
entropy

Article

Unidimensional Continuous-Variable Quantum Key
Distribution with Untrusted Detection under
Realistic Conditions

Luyu Huang 1 , Yichen Zhang 1,* , Ziyang Chen 2 and Song Yu 1

1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts
and Telecommunications, Beijing 100876, China; hly@bupt.edu.cn (L.H.); yusong@bupt.edu.cn (S.Y.)

2 State Key Laboratory of Advanced Optical Communication, Systems and Networks, Department of
Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China;
chenziyang@pku.edu.cn

* Correspondence: zhangyc@bupt.edu.cn

Received: 19 October 2019; Accepted: 7 November 2019; Published: 11 November 2019
����������
�������

Abstract: A unidimensional continuous-variable quantum key distribution protocol with untrusted
detection is proposed, where the two legitimate partners send unidimensional modulated or
Gaussian-modulated coherent states to an untrusted third party, i.e., Charlie, to realize the
measurement. Compared with the Gaussian-modulated coherent-state protocols, the unidimensional
modulated protocols take the advantage of easy modulation, low cost, and only a small number of
random numbers required. Security analysis shows that the proposed protocol cannot just defend all
detectors side channels, but also achieve great performance under certain conditions. Specifically,
three cases are discussed in detail, including using unidimensional modulated coherent states in
Alice’s side, in Bob’s side, and in both sides under realistic conditions, respectively. Under the three
conditions, we derive the expressions of the secret key rate and give the optimal gain parameters.
It is found that the optimal performance of the protocol is achieved by using unidimensional
modulated coherent states in both Alice’s and Bob’s side. The resulting protocol shows the potential
for long-distance secure communication using the unidimensional quantum key distribution protocol
with simple modulation method and untrusted detection under realistic conditions.

Keywords: unidimensional modulated coherent states; continuous-variable quantum key
distribution; untrusted detection

1. Introduction

Quantum key distribution (QKD) [1–4], as one of the most prominent applications of quantum
information science, allows two legitimate partners, i.e., Alice and Bob, to achieve the secure key
distribution phase of an encrypted communication. The QKD protocols can be divided into three main
categories, which are called discrete-variable (DV) QKD [5,6], continuous-variable (CV) QKD [7,8],
and differential-phase-shift (DPR) QKD [9–11], respectively. Both DV and CV systems can be integrated
on chip [12–16] and operate at room temperature, but CV systems have significant advantages to
achieve higher rate in a short distance link [17]. Thus, the CV-QKD protocols have attracted much
attention in the past few years [18–24]. To meet a variety of application needs, much theoretical and
experimental research of CV-QKD was done [25–38]. In the research of fully trusted-device protocols,
it is always assumed that the devices at two legitimate partners are honest, and Eve can only control
the quantum channels rather than the devices at the two parties.

However, the mismatch between practical devices and their idealized models may open security
loopholes, resulting in harmful damages to the security of a protocol and the practical systems [39]. To
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eliminate all the loopholes of devices, fully device-independent (DI) protocols are proposed [40],
which allow Eve to control all experimental devices without any assumptions. Nevertheless,
DI protocols need a loophole-free Bell test [41] which is an experimental challenge. To compromise
between practical protocols and full DI protocols, semi-device-independent (semi-DI) protocols are
proposed, e.g., measurement-device-independent (MDI) [42–44], source-device-independent [45,46],
and one-sided device-independent (1sDI) [47,48] QKD protocols, to consider both the security of some
devices and the performance of a protocol. In semi-DI protocols, some devices can be assumed to be
fully controlled by the adversary while the others should be well characterized. The investigations on
the security analysis of semi-DI protocols develop very fast in recent years, such as CV-MDI [49–51],
source-device-independent [46] and CV-1sDI protocols [47,52,53], which extend the application of
such protocols.

Compared with one-way CV-QKD protocols, the secret key of CV-MDI QKD protocols is
established by the measurement results of an untrusted third party, which reduces the performance of
the protocols [42]. A lot of efforts were aimed at improving the performance of the protocols, such as
using squeezed states [43], and virtual photon subtraction [54,55]. Recently, the unidimensional
CV-QKD protocols were proposed in one-way CV-QKD protocols [56,57]. Compared with the
Gaussian-modulated protocols, the features of the unidimensional CV-QKD protocols include easy
modulation, low cost, and only a small number of random numbers required [56,58]. Moreover,
the performance of the unidimensional coherent-state CV-QKD protocol is comparable to the
Gaussian-modulated coherent-state protocol under the condition of low excess noise [56,58,59]. Even if
the detectors are not ideal, the performance of the protocols can be improved by adding an optical
amplifier [60]. Therefore, the unidimensional CV-QKD protocol using coherent states has a certain
potential to be applied to various scenarios.

