Unidimensional Continuous-Variable Quantum Key Distribution with Untrusted Detection under Realistic Conditions
Abstract
:1. Introduction
2. Results
2.1. Unidimensional CV-QKD Protocol with Untrusted Detection
Case 1: unidimensional modulation only in Alice’s side Step 1. Alice produces coherent states and randomly selects the or quadrature along which the prepared states are displaced according to a random Gaussian variable with displacement variance . At the same time, Bob randomly prepares coherent states , where and are Gaussian distributed with modulation variance . Subsequently, the states are sent to the untrusted party Charlie through two different channels whose length are and , respectively. Step 2. After receiving the mode from Alice and the mode from Bob, Charlie combines them with a 50:50 beamsplitter. The output are mode C and D. Subsequently, Charlie performs measurement on the quadrature of the mode C and the quadrature of the mode D with two homodyne detectors, and then announces the results and publicly through the classical channels. Step 3. According to the information Charlie announces, Bob modifies his data as , , where k is the amplification coefficient. Here Alice keeps her data unchanged. Step 4. Alice and Bob perform post-processing, including information reconciliation, privacy amplification, and so on. |
Case 2: unidimensional modulation only in Bob’s side Step 1. Alice randomly prepares coherent states , where and are Gaussian distributed with modulation variance . Meanwhile, Bob produces coherent states and randomly selects the or along which the prepared states are displaced according to a random Gaussian variable with displacement variance . Subsequently, the states are sent to the untrusted party Charlie through two different channels whose length are and , respectively. The next steps are the same as those in Case 1. |
Case 3: unidimensional modulation in both sides Step 1. Both Alice and Bob produce coherent states and simultaneously select the or quadrature along which the prepared states are displaced according to two random Gaussian variables with displacement variance and , respectively. Subsequently, the states are sent to the untrusted party Charlie through two different channels whose length are and , respectively. The next steps are the same as those in Case 1. |
Case 1: unidimensional modulation only in Alice’s side Step 1. Alice generates Einstein-Podolsky-Rosen (EPR) states with variance . Then she keeps mode and squeezes the other mode on a squeezer. The output is mode , which is sent to the untrusted party Charlie through a channel with length . Meanwhile, Bob generates another Einstein-Podolsky-Rosen (EPR) state with variance . Then he keeps mode and sends the other mode through a channel with length . Step 2. Modes and received by Charlie interfere at a 50:50 beamsplitter with two output modes C and D. Subsequently, Charlie performs measurement on the quadrature of the mode C and the quadrature of the mode D with two homodyne detectors, and then announces the results and publicly through the classical channels. Step 3. According to the information Charlie announces, Bob displaces mode by operation , where , and g represents the gain of displacement. The relationship between k and g is well studied in reference [42]. Then Bob measures mode to get the final data , using heterodyne detection. Alice uses mode to get the final data () using homodyne detection. Step 4. Alice and Bob perform post-processing, including information reconciliation, privacy amplification, and so on. |
Case 2: unidimensional modulation only in Bob’s side Step 1. Alice generates Einstein-Podolsky-Rosen (EPR) states with variance . Then she keeps mode and sends the other mode through a channel with length . Meanwhile, Bob generates another Einstein-Podolsky-Rosen (EPR) state with variance . Then he keeps mode and squeezes the other mode on a squeezer. The output is mode , which is sent to the untrusted party Charlie through a channel with length . Step 2 and Step 4 are the same as those in Case 1. Step 3. According to the information Charlie announces, Bob displaces mode by operation , where . Then Bob measures mode to get the final data () using homodyne detection. Alice uses mode to get the final data , using heterodyne detection. |
