Quaternion Entropy for Analysis of Gait Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background
2.2. Quaternion Approximate Entropy
2.3. Treadmill Experiments
3. Results and Discussion
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Schuster, H.G.; Just, W. Deterministic Chaos: An Introduction; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Pincus, S. Approximate entropy (ApEn) as a complexity measure. Chaos Interdiscip. J. Nonlinear Sci. 1995, 5, 110–117. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Eckmann, J.P.; Ruelle, D. Ergodic theory of chaos and strange attractors. In The Theory of Chaotic Attractors; Springer: Berlin/Heidelberg, Germany, 1985; pp. 273–312. [Google Scholar]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S.M.; Viscarello, R.R. Approximate entropy: A regularity measure for fetal heart rate analysis. Obstet Gynecol 1992, 79, 249–255. [Google Scholar] [PubMed]
- Kaplan, D.; Furman, M.; Pincus, S.; Ryan, S.; Lipsitz, L.; Goldberger, A. Aging and the complexity of cardiovascular dynamics. Biophys. J. 1991, 59, 945. [Google Scholar] [CrossRef]
- Liu, C.; Liu, C.; Shao, P.; Li, L.; Sun, X.; Wang, X.; Liu, F. Comparison of different threshold values r for approximate entropy: Application to investigate the heart rate variability between heart failure and healthy control groups. Physiol. Meas. 2010, 32, 167. [Google Scholar] [CrossRef] [PubMed]
- Abásolo, D.; Hornero, R.; Espino, P.; Poza, J.; Sánchez, C.I.; de la Rosa, R. Analysis of regularity in the EEG background activity of Alzheimer’s disease patients with Approximate Entropy. Clin. Neurophysiol. 2005, 116, 1826–1834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.S.; Roy, R.J.; Jensen, E.W. EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans. Biomed. Eng. 2001, 48, 1424–1433. [Google Scholar] [CrossRef] [PubMed]
- Kannathal, N.; Choo, M.L.; Acharya, U.R.; Sadasivan, P. Entropies for detection of epilepsy in EEG. Comput. Methods Progr. Biomed. 2005, 80, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Molinari, F.; Sree, S.V.; Chattopadhyay, S.; Ng, K.H.; Suri, J.S. Automated diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 2012, 7, 401–408. [Google Scholar] [CrossRef]
- Yentes, J.M.; Hunt, N.; Schmid, K.K.; Kaipust, J.P.; McGrath, D.; Stergiou, N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 2013, 41, 349–365. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Peng, C.K.; Goldberger, A.L.; Hausdorff, J.M. Multiscale entropy analysis of human gait dynamics. Phys. A Stat. Mech. Its Appl. 2003, 330, 53–60. [Google Scholar] [CrossRef]
- Ahmadi, S.; Sepehri, N.; Wu, C.; Szturm, T. Sample Entropy of Human Gait Center of Pressure Displacement: A Systematic Methodological Analysis. Entropy 2018, 20, 579. [Google Scholar] [CrossRef]
- Ramdani, S.; Seigle, B.; Lagarde, J.; Bouchara, F.; Bernard, P.L. On the use of sample entropy to analyze human postural sway data. Med. Eng. Phys. 2009, 31, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Bisi, M.; Stagni, R. Complexity of human gait pattern at different ages assessed using multiscale entropy: From development to decline. Gait Posture 2016, 47, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef] [PubMed]
- McGregor, S.J.; Busa, M.A.; Skufca, J.; Yaggie, J.A.; Bollt, E.M. Control entropy identifies differential changes in complexity of walking and running gait patterns with increasing speed in highly trained runners. Chaos Interdiscip. J. Nonlinear Sci. 2009, 19, 026109. [Google Scholar] [CrossRef]
- Szczęsna, A.; Świtoński, A.; Słupik, J.; Josiński, H.; Wojciechowski, K. Wavelet features in motion data classification. In Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2015 (ICNAAM-2015), Rhodes, Greece, 23–29 September 2015; AIP Publishing: Melville, NY, USA, 2016; Volume 1738. [Google Scholar]
- Piórek, M.; Josiński, H.; Michalczuk, A.; Świtoński, A.; Szczęsna, A. Quaternions and joint angles in an analysis of local stability of gait for different variants of walking speed and treadmill slope. Inf. Sci. 2017, 384, 263–280. [Google Scholar] [CrossRef]
- Szczęsna, A. Verification of the blobby quaternion model of human joint limits. Biomed. Signal Process. Control 2018, 39, 130–138. [Google Scholar] [CrossRef]
