The Generalized Stochastic Smoluchowski Equation
Abstract
:1. Introduction
2. Generalized Thermodynamics
2.1. Generalized Free Energy
2.2. Minimum Free Energy Principle
2.3. Thermodynamical Equilibrium States
2.4. Thermodynamical Stability
3. Macroscopic Description: Average Dynamics
3.1. Generalized Deterministic Mean Field Smoluchowski Equation
3.2. Generalized Langevin Equation
3.3. Generalized Einstein Relation
3.4. Particular Forms of the Generalized Smoluchowski Equation
3.5. Gradient Flow
3.6. Equilibrium States
3.7. H-Theorem
3.8. Onsager’s Linear Thermodynamics
3.9. Maximum Free Energy Dissipation Principle
3.10. Equivalence between Dynamical and Thermodynamical Stability
4. Mesoscopic Description: Stochastic Dynamics
4.1. Generalized Stochastic Mean Field Smoluchowski Equation
4.2. Derivation of the Kramers Formula from the Instanton Theory
4.3. Relation to the Principle of Maximum Dissipation of Free Energy
4.4. Boltzmann and Onsager-Machlup Principles
5. Conclusions
Funding
Conflicts of Interest
Appendix A. The Generalized Pressure
Appendix A.1. Equation of State
Appendix A.2. Weakly Inhomogeneous Systems
Appendix A.3. Examples of Generalized Entropies
Appendix B. The Functional Fokker-Planck Equation
Appendix B.1. Derivation of the Functional Fokker-Planck Equation
Appendix B.2. H-Theorem
Appendix B.3. Onsager’s Linear Thermodynamics and Maximum Free Energy Dissipation Principle
Appendix C. Density Functional Theory for Simple Liquids
Appendix C.1. The N-body Smoluchowski Equation
Appendix C.2. The Deterministic Dynamical Density Functional Theory
Appendix C.3. The Stochastic Dynamical Density Functional Theory
Appendix C.4. The Direct Correlation Function
Appendix C.5. Weakly Inhomogeneous Systems
References
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 1905, 17, 549–560. [Google Scholar] [CrossRef]
- Einstein, A. Zur Theorie der Brownschen Bewegung. Ann. Phys. 1906, 19, 371–381. [Google Scholar] [CrossRef]
- Chavanis, P.H. Generalized Euler, Smoluchowski and Schrödinger equations admitting self-similar solutions with a Tsallis invariant profile. Eur. Phys. J. Plus 2019, 134, 353. [Google Scholar] [CrossRef]
- Lord Rayleigh, Dynamical problems in illustration of the theory of gases. Philos. Mag. 1891, 32, 424–445. [CrossRef]
- Sutherland, W. A dynamical theory of diffusion for non-electrolytes and the molecular mass of Albumin. Philos. Mag. 1905, 9, 781–785. [Google Scholar] [CrossRef]
- Langevin, P. Sur la théorie du mouvement brownien. Comptes Rendus 1908, 146, 530. [Google Scholar]
- von Smoluchowski, M. Über Brownsche Molekularbewegung unter Einwirkung äusserer Kräfte und deren Zusammenhang mit der verallgemeinerten Diffusionsgleichung. Ann. Phys. 1915, 48, 1103–1112. [Google Scholar] [CrossRef]
- Fokker, A.D. Over Brown’sche Bewegingen in Het Stralingsveld en Waarschijnlijkheidsbeschouwingen in de Stralingstheorie. Ph.D Thesis, Leiden University, Leiden, The Netherlands, 1913. [Google Scholar]
- Fokker, A.D. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Phys. 1914, 43, 810–820. [Google Scholar] [CrossRef]
- Planck, M. Über Einen satz der Statistischen Dynamik und Seine Erweiterung in der Quanten-Theorie. Sitzber. Kgl. Preuss. Akad. Wiss. 1917, 324–341. [Google Scholar]
- Fokker, A.D. Sur les mouvements browniens dans le champ du rayonnement noir. Arch. Néerlandaises Sci. Exactes 1918, 4, 269–310. [Google Scholar]
- Campa, A.; Dauxois, T.; Ruffo, S. Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 2009, 480, 57–159. [Google Scholar] [CrossRef] [Green Version]
- Campa, A.; Dauxois, T.; Fanelli, D.; Ruffo, S. Physics of Long-Range Interacting Systems; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Chavanis, P.H. Hamiltonian and Brownian systems with long-range interactions: V. Stochastic kinetic equations and theory of fluctuations. Physica A 2008, 387, 5716–5740. [Google Scholar] [CrossRef] [Green Version]