Case 3: unidimensional modulation in both sides Step 1. Both Alice and Bob generate Einstein-Podolsky-Rosen (EPR) states with variance and respectively. Alice and Bob keep mode and mode of their own EPR state separately. The other two modes, and , are squeezed on two squeezers, and the output are modes and . Then the modes and are sent to the untrusted party Charlie through two different channels with length and . Step 2 and Step 4 are the same as those in Case 1. Step 3. According to the information Charlie announces, Bob displaces mode by operation , where . Then Alice measures mode , Bob measures mode to get the final data (), () using homodyne detection, respectively. |
2.2. Security Analysis
2.2.1. Using Unidimensional Modulated Coherent States Only in Alice’s Side
2.2.2. Using Unidimensional Modulated Coherent States ONLY in Bob’s Side
2.2.3. Using Unidimensional Modulated Coherent States Both in Alice’s and Bob’s Side
2.3. Numeral Simulation
3. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74. [Google Scholar] [CrossRef]
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009, 81, 1301–1350. [Google Scholar] [CrossRef]
- Diamanti, E.; Lo, H.-K.; Qi, B.; Yuan, Z. Practical challenges in quantum key distribution. npj Quantum Inf. 2016, 2, 16025. [Google Scholar] [CrossRef]
- Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in Quantum Cryptography. arXiv 2019, arXiv:1906.01645. [Google Scholar]
- Bennett, C.; Brassard, G. Quantum Cryptography: Public key cryptography and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 9–12 December 1984; pp. 175–179. [Google Scholar]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Rev. Mod. Phys. 2012, 84, 621–669. [Google Scholar] [CrossRef]
- Diamanti, E.; Leverrier, A. Distributing secret keys with quantum continuous variables: Principle, security and implementations. Entropy 2015, 17, 6072–6092. [Google Scholar] [CrossRef]
- Inoue, K.; Waks, E.; Yamamoto, Y. Differential-phase-shift quantum key distribution using coherent light. Phys. Rev. A 2003, 68, 022317. [Google Scholar] [CrossRef]
- Stucki, D.; Brunner, N.; Gisin, N.; Scarani, V.; Zbinden, H. Fast and simple one-way quantum key distribution. Appl. Phys. Lett. 2005, 87, 194108. [Google Scholar] [CrossRef]
- Bacco, D.; Christensen, J.B.; Castaneda, M.A.U.; Ding, Y.; Forchhammer, S.; Rottwitt, K.; Oxenløwe, L.K. Two-dimensional distributed-phase-reference protocol for quantum key distribution. Sci. Rep. 2016, 6, 36756. [Google Scholar] [CrossRef] [PubMed]
- Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M.G.; Natarajan, C.M.; et al. Chip-based quantum key distribution. Nat. Commun. 2017, 8, 13984. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Bacco, D.; Dalgaard, K.; Cai, X.; Zhou, X.; Rottwitt, K.; Oxenløwe, L.K. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inf. 2017, 3, 25. [Google Scholar] [CrossRef]
- Agnesi, C.; Da Lio, B.; Cozzolino, D.; Cardi, L.; Ben Bakir, B.; Hassan, K.; Della Frera, A.; Ruggeri, A.; Giudice, A.; Vallone, G.; et al. Hong-Ou-Mandel interference between independent III-V on silicon waveguide integrated lasers. Opt. Lett. 2019, 2, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Bacco, D.; Ding, Y.; Dalgaard, K.; Rottwit, K.; Oxenløwe, L.K. Space division multiplexing chip-to-chip quantum key distribution. Sci. Rep. 2017, 7, 12459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Haw, J.Y.; Cai, H.; Xu, F.; Assad, S.M.; Fitzsimons, J.F.; Zhou, X.; Zhang, Y.; Yu, S.; Wu, J.; et al. Integrated chip for continuous-variable quantum key distribution using silicon photonic fabrication. Nat. Photonics 2019. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Chen, Z.; Weedbrook, C.; Zhao, Y.; Wang, X.; Huang, Y.; Xu, C.; Zhang, X.; Wang, Z.; et al. Continuous-variable QKD over 50 km commercial fiber. Quantum Sci. Technol. 2019, 4, 035006. [Google Scholar] [CrossRef]
- Jouguet, P.; Kunz-Jacques, S.; Leverrier, A.; Grangier, P.; Diamanti, E. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 2013, 7, 378–381. [Google Scholar] [CrossRef]
- Qi, B.; Lougovski, P.; Pooser, R.; Grice, W.; Bobrek, M. Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X 2015, 5, 041009. [Google Scholar] [CrossRef]
- Soh, D.; Brif, C.; Coles, P.J.; Lütkenhaus, N.; Camacho, R.M.; Urayama, J.; Sarovar, M. Self-referenced continuous-variable quantum key distribution protocol. Phys. Rev. X 2015, 5, 04101. [Google Scholar] [CrossRef]
- Leverrier, A. Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 2015, 114, 070501. [Google Scholar] [CrossRef] [PubMed]
- Leverrier, A. Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett. 2017, 118, 200501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, Y.; Chen, Z.; Li, Z.; Yu, S.; Guo, H. One-time shot-noise unit calibration method for continuous-variable quantum key distribution. arXiv 2019, arXiv:1908.06230. [Google Scholar]
- Zhou, C.; Wang, X.; Zhang, Y.; Zhang, Z.; Yu, S.; Guo, H. Continuous-variable quantum key distribution with rateless reconciliation protocol. Phys. Rev. Appl. 2019, 12, 054013. [Google Scholar] [CrossRef]