- Szczęsna, A. Quaternion wavelet-based energy and entropy to analysis human gait data. In Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2017 (ICNAAM-2017), Thessaloniki, Greece, 25–30 September 2017; AIP Publishing: Melville, NY, USA, 2018; Volume 1978. [Google Scholar]
- Szczęsna, A.; Świtoński, A.; Słupik, J.; Zghidi, H.; Josiński, H.; Wojciechowski, K. Quaternion Lifting Scheme Applied to the Classification of Motion Data. Inf. Sci. 2018. [Google Scholar] [CrossRef]
- Switonski, A.; Josinski, H.; Wojciechowski, K. Dynamic time warping in classification and selection of motion capture data. Multidimens. Syst. Signal Process. 2018. [Google Scholar] [CrossRef]
- Hanson, A.J. Visualizing Quaternions; Morgan Kaufmann: Burlington, MA, USA, 2005. [Google Scholar]
- Goldman, R. Understanding quaternions. Gr. Models 2011, 73, 21–49. [Google Scholar] [CrossRef]
- Huynh, D.Q. Metrics for 3D rotations: Comparison and analysis. J. Math. Imaging Vis. 2009, 35, 155–164. [Google Scholar] [CrossRef]
- Gramkow, C. On averaging rotations. J. Math. Imaging Vis. 2001, 15, 7–16. [Google Scholar] [CrossRef]
- Josiński, H.; Michalczuk, A.; Świtoński, A.; Mucha, R.; Wojciechowski, K. Quantifying chaotic behavior in treadmill walking. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Bali, Indonesia, 23–25 March 2015; pp. 317–326. [Google Scholar]
- Arellano-Valle, R.B.; Contreras-Reyes, J.E.; Stehlík, M. Generalized skew-normal negentropy and its application to fish condition factor time series. Entropy 2017, 19, 528. [Google Scholar] [CrossRef]
Normal | Faster | Slower | Up | Down | |
---|---|---|---|---|---|
lfemur | 0.334 | 0.371 | 0.274 | 0.405 | 0.344 |
rfemur | 0.345 | 0.406 | 0.300 | 0.371 | 0.396 |
femur | 0.337 | 0.388 | 0.286 | 0.387 | 0.371 |
ltibia | 0.252 | 0.446 | 0.138 | 0.599 | 0.353 |
rtibia | 0.554 | 0.519 | 0.570 | 0.463 | 0.396 |
tibia | 0.338 | 0.519 | 0.233 | 0.537 | 0.385 |
lfoot | 0.478 | 0.525 | 0.496 | 0.467 | 0.529 |
rfoot | 0.420 | 0.552 | 0.356 | 0.447 | 0.396 |
foot | 0.443 | 0.544 | 0.410 | 0.447 | 0.447 |
Left Femur | Right Femur | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Normal | Faster | Slower | Up | Down | Normal | Faster | Slower | Up | Down | ||
Normal | 1.000 | 0.699 | 0.378 | 0.157 | 0.334 | Normal | 1.000 | 0.862 | 0.412 | 0.347 | 0.343 |
Faster | 0.699 | 1.000 | 0.462 | 0.303 | 0.476 | Faster | 0.862 | 1.000 | 0.699 | 0.537 | 0.604 |
Slower | 0.378 | 0.462 | 1.000 | 0.921 | 0.941 | Slower | 0.412 | 0.699 | 1.000 | 0.899 | 0.951 |
Up | 0.157 | 0.303 | 0.921 | 1.000 | 0.944 | Up | 0.347 | 0.537 | 0.899 | 1.000 | 0.834 |
Down | 0.334 | 0.476 | 0.940 | 0.944 | 1.000 | Down | 0.343 | 0.604 | 0.951 | 0.834 | 1.000 |
Left Tibia | Right Tibia | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Normal | Faster | Slower | Up | Down | Normal | Faster | Slower | Up | Down | ||
Normal | 1.000 | 0.695 | 0.733 | 0.143 | 0.564 | Normal | 1.000 | 0.611 | 0.718 | 0.874 | 0.458 |
Faster | 0.695 | 1.000 | 0.632 | 0.328 | 0.549 | Faster | 0.611 | 1.000 | 0.505 | 0.496 | 0.439 |
Slower | 0.733 | 0.632 | 1.000 | 0.409 | 0.744 | Slower | 0.718 | 0.505 | 1.000 | 0.797 | 0.685 |
Up | 0.143 | 0.328 | 0.409 | 1.000 | 0.542 | Up | 0.874 | 0.496 | 0.797 | 1.000 | 0.646 |
Down | 0.564 | 0.549 | 0.744 | 0.542 | 1.000 | Down | 0.458 | 0.439 | 0.685 | 0.646 | 1.000 |
Left Foot | Right Foot | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Normal | Faster | Slower | Up | Down | Normal | Faster | Slower | Up | Down | ||
Normal | 1.000 | 0.728 | 0.510 | 0.439 | 0.491 | Normal | 1.000 | 0.721 | 0.491 | 0.135 | 0.390 |
Faster | 0.728 | 1.000 | 0.778 | 0.573 | 0.773 | Faster | 0.721 | 1.000 | 0.449 | 0.241 | 0.237 |
Slower | 0.510 | 0.778 | 1.000 | 0.837 | 0.923 | Slower | 0.491 | 0.449 | 1.000 | 0.901 | 0.909 |
Up | 0.439 | 0.573 | 0.837 | 1.000 | 0.751 | Up | 0.135 | 0.241 | 0.901 | 1.000 | 0.841 |
Down | 0.491 | 0.773 | 0.923 | 0.751 | 1.000 | Down | 0.390 | 0.237 | 0.909 | 0.841 | 1.000 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczęsna, A. Quaternion Entropy for Analysis of Gait Data. Entropy 2019, 21, 79. https://doi.org/10.3390/e21010079
Szczęsna A. Quaternion Entropy for Analysis of Gait Data. Entropy. 2019; 21(1):79. https://doi.org/10.3390/e21010079
Chicago/Turabian StyleSzczęsna, Agnieszka. 2019. "Quaternion Entropy for Analysis of Gait Data" Entropy 21, no. 1: 79. https://doi.org/10.3390/e21010079
APA StyleSzczęsna, A. (2019). Quaternion Entropy for Analysis of Gait Data. Entropy, 21(1), 79. https://doi.org/10.3390/e21010079