
confusion matrix, many uncertainty assessment approaches are being developed as accuracy estimates.
In terms of supervised methods, we compared DNN with RF, where an estimate of accuracy is defined
by the entropy of all potential probabilities/votes toward different class labels for a pixel, as an
uncertainty measure. In this research, entropy was applied to encode the measure of uncertainty,
which is applicable to any dataset including hyperspectral image datasets. Considering the results of
uncertainty assessment, for both Salinas and Indian Pines datasets, DNN outperformed RF for the
purpose of uncertainty assessment. However, the superiority of DNN algorithm was more obvious
when applying the Indian Pines dataset, as well as larger training sample sizes. This was due to
less-abundant high uncertainty values throughout the classified dataset compared with RF for every
corresponding training sample size while having a comparable or better OA. Nonetheless, the achieved
uncertainty maps of DNN can facilitate the application of hyperspectral image classification products
by alerting map users about the spatial variation of classification uncertainty over the entire mapped
region as an estimate of accuracy.
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