- Grosshans, F.; Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 2002, 88, 057902. [Google Scholar] [CrossRef] [PubMed]
- Grosshans, F.; Wenger, J.; Tualle-Brouri, R.; Grangier, P.; Cerf, N.J. High-rate quantum key distribution using Gaussian-modulated coherent states. Nature 2003, 421, 8160581. [Google Scholar] [CrossRef] [PubMed]
- Weedbrook, C.; Lance, A.M.; Bowen, W.P.; Symul, T.; Ralph, T.C.; Ping, K.L. Quantum cryptography without switching. Phys. Rev. Lett. 2004, 93, 170504. [Google Scholar] [CrossRef] [PubMed]
- Pirandola, S.; Mancini, S.; Lloyd, S.; Braunstein, S.L. Continuous-variable quantum cryptography using two-way quantum communication. Nat. Phys. 2008, 4, 726. [Google Scholar] [CrossRef]
- García-Patrón, R.; Cerf, N.J. Continuous-variable quantum key distribution protocols over noisy channels. Phys. Rev. Lett. 2009, 102, 130501. [Google Scholar]
- Renner, R.; Cirac, J.I. de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 2009, 102, 110504. [Google Scholar] [CrossRef] [PubMed]
- Pirandola, S.; García-Patrón, R.; Braunstein, S.L.; Lloyd, S. Direct and reverse secret-Key capacities of a quantum channel. Phys. Rev. Lett. 2009, 102, 050503. [Google Scholar] [CrossRef] [PubMed]
- Weedbrook, C.; Pirandola, S.; Lloyd, S.; Ralph, T.C. Quantum cryptography approaching the classical limit. Phys. Rev. Lett. 2010, 105, 110501. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Peng, X.; Shen, Y.; Guo, H. Security of a new two-way continuous-variable quantum key distribution protocol. Int. J. Quantum Inf. 2012, 10, 1250059. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Weedbrook, C.; Yu, S.; Gu, W.; Sun, M.; Peng, X.; Guo, H. Improvement of two-way continuous-variable quantum key distribution using optical amplifiers. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 035501. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Zhao, Y.; Yu, S.; Guo, H. Numerical simulation of the optimal two-mode attacks for two-way continuous-variable quantum cryptography in reverse reconciliation. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 035501. [Google Scholar] [CrossRef] [Green Version]
- Leverrier, A.; García-Patrón, R.; Renner, R.; Cerf, N.J. Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 2013, 110, 030502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weedbrook, C.; Ottaviani, C.; Pirandola, S. Two-way quantum cryptography at different wavelengths. Phys. Rev. A 2014, 89, 012309. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhang, Y.; Wang, X.; Yu, S.; Guo, H. Improving parameter estimation of entropic uncertainty relation in continuous-variable quantum key distribution. Entropy 2019, 21, 652. [Google Scholar] [CrossRef] [Green Version]
- Huang, A.; Barz, S.; Andersson, E.; Makarov, V. Implementation vulnerabilities in general quantum cryptography. New J. Phys. 2018, 20, 103016. [Google Scholar] [CrossRef]
- Antonio, A.; Nicolas, B.; Nicolas, G.; Serge, M.; Stefano, P.; Valerio, S. Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 2007, 98, 230501. [Google Scholar]
- Thearle, O.; Janousek, J.; Armstrong, S.; Hosseini, S.; Schünemann (Mraz), M.; Assad, S.; Symul, T.; James, M.R.; Huntington, E.; Ralph, T.C.; et al. Violation of Bell’s inequality using continuous variable measurements. Phys. Rev. Lett. 2018, 120, 040406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Zhang, Y.-C.; Xu, F.; Peng, X.; Guo, H. Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 2014, 89, 052301. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-C.; Li, Z.; Yu, S.; Gu, W.; Peng, X.; Guo, H. Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 2014, 90, 052325. [Google Scholar] [CrossRef] [Green Version]
- Pirandola, S.; Ottaviani, C.; Spedalieri, G.; Weedbrook, C.; Braunstein, S.L.; Lloyd, S.; Gehring, T.; Jacobsen, C.S.; Andersen, U.L. High-rate measurement-device-independent quantum cryptography. Nat. Photonics 2015, 9, 397. [Google Scholar] [CrossRef] [Green Version]
- Weedbrook, C. Continuous-variable quantum key distribution with entanglement in the middle. Phys. Rev. A 2013, 87, 022308. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, Z.; Weedbrook, C.; Yu, S.; Guo, H. Continuous-variable source-device-independent quantum key distribution against general attacks. arXiv 2018, arXiv:1811.11973. [Google Scholar]