- Nernst, W. Zur Kinetik der in Lösung befindlichen Körper. Erste Abhandlung. Theorie der diffusion. Z. Physik. Chem. 1888, 2, 613–637. [Google Scholar] [CrossRef]
- Nernst, W. Die elektromotorische Wirksamkeit der Jonen. Z. Physik. Chem. 1889, 4, 129–181. [Google Scholar] [CrossRef]
- Planck, M. Ueber die Erregung von Electricität und Wärme in Electrolyten. Ann. Phys. 1890, 39, 161–186. [Google Scholar] [CrossRef]
- Debye, P.; Hückel, E. Zur Theorie der Elektrolyte II. Das Grenzgesetz für die elektrische Leitfähigkeit. Phys. Z. 1923, 24, 305–325. [Google Scholar]
- McKean, H.P. A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 1966, 56, 1907–1911. [Google Scholar] [CrossRef]
- McKean, H.P. Propagation of chaos for a class of nonlinear parabolic equations. In Stochastic Differential Equations. Lecture Series in Differential Equations; Session 7; Catholic University: Washington, DC, USA, 1967; pp. 177–194. [Google Scholar]
- Giacomin, G.; Lebowitz, J.L. Exact macroscopic description of phase segregation in model alloys with long range interactions. Phys. Rev. Lett. 1996, 76, 1094–1097. [Google Scholar] [CrossRef]
- Martzel, N.; Aslangul, C. Mean-field treatment of the many-body Fokker-Planck equation. J. Phys. A Math. Gen. 2001, 34, 11225–11240. [Google Scholar] [CrossRef]
- Chavanis, P.H. Hamiltonian and Brownian systems with long-range interactions: II. Kinetic equations and stability analysis. Physica A 2006, 361, 81–123. [Google Scholar] [CrossRef] [Green Version]
- Keller, E.F.; Segel, L.A. Model for Chemotaxis. J. Theor. Biol. 1971, 30, 225–234. [Google Scholar] [CrossRef]
- Hildebrand, M.; Mikhailov, A.S. Mesoscopic modeling in the kinetic theory of adsorbates. J. Chem. Phys. 1996, 100, 19089–19101. [Google Scholar] [CrossRef]
- Zapperi, S.; Moreira, A.A.; Andrade, J.S. Flux Front Penetration in Disordered Superconductors. Phys. Rev. Lett. 2001, 86, 3622–3625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, J.S.; da Silva, G.F.T.; Moreira, A.A.; Nobre, F.D.; Curado, E.M.F. Thermostatistics of Overdamped Motion of Interacting Particles. Phys. Rev. Lett. 2010, 105, 260601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavanis, P.H.; Rosier, C.; Sire, C. Thermodynamics of self-gravitating systems. Phys. Rev. E 2002, 66, 036105. [Google Scholar] [CrossRef] [Green Version]
- Sire, C.; Chavanis, P.H. Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions. Phys. Rev. E 2002, 66, 046133. [Google Scholar] [CrossRef]
- Sire, C.; Chavanis, P.H. Postcollapse dynamics of self-gravitating Brownian particles and bacterial populations. Phys. Rev. E 2004, 69, 066109. [Google Scholar] [CrossRef] [Green Version]
- Chavanis, P.H.; Sire, C. Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations. Phys. Rev. E 2004, 70, 026115. [Google Scholar] [CrossRef]
- Sire, C.; Chavanis, P.H. Gravitational collapse of a Brownian gas. Banach Center Publ. 2004, 66, 287–304. [Google Scholar] [Green Version]
- Sopik, J.; Sire, C.; Chavanis, P.H. Self-gravitating Brownian systems and bacterial populations with two or more types of particles. Phys. Rev. E 2005, 72, 026105. [Google Scholar] [CrossRef] [Green Version]
- Chavanis, P.H.; Sire, C. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models. Phys. Rev. E 2006, 73, 066103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavanis, P.H.; Sire, C. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. II. Inertial models. Phys. Rev. E 2006, 73, 066104. [Google Scholar] [CrossRef] [PubMed]
- Chavanis, P.H. Exact diffusion coefficient of self-gravitating Brownian particles in two dimensions. Eur. Phys. J. B 2007, 57, 391–409. [Google Scholar] [CrossRef] [Green Version]