In this paper, we introduce the unidimensional CV-QKD protocol with untrusted detection under
realistic conditions in order to eliminate the loopholes described above. We first present the equivalent
entanglement-based (EB) scheme and the prepare-and-measure (PM) scheme of the unidimenaional
CV-QKD protocol with untrusted detection under realistic conditions, including three different schemes
based on using unidimensional modulated coherent states at each side (Alice’s side or Bob’s side),
and both sides (both Alice’s and Bob’s side). The expressions of the secret key rate of the protocols are
derived and the optimal gain parameters of the displacement are calculated, respectively. It is found
that the optimal performance, in terms of both key rates and maximal transmission distance, of the
protocol is achieved using unidimensional modulated coherent states at both Alice’s and Bob’s side.
In addition, we also consider the asymmetric case that the distance between Bob and Charlie decreases
to make the transmission distance further. Thus we investigate the relationship between the distance
from Alice or Bob to Charlie by numeral simulation. Furthermore, an extreme situation is taken into
account that Charlie is put on Bob’s side, and the simulation result indicates that the total transmission
distance increases when the distance from Bob to Charlie decreases.

The paper is organized as follows. In Section 2, we give detailed descriptions of the PM and EB
schemes of the proposed protocol in three situations. Then we derive the expressions of secret key rate
in detail and show the numerical simulation results of the secret key rate. Our conclusions are drawn
in Section 3.

Note added. Recently, an independent work [61] was posted on arXiv. This work studied
the performance of the measurement-device-independent CV-QKD protocol using unidimensional
modulated coherent states in both Alice’s and Bob’s sides.

2. Results

2.1. Unidimensional CV-QKD Protocol with Untrusted Detection

Firstly, we propose the PM scheme for unidimensional CV-QKD protocol with untrusted detection,
as illustrated in Figure 1. In particular, the modulator in the model can be Gaussian modulator as
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well as unidimensional modulator. Thus, there are four probable situations in our discussion, among
which the situation that Gaussian modulator in both sides was described in detail in references [50,51].
Therefore, the other three probable schemes are taken into consideration in the proposed protocol
with unidimensional modulator, which are the unidimensional modulation only in Alice’s side,
the unidimensional modulation only in Bob’s side and the unidimensional modulation both in Alice’s
and Bob’s side, respectively. The PM schemes of the three cases are described separately as follows:

Case 1: unidimensional modulation only in Alice’s side
Step 1. Alice produces coherent states and randomly selects the x− or p−quadrature

along which the prepared states are displaced according to a random Gaussian variable with
displacement variance VM

A = V2
A − 1. At the same time, Bob randomly prepares coherent states

|xB + ipB〉, where xB and pB are Gaussian distributed with modulation variance VM
B = VB − 1.

Subsequently, the states are sent to the untrusted party Charlie through two different channels
whose length are LAC and LBC, respectively.

Step 2. After receiving the mode A′ from Alice and the mode B′ from Bob, Charlie combines
them with a 50:50 beamsplitter. The output are mode C and D. Subsequently, Charlie performs
measurement on the x−quadrature of the mode C and the p−quadrature of the mode D with two
homodyne detectors, and then announces the results XC and PD publicly through the classical
channels.

Step 3. According to the information Charlie announces, Bob modifies his data as x′B =

xB + kXC, p′B = pB + kPD, where k is the amplification coefficient. Here Alice keeps her data
unchanged.

Step 4. Alice and Bob perform post-processing, including information reconciliation, privacy
amplification , and so on.

Case 2: unidimensional modulation only in Bob’s side
Step 1. Alice randomly prepares coherent states |xA + ipA〉, where xA and pA are Gaussian

distributed with modulation variance VM
A = VA − 1. Meanwhile, Bob produces coherent states

and randomly selects the x− or p− quadrature along which the prepared states are displaced
according to a random Gaussian variable with displacement variance VM

B = V2
B − 1. Subsequently,

the states are sent to the untrusted party Charlie through two different channels whose length are
LAC and LBC, respectively.

The next steps are the same as those in Case 1.

Case 3: unidimensional modulation in both sides
Step 1. Both Alice and Bob produce coherent states and simultaneously select the x− or

p−quadrature along which the prepared states are displaced according to two random Gaussian
variables with displacement variance VM

A = V2
A − 1 and VM

B = V2
B − 1, respectively. Subsequently,

the states are sent to the untrusted party Charlie through two different channels whose length are
LAC and LBC, respectively.

