Intuitionistic Fuzzy Entropy for Group Decision Making of Water Engineering Project Delivery System Selection
Abstract
:1. Introduction
2. Influencing Factors Indexes of PDS
3. Preliminaries
- (1)
- (2)
- (3)
- (4)
- (5)
- (1)
- if, then;
- (2)
- if, there are three situations:
- (a)
- , then;
- (b)
- , then;
- (c)
- , then.
4. Establishment of Intuitionistic Fuzzy Group Decision Model
4.1. Group Decision Model Description
4.2. Intuitionistic Fuzzy Entropy Model for Decision Attribute Weight Determination
4.3. Intuitionistic Fuzzy Comprehensive Entropy Model Based on Decision Expert Weight
4.4. Overall Scheme Sorting Model Based on IFHA and IHWA Operators
5. Case Study Analysis
5.1. Background Description
5.2. Determination of Attribute Weight
5.3. Determination of Expert Weight
5.4. Ranking of Overall Schemes and Patterns Comparison
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raouf, A.M.; Al-Ghamdi, S.G. Effectiveness of Project Delivery Systems in Executing Green Buildings. J. Constr. Eng. Manag. 2019, 145, 03119005. [Google Scholar] [CrossRef]
- Mesa, H.A.; Molenaar, K.R.; Alarcón, L.F. Comparative analysis between integrated project delivery and lean project delivery. Int. J. Proj. Manag. 2019, 37, 395–409. [Google Scholar] [CrossRef]
- Laurent, J.; Leicht, R.M. Practices for Designing Cross-Functional Teams for Integrated Project Delivery. J. Constr. Eng. Manag. 2019, 145, 05019001. [Google Scholar] [CrossRef]
- Wu, P.; Xu, Y.; Jin, R.; Lu, Q.; Madgwick, D.; Hancock, C.M. Perceptions towards risks involved in off-site construction in the integrated design & construction project delivery. J. Clean. Prod. 2019, 213, 899–914. [Google Scholar]
- An, X.; Wang, Z.; Li, H.; Ding, J. Project Delivery System Selection with Interval-Valued Intuitionistic Fuzzy Set Group Decision-Making Method. Group Decis. Negot. 2018, 27, 689–707. [Google Scholar] [CrossRef]
- Li, H.; Qin, K.; Li, P. Selection of project delivery approach with unascertained model. Kybernetes 2015, 44, 238–252. [Google Scholar] [CrossRef]
- Ojiako, U.; Johansen, E.; Greenwood, D. A qualitative re-construction of project measurement criteria. Ind. Manag. Data Syst. 2008, 108, 405–417. [Google Scholar] [CrossRef]
- Oyetunji, A.A.; Anderson, S.D. Relative Effectiveness of Project Delivery and Contract Strategies. J. Constr. Eng. Manag. 2006, 132, 3–13. [Google Scholar] [CrossRef]
- Khwaja, N.; O’Brien, W.J.; Martinez, M.; Sankaran, B.; O’Connor, J.T.; Hale, W. “Bill” Innovations in Project Delivery Method Selection Approach in the Texas Department of Transportation. J. Manag. Eng. 2018, 34, 05018010. [Google Scholar] [CrossRef]
- Molenaar, K.R.; Songer, A.D. Model for Public Sector Design-Build Project Selection. J. Constr. Eng. Manag. 1998, 124, 467–479. [Google Scholar] [CrossRef]
- Al Khalil, M.I. Selecting the appropriate project delivery method using AHP. Int. J. Proj. Manag. 2002, 20, 469–474. [Google Scholar] [CrossRef]
- Mafakheri, F.; Dai, L.; Ślęzak, D.; Nasiri, F. Project Delivery System Selection under Uncertainty: Multicriteria Multilevel Decision Aid Model. J. Manag. Eng. 2007, 23, 200–206. [Google Scholar] [CrossRef]
- Luu, D.T.; Ng, S.T.; Chen, S.E. Formulating Procurement Selection Criteria through Case-Based Reasoning Approach. J. Comput. Civ. Eng. 2005, 19, 269–276. [Google Scholar] [CrossRef]
- Ribeiro, F.L. Project delivery system selection: A case-based reasoning framework. Logist. Inf. Manag. 2001, 14, 367–376. [Google Scholar] [CrossRef]