- Chavanis, P.H. Critical mass of bacterial populations and critical temperature of self-gravitating Brownian particles in two dimensions. Physica A 2007, 384, 392–412. [Google Scholar] [CrossRef] [Green Version]
- Chavanis, P.H.; Mannella, R. Self-gravitating Brownian particles in two dimensions: The case of N = 2 particles. Eur. Phys. J. B 2010, 78, 139–165. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Delfini, L. Phase transitions in self-gravitating systems and bacterial populations with a screened attractive potential. Phys. Rev. E 2010, 81, 051103. [Google Scholar] [CrossRef] [Green Version]
- Chavanis, P.H.; Sire, C. Exact analytical solution of the collapse of self-gravitating Brownian particles and bacterial populations at zero temperature. Phys. Rev. E 2011, 83, 031131. [Google Scholar] [CrossRef] [Green Version]
- Chavanis, P.H. Instability of a uniformly collapsing cloud of classical and quantum self-gravitating Brownian particles. Phys. Rev. E 2011, 84, 031101. [Google Scholar] [CrossRef] [Green Version]
- Sire, C.; Chavanis, P.H. Collapse and evaporation of a canonical self-gravitating gas. In The Twelfth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories; Chamseddine Ali, H., Ed.; World Scientific Publishing: Singapore, 2012; pp. 2116–2118. [Google Scholar]
- Chavanis, P.H. Virial theorem for rotating self-gravitating Brownian particles and two-dimensional point vortices. Int. J. Mod. Phys. B 2012, 26, 1241002. [Google Scholar] [CrossRef]
- Mertens, K.; Putkaradze, V.; Xia, D.; Brueck, S.R.J. Theory and experiment for one-dimensional directed self-assembly of nanoparticles. J. App. Phys. 2005, 98, 034309. [Google Scholar] [CrossRef] [Green Version]
- Chavanis, P.H. Two-dimensional Brownian vortices. Physica A 2008, 28, 6917–6942. [Google Scholar] [CrossRef]
- Chavanis, P.H. Statistical mechanics of two-dimensional point vortices: Relaxation equations and strong mixing limit. Eur. Phys. J. B 2014, 87, 81. [Google Scholar] [CrossRef]
- Domínguez, A.; Oettel, M.; Dietrich, S. Dynamics of colloidal particles with capillary interactions. Phys. Rev. E 2010, 82, 011402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutsko, J.F. A dynamical theory of nucleation for colloids and macromolecules. J. Chem. Phys. 2012, 136, 034509. [Google Scholar] [CrossRef]
- Chavanis, P.H. The Brownian mean field model. Eur. Phys. J. B 2014, 87, 120–676. [Google Scholar] [CrossRef]
- Chavanis, P.H. Generalized stochastic Fokker-Planck equations. Entropy 2015, 17, 3205–3252. [Google Scholar] [CrossRef]
- Abraham, F.F. A generalized diffusion equation for nonuniform fluid systems, with application to spinodal decomposition. J. Chem. Phys. 1976, 64, 2660. [Google Scholar] [CrossRef]
- Munakata, T. Liquid instability and freezing—Reductive perturbation approach. J. Phys. Soc. Jap. 1977, 43, 1723–1728. [Google Scholar] [CrossRef]
- Munakata, T. Liquid instability and freezing. II. Multi-mode one dimensional analysis of a nonlinear diffusion equation. J. Phys. Soc. Jap. 1978, 45, 749–757. [Google Scholar] [CrossRef]
- Evans, R.; Telo da Gama, M.M. Spinodal decomposition in a Lennard-Jones fluid. Mol. Phys. 1979, 38, 687–698. [Google Scholar] [CrossRef]
- Evans, R. The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 1979, 28, 143–200. [Google Scholar] [CrossRef]
- Calef, D.F.; Wolynes, P.G. Smoluchowski-Vlasov theory of charge solvation dynamics. J. Chem. Phys. 1983, 78, 4145–4153. [Google Scholar] [CrossRef]
- Bagchi, B. Stability of a supercooled liquid to periodic density waves and dynamics of freezing. Physica A 1987, 145, 273–289. [Google Scholar] [CrossRef]
- Kirkpatrick, T.R.; Wolynes, P.G. Connections between some kinetic and equilibrium theories of the glass transition. Phys. Rev. A 1987, 35, 3072–3080. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, W.; Frisch, H.L.; Majhofer, A. Nonlinear diffusion and density functional theory. Z. Phys. B 1990, 78, 317–323. [Google Scholar] [CrossRef]