The next steps are the same as those in Case 1.

Furthermore, the equivalent EB schemes are described as followed, among which the Case 3 is
revealed in Figure 2a:

Case 1: unidimensional modulation only in Alice’s side
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Step 1. Alice generates Einstein-Podolsky-Rosen (EPR) states with variance VA. Then she
keeps mode A1 and squeezes the other mode A2 on a squeezer. The output is mode A3, which is
sent to the untrusted party Charlie through a channel with length LAC. Meanwhile, Bob generates
another Einstein-Podolsky-Rosen (EPR) state with variance VB. Then he keeps mode B1 and sends
the other mode B2 through a channel with length LBC.

Step 2. Modes A′ and B′ received by Charlie interfere at a 50:50 beamsplitter with two output
modes C and D. Subsequently, Charlie performs measurement on the x−quadrature of the mode
C and the p−quadrature of the mode D with two homodyne detectors, and then announces the
results XC and PD publicly through the classical channels.

Step 3. According to the information Charlie announces, Bob displaces mode B1 by operation
D̂ (β), where β = g(XC + iPD), and g represents the gain of displacement. The relationship
between k and g is well studied in reference [42]. Then Bob measures mode B′1 to get the final
data XB,PB using heterodyne detection. Alice uses mode A1 to get the final data XA(PA) using
homodyne detection.

Step 4. Alice and Bob perform post-processing, including information reconciliation, privacy
amplification , and so on.

Case 2: unidimensional modulation only in Bob’s side
Step 1. Alice generates Einstein-Podolsky-Rosen (EPR) states with variance VA. Then she

keeps mode A1 and sends the other mode A2 through a channel with length LAC. Meanwhile, Bob
generates another Einstein-Podolsky-Rosen (EPR) state with variance VB. Then he keeps mode
B1 and squeezes the other mode B2 on a squeezer. The output is mode B3, which is sent to the
untrusted party Charlie through a channel with length LBC.

Step 2 and Step 4 are the same as those in Case 1.
Step 3. According to the information Charlie announces, Bob displaces mode B1 by operation

D̂ (β), where β = g(XC + iPD). Then Bob measures mode B′1 to get the final data XB(PB) using
homodyne detection. Alice uses mode A1 to get the final data XA, PA using heterodyne detection.

Case 3: unidimensional modulation in both sides
Step 1. Both Alice and Bob generate Einstein-Podolsky-Rosen (EPR) states with variance VA

and VB respectively. Alice and Bob keep mode A1 and mode B1 of their own EPR state separately.
The other two modes, A2 and B2, are squeezed on two squeezers, and the output are modes A3

and B3. Then the modes A3 and B3 are sent to the untrusted party Charlie through two different
channels with length LAC and LBC.

Step 2 and Step 4 are the same as those in Case 1.
Step 3. According to the information Charlie announces, Bob displaces mode B1 by operation

D̂ (β), where β = g(XC + iPD). Then Alice measures mode A1, Bob measures mode B′1 to get the
final data XA(PA), XB(PB) using homodyne detection, respectively.
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Figure 1. (Color online) The PM scheme of the unidimensional CV-QKD protocol with untrusted
detection with the unidimensional modulator in both sides, where both Alice and Bob perform
unidimensional modulation. Replacing the unidimensional modulation in Bob’s side with the standard
Gaussian modulation corresponds to the case of unidimensional modulation only in Alice’s side,
while replacing the unidimensional modulation in Alice’s side with the standard Gaussian modulation
corresponds to the case of unidimensional modulation only in Bob’s side. In particular, the quantum
channels and Charlie are fully controlled by Eve.

Figure 2. (Color online) The EB scheme and the equivalent one-way model of the unidimensional
CV-QKD protocol, where the EPR states are two-mode vacuum states, with untrusted detection and
coherent states (a) The EB scheme of the unidimentional modulation both in Alice’s and Bob’s side
where the detectors are all homodyne detector. (b) The equivalent one-way model of the case that are
the unidimentional modulation only in Alice’s side. (c) The equivalent one-way model of the case that
are the unidimentional modulation only in Bob’s side. (d) The equivalent one-way model of the case
that are the unidimentional modulation both in Alice’s and Bob’s side. In particular, two quantum
channels and Charlie are fully controlled by Eve, but Eve has no access to the apparatuses in Alice’s
and Bob’s stations.