- Luu, D.T.; Ng, S.T.; Chen, S.E.; Jefferies, M. A strategy for evaluating a fuzzy case-based construction procurement selection system. Adv. Eng. Softw. 2006, 37, 159–171. [Google Scholar] [CrossRef]
- Lo, S.C.; Chao, Y. Efficiency assessment of road project delivery models. AIP Conf. Proc. 2007, 963, 1016–1019. [Google Scholar]
- Ling, F.Y.Y.; Liu, M. Using neural network to predict performance of design-build projects in Singapore. Build. Environ. 2004, 39, 1263–1274. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Liu, J.Y.; Li, B.; Lin, B. Project delivery system selection of construction projects in China. Expert Syst. Appl. 2011, 38, 5456–5462. [Google Scholar] [CrossRef]
- Azzedin, F.; Ridha, A.; Rizvi, A. Fuzzy trust for peer-to-peer based systems. Proc. World Acad. Sci. Eng. Technol. 2007, 21, 123–127. [Google Scholar]
- Castillo, O.; Atanassov, K. Comments on fuzzy sets, interval type-2 fuzzy sets, general type-2 fuzzy sets and intuitionistic fuzzy sets. In Recent Advances in Intuitionistic Fuzzy Logic Systems; Springer: Berlin/Heidelberger, Germany, 2019; pp. 35–43. [Google Scholar]
- Mostafavi, A.; Karamouz, M. Selecting Appropriate Project Delivery System: Fuzzy Approach with Risk Analysis. J. Constr. Eng. Manag. 2010, 136, 923–930. [Google Scholar] [CrossRef]
- Al Nahyan, M.T.; Hawas, Y.E.; Raza, M.; Aljassmi, H.; Maraqa, M.A.; Basheerudeen, B.; Mohammad, M.S. A fuzzy-based decision support system for ranking the delivery methods of mega projects. Int. J. Manag. Proj. Bus. 2018, 11, 122–143. [Google Scholar] [CrossRef]
- Martin, H.; Lewis, T.M.; Petersen, A.; Peters, E. Cloudy with a Chance of Fuzzy: Building a Multicriteria Uncertainty Model for Construction Project Delivery Selection. J. Comput. Civ. Eng. 2017, 31, 04016046. [Google Scholar] [CrossRef]
- Ng, S.T.; Luu, D.T.; Chen, S.E.; Lam, K.C. Fuzzy membership functions of procurement selection criteria. Constr. Manag. Econ. 2002, 20, 285–296. [Google Scholar] [CrossRef]
- Yuan, J.; Skibniewski, M.J.; Li, Q.; Zheng, L. Performance Objectives Selection Model in Public-Private Partnership Projects Based on the Perspective of Stakeholders. J. Manag. Eng. 2010, 26, 89–104. [Google Scholar] [CrossRef]
- Vlachos, I.K.; Sergiadis, G.D. Intuitionistic fuzzy information—Applications to pattern recognition. Pattern Recognit. Lett. 2007, 28, 197–206. [Google Scholar] [CrossRef]
- Love, P.; Skitmore, M.; Earl, G.; Skitmore, R. Selecting a suitable procurement method for a building project. Constr. Manag. Econ. 1998, 16, 221–233. [Google Scholar] [CrossRef]
- Chan, A.P.C.; Ho, D.C.K.; Tam, C.M. Design and Build Project Success Factors: Multivariate Analysis. J. Constr. Eng. Manag. 2001, 127, 93–100. [Google Scholar] [CrossRef]
- Cheung, S.-O.; Lam, T.-I.; Wan, Y.-W.; Lam, K.-C. Improving Objectivity in Procurement Selection. J. Manag. Eng. 2001, 17, 132–139. [Google Scholar] [CrossRef]
- Luu, D.T.; Ng, S.T.; Chen, S.E. A case-based procurement advisory system for construction. Adv. Eng. Softw. 2003, 34, 429–438. [Google Scholar] [CrossRef]
- Ling, F.Y.Y.; Chan, S.L.; Chong, E.; Ee, L.P. Predicting performance of design-build and design-bid-build projects. J. Constr. Eng. Manag. 2004, 130, 75–83. [Google Scholar] [CrossRef]
- Mahdi, I.M.; Alreshaid, K. Decision support system for selecting the proper project delivery method using analytical hierarchy process (AHP). Int. J. Proj. Manag. 2005, 23, 564–572. [Google Scholar] [CrossRef]