- Marconi, U.M.B.; Tarazona, P. Dynamic density functional theory of fluids. J. Chem. Phys. 1999, 110, 8032. [Google Scholar] [CrossRef]
- Marconi, U.M.B.; Tarazona, P. Dynamic density functional theory of fluids. J. Phys. Condens. Matter 2000, 12, A413–A418. [Google Scholar] [CrossRef]
- Archer, A.J.; Evans, R. Dynamical density functional theory and its application to spinodal decomposition. J. Chem. Phys. 2004, 121, 4246. [Google Scholar] [CrossRef]
- Chavanis, P.H. Brownian particles with long- and short-range interactions. Physica A 2011, 390, 1546–1574. [Google Scholar] [CrossRef] [Green Version]
- Dzubiella, J.; Likos, C.N. Mean-field dynamical density functional theory. J. Phys. Condens. Matter 2003, 15, L147–L154. [Google Scholar] [CrossRef]
- Kirkwood, J.G.; Monroe, E. On the theory of fusion. J. Chem. Phys. 1940, 8, 995–1001. [Google Scholar] [CrossRef]
- Kirkwood, J.G.; Monroe, E. Statistical mechanics of fusion. J. Chem. Phys. 1941, 9, 514. [Google Scholar] [CrossRef]
- Chavanis, P.H. Hydrodynamics of Brownian particles. Physica A 2010, 389, 375–396. [Google Scholar] [CrossRef]
- Chavanis, P.H. Initial value problem for the linearized mean field Kramers equation with long-range interactions. Eur. Phys. J. Plus 2013, 128, 106–128. [Google Scholar] [CrossRef]
- Landau, L.; Lifshitz, E. Fluid Mechanics; Pergamon: London, UK, 1959. [Google Scholar]
- Chavanis, P.H.; Delfini, L. Random transitions described by the stochastic Smoluchowski-Poisson system and by the stochastic Keller-Segel model. Phys. Rev. E 2014, 89, 032139. [Google Scholar] [CrossRef] [Green Version]
- van Kampen, N.G. Stochastic Processes in Physics and Chemistry; North-Holland Physics Publishing: Amsterdam, The Netherlands, 1981. [Google Scholar]
- van Vliet, K.M. Markov approach to density fluctuations due to transport and scattering. I. Mathematical formalism. J. Math. Phys. 1971, 12, 1981. [Google Scholar] [CrossRef]
- van Vliet, K.M. Markov approach to density fluctuations due to transport and scattering. II. Applications. J. Math. Phys. 1971, 12, 1998. [Google Scholar] [CrossRef]
- Munakata, T. A dynamical extension of the density functional theory. J. Phys. Soc. Jap. 1989, 58, 2434–2438. [Google Scholar] [CrossRef]
- Munakata, T. Density fluctuations in liquids—Application of a dynamical density functional theory. J. Phys. Soc. Jap. 1990, 59, 1299–1304. [Google Scholar] [CrossRef]
- Munakata, T. Time-dependent density-functional theory with H theorems. Phys. Rev. E 1994, 50, 2347–2350. [Google Scholar] [CrossRef]
- Dean, D.S. Langevin equation for the density of a system of interacting Langevin processes. J. Phys. A Math. Gen. 1996, 29, L613–L617. [Google Scholar] [CrossRef] [Green Version]
- Archer, A.J.; Rauscher, M. Dynamical density functional theory for interacting Brownian particles: Stochastic or deterministic? J. Phys. A Math. Gen. 2004, 37, 9325–9333. [Google Scholar] [CrossRef]
- Chavanis, P.H. A stochastic Keller-Segel model of chemotaxis. Commun. Nonlinear Sci. Numer. Simulat. 2010, 15, 60–70. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Quarati, P. Kinetic equation for classical particles obeying an exclusion principle. Phys. Rev. E 1993, 48, 4263–4270. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Quarati, P. Classical model of bosons and fermions. Phys. Rev. E 1994, 49, 5103–5110. [Google Scholar] [CrossRef] [Green Version]
- Kompaneets, A.S. The establishment of thermal equilibrium between quanta and electrons. Sov. Phys. JETP 1957, 4, 730–737. [Google Scholar]
- Sopik, J.; Sire, C.; Chavanis, P.H. Dynamics of the Bose–Einstein condensation: Analogy with the collapse dynamics of a classical self-gravitating Brownian gas. Phys. Rev. E 2006, 74, 011112. [Google Scholar] [CrossRef]