2.2. Security Analysis

In this section, the three schemes involved above, which are designed to reduce the cost and
simplify the implementation of CV-QKD with untrusted detectors, are discussed separately. In each
case, we derive the secure bound of the protocol using the EB scheme owing to ease of calculation in
detail. In particular, under the assumptions that Eve controls the channels, Charlie and Bob’s EPR
state, and the displacement in Figure 2a, their equivalent EB models of one-way CV-QKD model are
illustrated in Figure 2b–d.
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2.2.1. Using Unidimensional Modulated Coherent States Only in Alice’s Side

The EB description of this case is similar to that shown in Figure 1, and the only difference is that
there is no squeezer in Bob’s side. Thus, the EB scheme discussed here is equivalent to the one-way
CV-QKD with unidimentional modulated coherent states and heterodyne detection shown in Figure 2b.
The secret key rate K against collective attacks for reverse reconciliation is given by [62]

K(b) = βI(b) (A : B)− χ(b) (B : E) , (1)

where β is the reconciliation efficiency, I (A : B) = 1
2 log2

(
V(b)

B +1

V(b)
B|A+1

)
is the classical mutual information

between Alice and Bob, χ(B : E) is the Holevo quantity [63]:

χ(b) (B : E) = S
(

ρ
(b)
E

)
−∑xB

p(b) (xB) S
(

ρ
(b)
E|xB

)
, (2)

where S(ρ) is the von Neumann entropy of the state ρ, xB is Bob’s measurement result obtained with the
probability p(b) (xB), ρ

(b)
E|xB

is the corresponding state of Eve’s ancillary, and ρ
(b)
E = ∑xB

p(b) (xB) ρ
(b)
E|xB

are Eve’s partial states.
Since Eve is able to purify the whole system ρ

(b)
A1B′1

to maximize the information she can get, we

have S
(

ρ
(b)
E

)
= S

(
ρ
(b)
A1B′1

)
. Furthermore, after Bob’s projective measurement resulting in xB, the

system ρ
(b)
A1E is pure, so that S

(
ρ
(b)
E|xB

)
= S

(
ρ
(b)
A1|xB

)
. According to the Gaussian optimality theorem,

we assume the final state ρ
(b)
A1B′1

shared by Alice and Bob is Gaussian so that the information available

to the eavesdropper is maximum [64,65]. Thus, the entropy S(ρ(b)A1B′1
) and ∑xB

p(b) (xB) S
(

ρ
(b)
A1|xB

)
can

be calculated directly from the covariance matrices γ
(b)
A1B′1

and γ
(b)
A1|xB

. In addition, now the expression

for χ
(b)
BE can be simplified as followed:

χ (B : E) =
2

∑
i=1

G
(

λi − 1
2

)
− G

(
λ3 − 1

2

)
, (3)

where G(x) = (x + 1) log2(x + 1)− x log2 x, λ1,2 are the symplectic eigenvalues of the covariance

matrix γ
(b)
A1B′1

and λ3 is the symplectic eigenvalue of the covariance matrix γ
(b)
A1|xB

, which can be obtained
in terms of the corresponding EB scheme. As is described in the corresponding EB scheme, mode
A3 in Alice’s side and B2 in Bob’s side turn into mode A′ and B′ after the channel, which satisfy the
following relationships:

Â′(b)x,p =
√

ηA Â3x,p +
√

1− ηAÊ2x,p, (4)

B̂′(b)x,p =
√

ηB B̂2x,p +
√

1− ηBÊ5x,p, (5)

where ηA = 10−αLAC/10, ηB = 10−αLBC/10 is the channel parameter transmittance on Alice’s and Bob’s
side, with the loss of channel α = 0.2 dB/km, the transmission distance between Alice and Charlie
LAC, and the transmission distance between Bob and Charlie LBC.

Then passing through a beamsplitter, mode A′ becomes mode C and mode B′ becomes mode
D, and

Ĉ(b)
x,p =

1√
2
(Â′(b)x,p − B̂′(b)x,p ), D̂(b)

x,p =
1√
2
(Â′(b)x,p + B̂′(b)x,p ). (6)
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After measurement and displacement operation, mode B1 becomes mode B′1, which is entangled
with A1. In addition, the relationship between mode B1 and mode B′1 can be written as

B̂′(b)1x = B̂1x + gĈ(b)
x , B̂′(b)1p = B̂1p + gD̂(b)

p , (7)

where g represents the gain of the displacement. Thus, the covariances of mode A1 and mode B′1 in
x−quadrature and p−quadrature can be calculated as〈

Â1x, B̂′(b)1x

〉
=
√

T(b)VA
(
V2

A − 1
)
, (8)〈

Â1p, B̂′(b)1p

〉
= −

√
T(b)

(
V2

A − 1
)

/VA, (9)

where T(b) = g2(b)

2 ηA. Furthermore, the variances of mode B′(b)1 are calculated by

V
B′(b)1x

= VB +
g2(b)

2
ηA

(
V2

A + χA

)
+

g2(b)

2
ηB (VB + χB)− g

√
2ηB

√(
V2

B − 1
)
,

V
B′(b)1p

= VB +
g2(b)

2
ηA (1 + χA) +

g2(b)

2
ηB (VB + χB)− g

√
2ηB

√(
V2

B − 1
)
.