- Chan, C.T.W.; Chan, T.W.C. Fuzzy procurement selection model for construction projects. Constr. Manag. Econ. 2007, 25, 611–618. [Google Scholar] [CrossRef]
- Liu, B.; Huo, T.; Shen, Q.; Yang, Z.; Meng, J.; Xue, B. Which owner characteristics are key factors affecting project delivery system decision making? Empirical analysis based on the rough set theory. J. Manag. Eng. 2014, 31, 1–12. [Google Scholar] [CrossRef]
- Lin, H.; Zeng, S.; Ma, H.; Zeng, R.; Tam, V.W. An indicator system for evaluating megaproject social responsibility. Int. J. Proj. Manag. 2017, 35, 1415–1426. [Google Scholar] [CrossRef]
- Zhang, Q.; Oo, B.L.; Lim, B.T.H. Drivers, motivations, and barriers to the implementation of corporate social responsibility practices by construction enterprises: A review. J. Clean. Prod. 2019, 210, 563–584. [Google Scholar] [CrossRef]
- Kim, D.Y.; Han, S.H.; Kim, H. Discriminant Analysis for Predicting Ranges of Cost Variance in International Construction Projects. J. Constr. Eng. Manag. 2008, 134, 398–410. [Google Scholar] [CrossRef]
- Lam, E.W.M.; Chan, A.P.C.; Chan, D.W.M. Determinants of successful design-build projects. J. Constr. Eng. Manag. 2008, 134, 333–341. [Google Scholar] [CrossRef]
- Luu, D.T.; Ng, S.T.; Chen, S.E. Parameters governing the selection of procurement system—An empirical survey. Eng. Constr. Arch. Manag. 2003, 10, 209–218. [Google Scholar]
- Doloi, H. Cost Overruns and Failure in Project Management: Understanding the Roles of Key Stakeholders in Construction Projects. J. Constr. Eng. Manag. 2013, 139, 267–279. [Google Scholar] [CrossRef]
- Lu, W.; Hua, Y.; Zhang, S. Logistic regression analysis for factors influencing cost performance of design-bid-build and design-build projects. Eng. Constr. Arch. Manag. 2017, 24, 118–132. [Google Scholar] [CrossRef]
- Baloi, D.; Price, A.D. Modelling global risk factors affecting construction cost performance. Int. J. Proj. Manag. 2003, 21, 261–269. [Google Scholar] [CrossRef]
- Akinci, B.; Fischer, M. Factors Affecting Contractors’ Risk of Cost Overburden. J. Manag. Eng. 1998, 14, 67–76. [Google Scholar] [CrossRef]
- Liu, B.; Huo, T.; Liang, Y.; Sun, Y.; Hu, X. Key Factors of Project Characteristics Affecting Project Delivery System Decision Making in the Chinese Construction Industry: Case Study Using Chinese Data Based on Rough Set Theory. J. Prof. Issues Eng. Educ. Pr. 2016, 142, 5016003. [Google Scholar] [CrossRef]
- Ibbs, C.W.; Kwak, Y.H.; Ng, T.; Odabasi, A.M. Project Delivery Systems and Project Change: Quantitative Analysis. J. Constr. Eng. Manag. 2003, 129, 382–387. [Google Scholar] [CrossRef]
- Ibbs, W.; Chih, Y. Alternative methods for choosing an appropriate project delivery system (PDS). Facilities 2011, 29, 527–541. [Google Scholar] [CrossRef]
- Konchar, M.; Sanvido, V. Comparison of U.S. Project Delivery Systems. J. Constr. Eng. Manag. 1998, 124, 435–444. [Google Scholar] [CrossRef]
- Azhar, N.; Kang, Y.; Ahmad, I.U. Factors Influencing Integrated Project Delivery in Publicly Owned Construction Projects: An Information Modelling Perspective. Procedia Eng. 2014, 77, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Touran, A.; Gransberg, D.D.; Molenaar, K.R.; Ghavamifar, K. Selection of Project Delivery Method in Transit: Drivers and Objectives. J. Manag. Eng. 2011, 27, 21–27. [Google Scholar] [CrossRef]
- Shane, J.S.; Molenaar, K.R.; Anderson, S.; Schexnayder, C. Construction Project Cost Escalation Factors. J. Manag. Eng. 2009, 25, 221–229. [Google Scholar] [CrossRef]