- Plastino, A.R.; Plastino, A. Non-extensive statistical mechanics and generalized Fokker-Planck equation. Physica A 1995, 222, 347–354. [Google Scholar] [CrossRef]
- Tsallis, C.; Bukman, D.J. Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. Phys. Rev. E 1996, 54, R2197–R2200. [Google Scholar] [CrossRef] [Green Version]
- Stariolo, D. Aging in models of nonlinear diffusion. Phys. Rev. E 1997, 55, 4806–4809. [Google Scholar] [CrossRef] [Green Version]
- Borland, L. Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model. Phys. Rev. E 1998, 57, 6634–6642. [Google Scholar] [CrossRef]
- Curado, E.; Nobre, F. Derivation of nonlinear Fokker-Planck equations by means of approximations to the master equation. Phys. Rev. E 2003, 67, 021107. [Google Scholar] [CrossRef] [PubMed]
- Nobre, F.; Curado, E.; Rowlands, G. A procedure for obtaining general nonlinear Fokker-Planck equations. Physica A 2004, 334, 109–118. [Google Scholar] [CrossRef]
- Martinez, S.; Plastino, A.R.; Plastino, A. Nonlinear Fokker-Planck equations and generalized entropies. Physica A 1998, 259, 183–192. [Google Scholar] [CrossRef]
- Frank, T.D.; Daffertshofer, A. Nonlinear Fokker-Planck equations whose stationary solutions make entropy-like functionals stationary. Physica A 1999, 272, 497–508. [Google Scholar] [CrossRef]
- Kaniadakis, G. H-theorem and generalized entropies within the framework of nonlinear kinetics. Phys. Lett. A 2001, 288, 283–291. [Google Scholar] [CrossRef]
- Frank, T.D.; Daffertshofer, A. H-theorem for nonlinear Fokker-Planck equations related to generalized thermostatistics. Physica A 2001, 295, 455–474. [Google Scholar] [CrossRef]
- Kaniadakis, G. Nonlinear kinetics underlying generalized statistics. Physica A 2001, 296, 405–425. [Google Scholar] [CrossRef]
- Frank, T.D. Generalized Fokker-Planck equations derived from generalized linear nonequilibrium thermodynamics. Physica A 2002, 310, 397–412. [Google Scholar] [CrossRef]
- Chavanis, P.H. Generalized thermodynamics and Fokker-Planck equations: Applications to stellar dynamics and two-dimensional turbulence. Phys. Rev. E 2003, 68, 036108. [Google Scholar] [CrossRef] [PubMed]
- Chavanis, P.H. Generalized thermodynamics and kinetic equations: Boltzmann, Landau, Kramers and Smoluchowski. Physica A 2004, 332, 89–122. [Google Scholar] [CrossRef] [Green Version]
- Chavanis, P.H. Generalized Fokker-Planck equations and effective thermodynamics. Physica A 2004, 340, 57–65. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Laurençot, P.; Lemou, M. Chapman-Enskog derivation of the generalized Smoluchowski equation. Physica A 2004, 341, 145–164. [Google Scholar] [CrossRef]
- Chavanis, P.H. Generalized kinetic equations and effective thermodynamics. Banach Center Publ. 2004, 66, 79–101. [Google Scholar] [Green Version]
- Chavanis, P.H. Phase separation of bacterial colonies in a limit of high degradation. Analogy with Jupiter’s great red spot. Eur. Phys. J. B 2006, 54, 525–549. [Google Scholar] [CrossRef]
- Chavanis, P.H. General properties of nonlinear mean field Fokker-Planck equations. AIP Conf. Proc. 2007, 965, 144–151. [Google Scholar] [Green Version]
- Schwämmle, V.; Curado, E.M.F.; Nobre, F.D. A general nonlinear Fokker-Planck equation and its associated entropy. Eur. Phys. J. B 2007, 58, 159–165. [Google Scholar] [CrossRef]
- Schwämmle, V.; Nobre, F.D.; Curado, E.M.F. Consequences of the H-theorem from nonlinear Fokker-Planck equations. Phys. Rev. E 2007, 76, 041123. [Google Scholar] [CrossRef]
- Chavanis, P.H. Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations. Eur. Phys. J. B 2008, 62, 179–208. [Google Scholar] [CrossRef] [Green Version]