(10)

Then the covariance matrix γ
(b)
A1B′1

can be written naturally as

γ
(b)
A1B1

′ =


VA 0

√
T(b)VA

(
V2

A − 1
)

0

0 VA 0 C(b)
p√

T(b)VA
(
V2

A − 1
)

0 T(b)
(

V2
A − 1 + ε′(b)

)
+ 1 0

0 C(b)
p 0 1 + T(b)ε′(b)

 =

 γA1 σ
T(b)
A1B′1

σ
(b)
A1B′1

γ
(b)
B′1

 , (11)

where

ε′(b) = εA +
1

ηA
[ηB (VB + εB − 1) + 2] +

VB − 1− g
√

2ηB

√
V2

B − 1

g2(b)

2 ηA

. (12)

The value of ε′(b) reaches the minimum when g(b) =
√

2
ηB

√
VB−1
VB+1 , and the minimum ε′(b) =

εA + 1
ηA

[ηB (εB − 2) + 2]. Furthermore, since the p−quadrature is not modulated, the correlation

C(b)
p is unknown. Yet the matrix is restricted by the constraint following from Heisenberg

uncertainly principle:
γ
(b)
A1B′1

+ iΩ ≥ 0, (13)

where Ω =
N⊕

k=1
ω and ω =

[
0 1
−1 0

]
. Thus the possible values of C(b)

p is limited, and its value

corresponding to the minimum secret key distribution should be concerned so that we can get the
lower secure bound.

Next, the symplectic eigenvalues λ3 is given by the matrix γ
(b)
A1|xB

, which can be calculated by :

γ
(b)
A1|xB

= γA1 − σ
T(b)
A1B′1

(
γ
(b)
B′1

+ I
)−1

σ
(b)
A1B′1

, (14)

where I is an identity matrix.
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2.2.2. Using Unidimensional Modulated Coherent States ONLY in Bob’s Side

Similarly, the EB description in this case is similar to that shown in Figure 2a, and the only
difference is that there is no squeezer in Alice’s side. In addition, the EB scheme discussed here is
equivalent to the one-way CV-QKD model with homodyne detection, which is illustrated in Figure 2c.
The secret key rate K against collective attacks for reverse reconciliation is also given by (1), where the

first part in right side is now I(c) (A : B) = 1
2 log2

(
VA+1

V(c)
A|B+1

)
. The second part χ(c)(B : E) is given by

(3), where λ
(c)
1,2 are the symplectic eigenvalues of the covariance matrix γ

(c)
A1B′1

and λ
(c)
3 is the symplectic

eigenvalue of the covariance matrix γ
(c)
A1|xB

. The calculations to obtain γ
(c)
A1B′1

and γ
(c)
A1|xB

resemble those

in Section 2.2.1. Finally, the matrix γ
(c)
A1B′1

has the following form:

γ
(c)
A1B1

′ =


VA 0

√
T(c)

x
(
V2

A−1
)

0

0 VA 0 C(c)
p√

T(c)
x
(
V2

A−1
)

0 T(c)
x

(
VA+χ

(c)
linex

)
0

0 C(c)
p 0 T(c)

p

(
VA+χ

(c)
linep

)

=
 γ

(c)
A1

σ
T(c)
A1B′1

σ
(c)
A1B′1

γ
(c)
B′1

 , (15)

where T(c)
x = g2(c)

x ηA/2 and T(c)
p = g2(c)

p ηA/2. The factors χ
(c)
linex

and χ
(c)
linep

can be calculated by:

χ
(c)
linex

=
1− T(c)

x

T(c)
x

+ ε
′(c)
x , χ

(c)
linep

=
1− T(c)

p

T(c)
p

+ ε
′(c)
p , (16)

with

ε
′(c)
x = εA+

1
ηA

[
ηB

(
V2

B+εB−1
)
+2
]
+

VB−1−g(c)x
√

2ηB

√
VB(V2

B−1)

g2(c)
x
2 ηA

,

ε
′(c)
p = εA+

1
ηA

[
ηB

(
V2

B+εB−1
)
+2
]
+

VB−1−g(c)p
√

2ηB

√
(V2

B−1)/VB

g2(c)
p
2 ηA

.