- Shane, J.S.; Bogus, S.M.; Molenaar, K.R. Municipal Water/Wastewater Project Delivery Performance Comparison. J. Manag. Eng. 2013, 29, 251–258. [Google Scholar] [CrossRef]
- Chan, A.P.C.; Yung, E.H.K.; Lam, P.T.I.; Tam, C.M.; Cheung, S.O. Application of Delphi method in selection of procurement systems for construction projects. Constr. Manag. Econ. 2001, 19, 699–718. [Google Scholar] [CrossRef]
- Kumaraswamy, M.M.; Dissanayaka, S.M. Developing a decision support system for building project procurement. Build. Environ. 2001, 36, 337–349. [Google Scholar] [CrossRef]
- Lam, K.C.; So, A.; Hu, T.; Ng, T.; Yuen, R.K.K.; Lo, S.M.; Cheung, S.O.; Yang, H. An integration of the fuzzy reasoning technique and the fuzzy optimization method in construction project management decision-making. Constr. Manag. Econ. 2001, 19, 63–76. [Google Scholar] [CrossRef]
- Shen, L.-Y.; Lü, W.-S.; Yam, M.C.H. Contractor Key Competitiveness Indicators: A China Study. J. Constr. Eng. Manag. 2006, 132, 416–424. [Google Scholar] [CrossRef]
- Sun, M.; Meng, X. Taxonomy for change causes and effects in construction projects. Int. J. Proj. Manag. 2009, 27, 560–572. [Google Scholar] [CrossRef]
- De Marco, A.; Karzouna, A. Assessing the Benefits of the Integrated Project Delivery Method: A Survey of Expert Opinions. Procedia Comput. Sci. 2018, 138, 823–828. [Google Scholar] [CrossRef]
- Creedy, G.D.; Skitmore, M.; Wong, J.K.W. Evaluation of Risk Factors Leading to Cost Overrun in Delivery of Highway Construction Projects. J. Constr. Eng. Manag. 2010, 136, 528–537. [Google Scholar] [CrossRef] [Green Version]
- Gransberg, D.D.; Dillon, W.D.; Reynolds, L.; Boyd, J. Quantitative Analysis of Partnered Project Performance. J. Constr. Eng. Manag. 1999, 125, 161–166. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Shang, X.-G.; Jiang, W.-S. A note on fuzzy information measures. Pattern Recognit. Lett. 1997, 18, 425–432. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, F.J. Combination weighting approach in multiple attribute decision making based on relative entropy. Oper. Res. Manag. Sci. 2006, 15, 48–53. [Google Scholar]
- De, S.K.; Biswas, R.; Roy, A.R. Some operations on intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 114, 477–484. [Google Scholar] [CrossRef]
- Xu, Z.; Yager, R.R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 2006, 35, 417–433. [Google Scholar] [CrossRef]
- Xu, Z. Intuitionistic Fuzzy Aggregation Operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 114, 505–518. [Google Scholar] [CrossRef]
- Gumus, S.; Kucukvar, M.; Tatari, O. Intuitionistic fuzzy multi-criteria decision-making framework based on life cycle environmental, economic and social impacts: The case of U.S. wind energy. Sustain. Prod. Consum. 2016, 8, 78–92. [Google Scholar] [CrossRef]
- Ye, J. Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment. Eur. J. Oper. Res. 2010, 205, 202–204. [Google Scholar] [CrossRef]
- Das, S.; Dutta, B.; Guha, D. Weight computation of criteria in a decision-making problem by knowledge measure with intuitionistic fuzzy set and interval-valued intuitionistic fuzzy set. Soft Comput. 2016, 20, 3421–3442. [Google Scholar] [CrossRef]
Level I Indexes | Level II Indexes | Meanings of Level II Indexes | Source |
---|---|---|---|
Owner’s Characteristics | Owner liability | The employer’s expectation of liability for as few of the participants as possible | [7,11,13,17,18,24,27,28,29,30,31,32,33,34,35,36] |