- Schwämmle, V.; Curado, E.M.F.; Nobre, F.D. Dynamics of normal and anomalous diffusion in nonlinear Fokker-Planck equations. Eur. Phys. J. B 2009, 70, 107–116. [Google Scholar] [CrossRef]
- Frank, T.D. Nonlinear Fokker-Planck Equations: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Ornstein, L.S. Application of the Statistical Mechanics of Gibbs to Molecular-Theoretical Issues. Ph.D Thesis, Leiden University, Leiden, The Netherlands, 1908, (unpublished). [Google Scholar]
- van Kampen, N.G. Condensation of a classical gas with long-range attraction. Phys. Rev. 1964, 135, A362–A369. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Sire, C. On the interpretations of Tsallis functional in connection with Vlasov-Poisson and related systems: Dynamics vs thermodynamics. Physica A 2005, 356, 419–446. [Google Scholar] [CrossRef]
- Ipser, J.R. On using entropy arguments to study the evolution and secular stability of spherical stellar-dynamical systems. Astrophys. J. 1974, 193, 463–470. [Google Scholar] [CrossRef]
- Eddington, A.S. The distribution of stars in globular clusters. Mon. Not. Roy. Astron. Soc. 1916, 76, 572–585. [Google Scholar] [CrossRef]
- Antonov, V.A. Applications of the Variational Method to Stellar Dynamics and Some Other Problems. Ph.D Thesis, Leningrad University, Saint Petersburg, Russia, 1963. (In Russian). [Google Scholar]
- Antonov, V.A.; Nuritdinov, S.N.; Ossipkov, L.P. On the classification of phase mixing in collisionless stellar systems. Astron. Astrophys. Trans. 1995, 7, 177–180. [Google Scholar] [CrossRef]
- Tremaine, S.; Hénon, M.; Lynden-Bell, D. H-functions and mixing in violent relaxation. Mon. Not. R. Astr. Soc. 1986, 219, 285–297. [Google Scholar] [CrossRef]
- Chavanis, P.H. On the lifetime of metastable states in self-gravitating systems. Astron. Astrophys. 2005, 432, 117–138. [Google Scholar] [CrossRef]
- Robert, R.; Sommeria, J. Relaxation towards a statistical equilibrium state in two-dimensional perfect fluid dynamics. Phys. Rev. Lett. 1992, 69, 2776–2779. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Sommeria, J.; Robert, R. Statistical Mechanics of Two-dimensional Vortices and Collisionless Stellar Systems. Astrophys. J. 1996, 471, 385–399. [Google Scholar] [CrossRef]
- Chavanis, P.H. Quasilinear theory of the 2D Euler equation. Phys. Rev. Lett. 2000, 84, 5512–5515. [Google Scholar] [CrossRef] [PubMed]
- Hillen, T.; Painter, K. Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 2001, 26, 280–301. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Ribot, M.; Rosier, C.; Sire, C. On the analogy between self-gravitating Brownian particles and bacterial populations. Banach Center Publ. 2004, 66, 103–126. [Google Scholar] [Green Version]
- Chavanis, P.H. Nonlinear mean-field Fokker-Planck equations and their applications in physics, astrophysics and biology. Comptes Rendus Phys. 2006, 7, 318–330. [Google Scholar] [CrossRef]
- Chavanis, P.H. Generalized Keller-Segel models of chemotaxis. Analogy with nonlinear mean field Fokker-Planck equations. In Chaos, Complexity and Transport: Theory and Applications; Leoncini, X., Chandre, C., Zaslavsky, G., Eds.; World Scientific: Singapore, 2008; p. 256. [Google Scholar]
- Chavanis, P.H. Jeans type instability for a chemotactic model of cellular aggregation. Eur. Phys. J. B 2006, 52, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Chavanis, P.H.; Sire, C. Jeans type analysis of chemotactic collapse. Physica A 2008, 387, 4033–4052. [Google Scholar] [CrossRef] [Green Version]
- Chavanis, P.H.; Sire, C. Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions. Phys. Rev. E 2004, 69, 016116. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Sire, C. Logotropic distributions. Physics A 2007, 375, 140–158. [Google Scholar] [CrossRef] [Green Version]
- Chavanis, P.H.; Sire, C. Critical dynamics of self-gravitating Langevin particles and bacterial populations. Phys. Rev. E 2008, 78, 061111. [Google Scholar]