(17)

The value of ε
′(c)
x reaches the minimum when g(c)x =

√
2

ηB

√
VB−1

VB(VB+1) , and the minimum ε
′(c)
x =

εA + 1
ηA

[ηB (εB −VB − 1) + 2]. The value of ε
′(b)
p reaches the minimum when g(c)p =

√
2

ηB

√
VB(VB−1)

VB+1 ,

and the minimum ε
′(c)
p = εA + 1

ηA

[
ηB

(
εB − 1

VB
− 1
)
+ 2
]
.

Also, the matrix γ
(c)
A1B1

′ is restricted by constraint following from Heisenberg uncertainly principle:

γ
(c)
A1B′1

+ iΩ ≥ 0. (18)

Furthermore, the symplectic eigenvalues λ
(c)
3 is given by the matrix γ

(c)
A1|xB

, which can be
calculated by :

γ
(c)
A1|xB

= γ
(c)
A1
− σ

T(c)
A1B′1

(
Xγ

(c)
B′1

X
)−1

σ
(c)
A1B′1

. (19)

2.2.3. Using Unidimensional Modulated Coherent States Both in Alice’s and Bob’s Side

The EB description in this case is illustrated in Figure 2a, which is equivalent to the one-way
CV-QKD model with homodyne detection shown in Figure 2d. Then the secret key rate K against
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collective attacks for reverse reconciliation is obtained by (1), with the I(d) (A : B) = 1
2 log2

(
VA

V(d)
A|B

)
.

Furthermore, χ(d)(B : E) is given identically by (3), and all the parameters in the expression can be
obtained from the final matrix γ

(d)
A1B′1

, whose form is as followed:

γ
(d)
A1B1

′=


VA 0

√
T(d)

x VA
(
V2

A−1
)

0

0 VA 0 C(d)
p√

T(d)
x VA

(
V2

A−1
)

0 T(d)
x

(
V2

A−1+ε
′(d)
x

)
+1 0

0 C(d)
p 0 1+T(d)

p ε
′(d)
p

=
 γ

(d)
A1

σ
T(d)
A1B′1

σ
(d)
A1B′1

γ
(d)
B′1

, (20)

where T(d)
x = g2(d)

x ηA/2, T(d)
p = g2(d)

p ηA/2, and

ε
′(d)
x = εA +

1
ηA

[
ηB

(
V2

B + εB − 1
)
+ 2
]
+

VB − 1− g(d)x
√

2ηB

√
VB(V2

B − 1)

g2(d)
x
2 ηA

,

ε
′(d)
p = εA +

1
ηA

[
ηB

(
V2

B + εB − 1
)
+ 2
]
+

VB − 1− g(d)p
√

2ηB

√
(V2

B − 1)/VB

g2(d)
p
2 ηA

.

(21)

The values of ε
′(d)
x and ε

′(d)
p reaches the minimum similarly when

g(d)x =

√
2

ηB

√
VB − 1

VB(VB + 1)
, g(d)p =

√
2

ηB

√
VB(VB − 1)

VB + 1
, (22)

at this time are the minimum

ε
′(d)
x = εA +

1
ηA

[ηB (εB −VB − 1) + 2] ,

ε
′(d)
p = εA +

1
ηA

[
ηB

(
εB −

1
VB
− 1
)
+ 2
]

.
(23)

Furthermore, the matrix γ
(d)
A1B1

′ is restricted by the constraint following from Heisenberg
uncertainly principle:

γ
(d)
A1B′1

+ iΩ ≥ 0. (24)

Finally, the symplectic eigenvalues λ
(d)
3 is given by the matrix γ

(d)
A1|xB

, which can be calculated by :

γ
(d)
A1|xB

= γ
(d)
A1
− σ

T(d)
A1B′1

(
Xγ

(d)
B′1

X
)−1

σ
(d)
A1B′1

. (25)

2.3. Numeral Simulation

In this section, the performance of the proposed three schemes of the unidimensional CV-QKD
protocol with untrusted detection are illustrated and compared. In particular, we first summarize
the optimal parameters of the proposed three schemes into a table illustrated in Table 1. Here, the
performance of the three cases discussed above is considered to make a contrast.
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Table 1. Optimal parameters of the unidimensional CV-QKD protocol with untrusted detection.