Owner participation | Willingness and degree of participation of owners during the whole life cycle of the project | [10,11,17,28,30,31,34] | |
Owner ability | Owner’s own ability, such as decision-making ability, project control and organization ability, and project management ability | [13,17,28,31,34,37,38,39] | |
Risk allocation | Expected commitment of owners to risks and losses (that is, whether it is shared equally with the contractor, or whether the owner bears most of the risk, or the contractor bears the majority of the risk) | [12,13,21,28,34] | |
Owner design control | The willingness and degree of the owner to participate in the design | [11,31,32,34,38,40,41] | |
Project characteristics | Project scale | Compared with the average scale of the engineering project in the industry | [7,12,13,17,18,28,30,31,32,41,42,43,44,45,46,47,48,49] |
Project complexity | Whether the project needs a breakthrough in construction methods, technology and management, the complexity of technology, the uncertainty of the project, the observability of the characteristic values of engineering products, and so on | [8,10,11,12,13,17,18,24,27,31,32,33,39,40,41,42,43,44,48,49,50,51,52,53,54] | |
Project type | What types of projects (e.g., housing construction projects, infrastructure projects, industrial projects, etc.) | [7,10,15,17,18,30,31,44,47,48,55,56,57] | |
Project scope clarity | Clarity of project scoping | [8,10,11,18,21,31,38,40,41,42,43,44,45,48,50,51,58] | |
Project flexibility | Flexibility of expected design and construction changes in the implementation of the project | [8,10,11,13,17,18,21,24,27,28,29,31,32,33,39,44,52,54] | |
Project disputes | The severity of potential disputes in the course of project construction (e.g., serious disputes, etc.) | [7,17,18,24,27,28,31,32,41,44,49,53,59] | |
External environment | Market competition | Competition level in the contractor market | [8,11,12,15,18,21,29,30,31,49,52] |
Accessibility of materials | The extent to which the necessary raw materials for the project are difficult to purchase in the market | [8,10,15,21,30,38] | |
Availability of technology | The degree of difficulty in obtaining the necessary technology for project construction in the market | [8,10,15,17,18,21,30,31,49] | |
Impact of laws and regulations | The limitation of the perfection of laws and regulations on the PDS | [8,11,12,15,17,18,21,30,32,48,49,53] |
Alternatives | Indicator Entropy Value |
---|---|
M1 | , , , , , , , , , , , , , , |
M2 | , , , , , , , , , , , , , , |
M3 | , , , , , , , , , , , , , , |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Qian, F.; Lin, L.; Zhang, K.; Zhu, L. Intuitionistic Fuzzy Entropy for Group Decision Making of Water Engineering Project Delivery System Selection. Entropy 2019, 21, 1101. https://doi.org/10.3390/e21111101
Liu X, Qian F, Lin L, Zhang K, Zhu L. Intuitionistic Fuzzy Entropy for Group Decision Making of Water Engineering Project Delivery System Selection. Entropy. 2019; 21(11):1101. https://doi.org/10.3390/e21111101
Chicago/Turabian StyleLiu, Xun, Fei Qian, Lingna Lin, Kun Zhang, and Lianbo Zhu. 2019. "Intuitionistic Fuzzy Entropy for Group Decision Making of Water Engineering Project Delivery System Selection" Entropy 21, no. 11: 1101. https://doi.org/10.3390/e21111101
APA StyleLiu, X., Qian, F., Lin, L., Zhang, K., & Zhu, L. (2019). Intuitionistic Fuzzy Entropy for Group Decision Making of Water Engineering Project Delivery System Selection. Entropy, 21(11), 1101. https://doi.org/10.3390/e21111101