- Chavanis, P.H.; Sire, C. Critical mass of bacterial populations in a generalized Keller-Segel model. Analogy with the Chandrasekhar limiting mass of white dwarf stars. Physica A 2008, 387, 1999–2009. [Google Scholar] [CrossRef]
- Chavanis, P.H. Gravitational phase transitions with an exclusion constraint in position space. Eur. Phys. J. B 2014, 87, 9–52. [Google Scholar] [CrossRef]
- Chavanis, P.H. Statistical mechanics of geophysical turbulence: Application to jovian flows and Jupiter’s great red spot. Physics D 2005, 200, 257–272. [Google Scholar] [CrossRef]
- Chavanis, P.H. Statistical mechanics of 2D turbulence with a prior vorticity distribution. Physics D 2008, 237, 1998–2002. [Google Scholar] [CrossRef]
- Chavanis, P.H. Dynamical and thermodynamical stability of two-dimensional flows: Variational principles and relaxation equations. Eur. Phys. J. B 2009, 70, 73–105. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Sire, C. Kinetic and hydrodynamic models of chemotactic aggregation. Physica A 2007, 384, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Chavanis, P.H. Linear response theory for hydrodynamic and kinetic equations with long-range interactions. Eur. Phys. J. Plus 2013, 128, 38. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 1931, 37, 405–426. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal relations in irreversible processes. II. Phys. Rev. 1931, 38, 2265–2279. [Google Scholar] [CrossRef]
- Rayleigh, L. Some general theorems relating to vibration. Proc. Math. Soc. Lond. 1873, 4, 357–368. [Google Scholar]
- Rayleigh, L. On the motion of a viscous fluid. Philos. Mag. 1913, 26, 776–786. [Google Scholar] [CrossRef]
- Onsager, L.; Machlup, S. Fluctuations and irreversible processes. Phys. Rev. 1953, 91, 1505–1512. [Google Scholar] [CrossRef]
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Rajaraman, R. Solitons and Instantons; North Holland: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Bray, A.J.; McKane, A.J.; Newman, T.J. Path integrals and non-Markov processes. II. Escape rates and stationary distributions in the weak-noise limit. Phys. Rev. A 1990, 41, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Freidlin, M.I.; Wentzell, A.D. Random Perturbations of Dynamical Systems; Springer: New York, NY, USA, 1998. [Google Scholar]
- Touchette, H. The large deviation approach to statistical mechanics. Phys. Rep. 2009, 478, 1–69. [Google Scholar] [CrossRef] [Green Version]
- Weinan, E.; Ren, W.; Vanden-Eijnden, E. Minimum action method for the study of rare events. Commun. Pure Appl. Math. 2004, 57, 637–656. [Google Scholar]
- Berkov, D.V. Evaluation of the energy barrier distribution in many-particle systems using the path integral approach. J. Phys. Condens. Matter 1998, 10, L89–L95. [Google Scholar] [CrossRef]
- Bouchet, F.; Laurie, J.; Zaboronski, O. Control and instanton trajectories for random transitions in turbulent flows. J. Phys. Conf. Ser. 2011, 318, 022041. [Google Scholar] [CrossRef]
- Einstein, A. Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes. Ann. Phys. 1910, 338, 1275–1298. [Google Scholar] [CrossRef]
- Hansen, J.P.; McDonald, I.R. Theory of Simple Liquids; Academic Press: Cambridge, MA, USA, 1986. [Google Scholar]
- van der Waals, J.D. De Continuiteit van den Gas-en Vloeistoftoestand. Ph.D. Thesis, University of Leiden, Leiden, The Netherlands, 1873. [Google Scholar]
- Tonks, L. The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev. 1936, 50, 955–963. [Google Scholar] [CrossRef]
- Chavanis, P.H. Is the Universe logotropic? Eur. Phys. J. Plus 2015, 130, 130. [Google Scholar] [CrossRef]
- Tsallis, C.; Cirto, L.J.L. Black hole thermodynamical entropy. Eur. Phys. J. C 2013, 73, 2487. [Google Scholar]