Using Unidimensional
Modulated Coherent States

Only in Alice’s Side

Using Unidimensional
Modulated Coherent States

Only in Bob’s Side

Using Unidimensional
Modulated Coherent States

Only in Both Sides

ε′x εA + 1
ηA

[ηB (εB − 2) + 2] εA +
1

ηA
[ηB (εB −VB − 1) + 2]

εA +
1

ηA
[ηB (εB −VB − 1) + 2]

ε′p εA + 1
ηA

[ηB (εB − 2) + 2] εA +
1

ηA

[
ηB

(
εB − 1

VB
− 1
)
+ 2
] εA +

1
ηA

[
ηB

(
εB − 1

VB
− 1
)
+ 2
]

gx

√
2

ηB

√
VB−1
VB+1

√
2

ηB

√
VB−1

VB(VB+1)

√
2

ηB

√
VB−1

VB(VB+1)

gp

√
2

ηB

√
VB−1
VB+1

√
2

ηB

√
VB(VB−1)

VB+1

√
2

ηB

√
VB(VB−1)

VB+1

The parameters that will affect the secret key rate are the reconciliation efficiency β, the variance
of Alice and Bob VA, VB, the transmission efficiency ηA, ηB, excess noise εA, εB of two quantum
channels. It can be seen in Table 1 that the excess noises ε′x, ε′p are related to the variance VB. When
the values of ε′x, ε′p are less than zero, the excess noises are physically absent. Therefore, the values
of variance VB, which make the excess noises ε′x, ε′p less than zero, are unreasonable. Conversely,
when the values of VB make ε′x, ε′p greater than or equal to zero at the same time, they are reasonable.
Thus, we make the variance VB take the values 1.001, 1.1, and 2, and simulate the performances of the
excess noise ε′x, ε′p. As is shown in Figure 3, when the variance VB = 1.001, the excess noises in x−
and p−quadrature are both greater than zero, so we choose this value for numerical simulation. In
particular, we choose a large variance of VA = 105 to see the performance of the ideal modulation,
and use practical variance of VA = 4 to observe the realistic performance. Excess noise is set to
εA = εB = ε = 0.001 and transmittance are ηA = 10−αLAC/10, ηB = 10−αLBC/10 (α = 0.2 dB/km) for
simulation, which are standard parameters in one-way CV-QKD experiment. Furthermore, the other
parameter reconciliation efficiencies in the three cases are set as β = 0.98 for practical case, and β = 1
for ideal case.
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Figure 3. (Color online) Excess noise versus distance with different VB in the situation that
unidimensional modulation is in both sides. The dotted lines are under the condition that VB = 2,
the dashed lines represent the condition that VB = 1.1, and the solid lines represent the case that
VB = 1.001. εA and εB is set as εA = εB = 0.001. In particular, the region is divided into two parts by a
black dotted-dashed line, where upper part is a reasonable region, indicating that the excess noise is
greater than zero, and the lower half is an unreasonable area, indicating that the excess noise is less
than zero.

Firstly, we consider the performance of the symmetric case where the length of two quantum
channels LAC = LBC. Then we make a numerical simulation of the secret key rates K in the three cases.
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Unfortunately, even the parameters are set to be ideal, the secret key is unable to be distilled in the case
that unidimensional modulated coherent states only in Bob’s side. The phenomenon may be resulted
from the structure of the scheme and the awful effect of the excess noise in the p− quadrature where
the states are not modulated. Since MDI-type protocol requires displacement operation in Bob’s side,
at least 1-unit extra variance will be introduced to the quadrature by Charlie’s announced data when
displacing a coherent state, we find it rational that no secure key could be extracted in the case that
the unidimensional modulation only in Bob’s side. Thus, the cases that unidimensional modulated
coherent states only in Alice’s side as well as in both sides are taken into consideration. The simulation
results are shown in Figure 4, from which we make a comparison. We find that the secret key rate of
ideal condition is always larger than that of practical condition. Furthermore, it can be directly seen
that the case of unidimentional modulation both in two sides corresponds to higher secret key rate
and further transmission distance.
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Figure 4. (Color online) Secret key rate in the symmetric case (LAC = LBC). the dotted lines are under
the ideal condition (VA = 105, β = 1 in the situations of unidimensional modulation only in Alice’s
side as well as in both sides) and the solid lines represent the practical condition (VA = 4, β = 0.98 in
the situations of unidimensional modulation only in Alice’s side as well as in both sides). The red lines
represent the case that the unidimentional modulation only exists in Alice’s side, the black lines are on
behalf of the case that the unidimensional modulation exists in both sides.