- Gehring, T.; Handchen, V.; Duhme, J.; Furrer, F.; Franz, T.; Pacher, C.; Werner, R.F.; Schnabel, R. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks. Nat. Commun. 2015, 6, 8795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walk, N.; Hosseini, S.; Geng, J.; Thearle, O.; Haw, J.Y.; Armstrong, S.; Assad, S.M.; Janousek, J.; Ralph, T.C.; Symul, T.; et al. Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. Optica 2016, 3, 634. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, Y.; Zhao, Y.; Wang, X.; Yu, S.; Guo, H. Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 2017, 96, 042334. [Google Scholar] [CrossRef] [Green Version]
- Lupo, C.; Ottaviani, C.; Papanastasiou, P.; Pirandola, S. Continuous-variable measurement-device- independent quantum key distribution: Composable security against coherent attacks. Phys. Rev. A 2018, 97, 052327. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhang, Y.; Wang, G.; Li, Z.; Guo, H. Composable security analysis of continuous-variable measurement-device-independent quantum key distribution with squeezed states for coherent attacks. Phys. Rev. A 2018, 98, 012314. [Google Scholar] [CrossRef] [Green Version]
- Furrer, F.; Franz, T.; Berta, M.; Leverrier, A.; Scholz, V.B.; Tomamichel, M.; Werner, R.F. Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 2012, 109, 100502. [Google Scholar] [CrossRef] [PubMed]
- Furrer, F. Reverse-reconciliation continuous-variable quantum key distribution based on the uncertainty principle. Phys. Rev. A 2014, 90, 042325. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, Y.; Xu, B.; Yu, S.; Guo, H. Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction. Phys. Rev. A 2018, 97, 042328. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Huang, P.; Bai, D.; Wang, S.; Bao, W.; Zeng, G. Continuous-variable measurement-device-independent quantum key distribution with photon subtraction. Phys. Rev. A 2018, 97, 042329. [Google Scholar] [CrossRef] [Green Version]
- Usenko, V.; Grosshans, F. Unidimensional continuous-variable quantum key distribution. Phys. Rev. A 2015, 92, 062337. [Google Scholar] [CrossRef] [Green Version]
- Usenko, V. Unidimensional continuous-variable quantum key distribution using squeezed states. Phys. Rev. A 2018, 98, 032321. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, W.; Wang, P.; Li, Y. Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution. Phys. Rev. A 2017, 95, 062330. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Wang, X.; Li, J.; Li, Y. Finite-size analysis of unidimensional continuous-variable quantum key distribution under realistic conditions. Opt. Express 2017, 25, 27995. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.; Huang, Y.; Jiang, T.; Yu, S. Improvement of unidimensional continuous-variable quantum key distribution systems by using a phase-sensitive amplifier. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 225502. [Google Scholar] [CrossRef]
- Bai, D.; Huang, P.; Zhu, Y.; Ma, H.; Xiao, T.; Wang, T.; Zeng, G. Unidimensional continuous-variable measurement-device-independent quantum key distribution. arXiv 2019, arXiv:1905.09029. [Google Scholar]
- Devetak, I.; Winter, A. Efficient quadrature of highly-oscillatory integrals using derivatives. Proc. R. Soc. A 2005, 461, 2057. [Google Scholar]
- Holevo, A.S. Bounds for the Quantity of Information Transmitted by a Quantum Communication Channel. Probl. Inf. Transm. 1973, 9, 177. [Google Scholar]
- García-Patrón, R.; Cerf, N.J. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 2006, 97, 190503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, M.M.; Giedke, G.; Cirac, J.I. Extremality of Gaussian Quantum States. Phys. Rev. Lett. 2006, 96, 080502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Using Unidimensional Modulated Coherent States Only in Alice’s Side | Using Unidimensional Modulated Coherent States Only in Bob’s Side | Using Unidimensional Modulated Coherent States Only in Both Sides | |
---|---|---|---|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Zhang, Y.; Chen, Z.; Yu, S. Unidimensional Continuous-Variable Quantum Key Distribution with Untrusted Detection under Realistic Conditions. Entropy 2019, 21, 1100. https://doi.org/10.3390/e21111100
Huang L, Zhang Y, Chen Z, Yu S. Unidimensional Continuous-Variable Quantum Key Distribution with Untrusted Detection under Realistic Conditions. Entropy. 2019; 21(11):1100. https://doi.org/10.3390/e21111100
Chicago/Turabian StyleHuang, Luyu, Yichen Zhang, Ziyang Chen, and Song Yu. 2019. "Unidimensional Continuous-Variable Quantum Key Distribution with Untrusted Detection under Realistic Conditions" Entropy 21, no. 11: 1100. https://doi.org/10.3390/e21111100
APA StyleHuang, L., Zhang, Y., Chen, Z., & Yu, S. (2019). Unidimensional Continuous-Variable Quantum Key Distribution with Untrusted Detection under Realistic Conditions. Entropy, 21(11), 1100. https://doi.org/10.3390/e21111100