- Carnahan, N.F.; Starling, K.E. Equation of state for nonattracting rigid spheres. J. Chem. Phys. 1969, 51, 635. [Google Scholar] [CrossRef]
- Pomeau, Y.; Le Berre, M.; Chavanis, P.H.; Denet, B. Supernovae: An example of complexity in the physics of compressible fluids. Eur. Phys. J. E 2014, 37, 26. [Google Scholar] [CrossRef] [PubMed]
- Anton, H.; Schmidt, P.C. Theoretical investigations of the elastic constants in laves phases. Intermetallics 1997, 5, 449–465. [Google Scholar] [CrossRef]
- Dhont, J.K.G. Spinodal decomposition of colloids in the initial and intermediate stages. J. Chem. Phys. 1996, 105, 5112. [Google Scholar] [CrossRef]
- Chavanis, P.H. Hamiltonian and Brownian systems with long-range interactions: I. Statistical equilibrium states and correlation functions. Physica A 2006, 361, 55–80. [Google Scholar] [CrossRef]
- Yvon, J. La Théorie Statistique des Fluides et L’équation d’état; Actualités Scientifiques et Industrielles: Paris, France, 1935. [Google Scholar]
- Born, M.; Green, H.S. A general kinetic theory of liquids I. The molecular distribution functions. Proc. R. Soc. 1946, A188, 10–18. [Google Scholar]
- Lovett, R.; Mou, C.Y.; Buff, F.P. The structure of the liquid-vapor interface. J. Chem. Phys. 1976, 65, 570. [Google Scholar] [CrossRef]
- Wertheim, M.S. Correlations in the liquid-vapor interface. J. Chem. Phys. 1976, 65, 2377. [Google Scholar] [CrossRef]
- Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 1959, 31, 688. [Google Scholar] [CrossRef]
- Cahn, J.W. On spinodal decomposition. Acta Metall. 1961, 9, 795–801. [Google Scholar] [CrossRef]
- Cook, H.E. Brownian motion in spinodal decomposition. Acta Metall. 1970, 18, 297–306. [Google Scholar] [CrossRef]
- Langer, J.S. Statistical methods in the theory of spinodal decomposition. Acta Metall. 1973, 21, 1649–1659. [Google Scholar] [CrossRef]
- Frusawa, H.; Hayakawa, R. On the controversy over the stochastic density functional equations. J. Phys. A Math. Gen. 2000, 33, L155–L160. [Google Scholar] [CrossRef]
- Kawasaki, K. Stochastic model of slow dynamics in supercooled liquids and dense colloidal suspensions. Physica A 1994, 208, 35–64. [Google Scholar] [CrossRef]
- Langer, J.S.; Bar-on, M.; Miller, H.D. New computational method in the theory of spinodal decomposition. Phys. Rev. A 1975, 11, 1417–1429. [Google Scholar] [CrossRef]
- Percus, J.K. One-dimensional classical fluid with nearest-neighbor interaction in arbitrary external field. J. Stat. Phys. 1982, 28, 67–81. [Google Scholar] [CrossRef]
- Zwanzig, R. Approximate eigenfunctions of the Liouville operator in classical many-body systems. Phys. Rev. 1966, 144, 170–177. [Google Scholar] [CrossRef]
- Percus, J.K.; Yevick, G.J. Analysis of classical statistical mechanics by means of collective coordinates. Phys. Rev. 1958, 110, 1–13. [Google Scholar] [CrossRef]
- Wertheim, M.S. Exact solution of the Percus-Yevick integral equation for hard spheres. Phys. Rev. Lett. 1963, 10, 321–323. [Google Scholar] [CrossRef]
- Thiele, E. Equation of state for hard spheres. J. Chem. Phys. 1963, 39, 474. [Google Scholar] [CrossRef]
- Ashcroft, N.W.; Lekner, J. Structure and resistivity of liquid metals. Phys. Rev. 1966, 145, 83–90. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavanis, P.-H. The Generalized Stochastic Smoluchowski Equation. Entropy 2019, 21, 1006. https://doi.org/10.3390/e21101006
Chavanis P-H. The Generalized Stochastic Smoluchowski Equation. Entropy. 2019; 21(10):1006. https://doi.org/10.3390/e21101006
Chicago/Turabian StyleChavanis, Pierre-Henri. 2019. "The Generalized Stochastic Smoluchowski Equation" Entropy 21, no. 10: 1006. https://doi.org/10.3390/e21101006
APA StyleChavanis, P. -H. (2019). The Generalized Stochastic Smoluchowski Equation. Entropy, 21(10), 1006. https://doi.org/10.3390/e21101006