Secondly, we can consider the EB schemes of the proposed protocol as a continuous-variable
quantum teleportation process, i.e., Alice and Bob prepare EPR states respectively, and then pass
the mode from Alice to Bob. Therefore, any loss and noise in the channel from Bob to Charlie with
the length LBC will reduce the quality of the EPR source, thus affecting the final performance, as is
revealed in Figure 4. In other words, LBC has a much greater impact on the final performance than LAC.
In order to eliminate this effect as much as possible and increase the total transmission distance, we try
to shorten the distance between Bob and Charlie (LBC). The change of the total transmission distance
is displayed by numerical simulation, where the distance between Bob and Charlie LBC is a function of
the distance between Alice and Charlie LAC. Specifically, we find the maximum LBC, which makes the
secret key rate greater than zero, corresponding to each LAC. The results are displayed in Figure 5,
from which we can find that when Charlie’s position is close to Bob, the total maximal transmission
distance LAB (LAB = LAC + LBC) will be relatively longer. Also, LAB improves with large variance
VA = 105. Furthermore, examining different locations the unidimentional modulation in, we find that
the identical result that the transmission distance corresponding to the unidimentional modulation in
both sides has a better performance.

Finally, an extreme asymmetric situation is considered when LBC = 0. As revealed in Figure 6, the
transmission distance between the two legitimate parties LAB increases significantly in a comparison
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with the symmetric case. In this case, the secret key rates correlated with the unidimentional
modulation in both sides provide a better performance and the performance of the secret key rate in
the ideal condition is better than that in the practical condition. Besides, we also plot the curves of
standard CV-MDI QKD in Figure 6 for a better understanding of the secret key rate performance of our
proposed protocol. As is revealed in Figure 6, the performance of the proposed protocol is comparable
to the standard CV-MDI QKD protocol.

0 50 100 150

Distance between Alice and Charlie (km)

0

0.1

0.2

0.3

0.4

0.5
D

is
ta

n
c
e
 b

e
tw

e
e
n
 B

o
b
 a

n
d
 C

h
a
rl
ie

 (
k
m

)

Practical, V
A
=4, =0.98

Ideal, V
A
=10

5
, =1

Practical, V
A
=4, =0.98

Ideal, V
A
=10

5
, =1

K > 0

Figure 5. (Color online) Curves of the correlation between LAC and LBC. The transmission distance
from Alice and Charlie LAC is considered to be a function of the distance from Bob to Charlie LBC.
the dotted lines are under the ideal condition (VA = 105, β = 1 in the situations of unidimensional
modulation only in Alice’s side as well as in both sides) and the solid lines represent the practical
condition (VA = 4, β = 0.98 in the situations of unidimensional modulation only in Alice’s side as well
as in both sides). The red lines represent the case that the unidimentional modulation only exists in
Alice’s side, the black lines are on behalf of the case that the unidimensional modulation exists in both
sides of Alice and Bob. The excess noise to be εA = εB = 0.001.
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Figure 6. (Color online) Secret key rate versus transmission distance between Alice and Charlie, and
the distance LBC is set to LBC = 0 . Identically, the dotted lines are under the ideal condition, and the
solid lines represent the practical condition. The red lines represent the case that the unidimentional
modulation only exists in Alice’s side, the black lines are on behalf of the case that the unidimensional
modulation exists in both sides of Alice and Bob, and the blue lines are the secret key rates of the
standard CV-MDI protocols. The parameters are set the same as the symmetric situation.
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3. Discussion and Conclusions

In this paper, a unidimensional continuous-variable quantum key distribution protocol with
untrusted detection under realistic conditions is proposed. We consider three situations including
using unidimensional modulated coherent states at each side or both sides and derive the expressions
of the secret key rates against the collective attacks of protocols in each situation, where the third
party is untrusted and may be controlled by the eavesdropper. Making use of the expression we make
numeral simulations and compare the performances of the cases that the unidimensional modulation
exists only in Alice’s side as well as in both sides. From the simulation results can we know that the
protocol provides a better performance when the unidimensional modulation is used in both sides
of the two legitimate partners, and decreasing the distance between Bob and Charlie helps make the
total transmission distance further. Indeed, with the appropriate parameters and schemes selected,
we could extract the secret key based on the proposed protocol except in the case of unidimensional
coherent states only in Bob’s side. We provide a possible explanation of the phenomenon, and the
reason for more accuracy is still an open question. We would like to model this situation better in the
future. Undoubtedly, the proposed protocol provides a simple method to simplify the implementation
of the CV-QKD systems, and the security analysis is based on the uncertainty relation. In addition,
the scheme has the ability to immune to the collective attacks against standard detectors that are very
likely to exist in practical system.
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