

  entropy-21-01168




entropy-21-01168







Entropy 2019, 21(12), 1168; doi:10.3390/e21121168




Article



Using Entropy for Welds Segmentation and Evaluation



Oto Haffner *, Erik Kučera[image: Orcid], Peter Drahoš and Ján Cigánek





Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, 841 04 Bratislava, Slovakia;









*



Correspondence: oto.haffner@stuba.sk







Received: 24 October 2019 / Accepted: 26 November 2019 / Published: 28 November 2019



Abstract

:

In this paper, a methodology based on weld segmentation using entropy and evaluation by conventional and convolution neural networks to evaluate quality of welds is developed. Compared to conventional neural networks, there is no use of image preprocessing (weld segmentation based on entropy) or data representation for the convolution neural networks in our experiments. The experiments are performed on 6422 weld image samples and the performance results of both types of neural network are compared to the conventional methods. In all experiments, neural networks implemented and trained using the proposed approach delivered excellent results with a success rate of nearly 100%. The best results were achieved using convolution neural networks which provided excellent results and with almost no pre-processing of image data required.






Keywords:


weld segmentation; local entropy filter; weld evaluation; convolution neural network; image entropy; Python; Keras; RSNNS; MXNet












1. Introduction


The Fourth Industrial Revolution (Industry 4.0) has opened space for research and development of new manufacturing methods, systems and equipment based on innovations such as computing intelligence, autonomous robots, big data, augmented reality, process simulation, quality management systems, etc. [1].



Weld evaluation is very important quality control process in many manufacturing processes. Without this technological process, it would be almost impossible to produce welded constructions with current efficiency—whether we are talking about time, price, or material consumption. It is therefore necessary to welds be inspected to meet the specified quality level. In order to detect the possible presence of different weld defects, proper sensing, monitoring and inspection methods are necessary for quality control. Very effective and non-destructive method for weld evaluation is visual inspection. Inspection process using this method can be in certain level automated and done by computer systems [2,3].



Visual inspection of a weld is an important non-destructive method for weld quality diagnostics that enables to check welded joint and its various parameters. This examination is carried out as a first examination and able to detect various defects [4].



In this paper, we focus on indirect visual evaluation due to which the evaluation process can be automated. Indirect inspection can be applied also in places that are not directly accessible, for example the inner surface of a pipeline, the interior of pressure vessels, car body cavities etc. It also eliminates errors of human judgment and removes errors caused by workers for such reasons as e.g., fatigue, inattention or lack of experience.



The improved beamlet transformation for weld toe detection described in [5,6] considers images which are corrupted by noise. The authors aim at detecting edge borders of welds. The dynamic thresholding is performed in one of the beamlet algorithm steps. The algorithm predicts the directional characteristics of the weld allows to filtrate unsuitable edges. Using this method, it is possible to directly extract weld seam edges from highly noisy welding images without any pre-processing or post-processing steps.



In [7], the authors work with pipeline weld images with a very low contrast and corrupted by noise; this causes problems to conventional edge detectors. At first, the image is noise-filtered using a morphological operation of opening and closing. Next, the improved algorithm of fuzzy edge detection is applied. Multi-level fuzzy image improvement is based on interactive searching of optimal threshold level and multi-directional edge detector which convolution kernel is 5 × 5 with 8 directions based on gradient searching. The result of the algorithm is compared with detectors as Sobel, canny FED and fast FED.



Edge detection and histogram projection are used in [8], where histogram projections of tested welds are compared with a specified similarity threshold used to evaluate quality of the tested welds. The loaded image pattern has the same specifications (width and position) as the tested image. Always one vertical line from the pattern and the tested images is compared. Line histograms of pattern and tested images are computed, the correlation degree of two histograms is computed using the Tukey HSD difference. A lower correlation degree than the specified correlation threshold indicates edge defects in this part of the examined image. The procedure is repeated over the entire width of image.



Evaluation of metal cans welds is dealt with in [9]. Can’s weld defects may not be directly related to welding (they can be brought about by rest of glue, dust, etc.). Therefore, authors use probability evaluation of two evaluation methods; the Column Gray-Level Accumulation Inspection represents histogram projection in general. The histogram projections of the pattern and the tested weld are compared. The comparison of first derivation for making better results is also performed. This method can detect defects of wider surface. The overall evaluation is done using Dampster-Shafer theory of evidence.



In another work [10], the above authors deal with edge detection based on pixel intensity difference of the foreground and the background. The background pixels’ intensity occurs with a maximum probability and the distribution of the background pixels fits the Gauss distribution.



The weld visual inspection process performed through image processing on the image sequence to improve data accuracy is presented in [11]. The Convolution Neural Network (CNN) as an image processing technique can determine the feature automatically to classify the variation of each weld defect pattern. A classification using CNN consists of two stages: image extraction using image convolution, and image classification using neural network. The proposed evaluation system has obtained classification for four different types of weld defects with validation accuracy of 95.83%.



A technique for automatic endpoint detection of weld seam removal in a robotic abrasive belt grinding process using a vision system based on deep learning is demonstrated in [12]. The paper presents results of the first investigative stage of semantic segmentation of weld seam removal states using encoder-decoder convolutional neural networks (EDCNN). The prediction system based on semantic segmentation is able to monitor weld profile geometry evolution taking into account the varying belt grinding parameters during machining which allows further process optimization.



Utilizing computing intelligent using support vector machine (SVM) is presented in [13,14]. Authors developed real-time monitoring system to automatically evaluate the welding quality during high-power disk laser welding. Fifteen features were extracted from images of laser-induced metal vapor during welding. To detect the optimal feature subset for SVM, a feature selection method based on the SFFS algorithm was applied. An accuracy of 98.11% by 10-fold cross validation was achieved for the SVM classifier generated by the ten selected features. The authors declare the method has the potential to be applied in the real-time monitoring of high-power laser welding.



The authors of [15,16,17,18] deal with the development of a system for automatic weld evaluation using new information technologies based on cloud computing and single-board computer in the context of Industry 4.0. The proposed approach is based on using a visual system for weld recognition, and a neural network cloud computing for real-time weld evaluation, both implemented on a single-board low-cost computer. The proposed evaluation system was successfully verified on welding samples corresponding to a real welding process. The system considerably contributes to the weld diagnostics in industrial processes of small- and medium-sized enterprises. In [18], the same authors use a single-board computer able to communicate with an Android smartphone which is a very good interface for a worker or his shift manager. The basic result of this paper is a proposal of a weld quality evaluation system that consists of a single-board computer in combination with Android smartphone.



This paper deals with development of a software system for visual weld quality evaluation based on weld segmentation using entropy and evaluation by conventional and convolution neural networks. The evaluation of the performance results is compared to the conventional methods (weld segmentation based on entropy and evaluation using conventional neural networks with and without weld segmentation). Most experiments of proposed method apply on weld metal, however, one experiment with convolution neural networks applies also on weld adjected zones. 6422 real and adjusted laboratory samples of welds are used for experiments. The paper is organized in five sections: Section 2 deals with preparation of input data for the neural network. Section 3 describes configuration of used neural networks and their training process. In Section 4 the results of experiments are presented. In Section 5 we discuss the results.




2. Preparation of Input Data for the Neural Network


The input data for the proposed diagnostic system were represented in the form of grayscale laboratory samples of metal sheet welds in JPEG format. The samples were pre-classified as OK (correct) and NOK (incorrect) (Figure 1 and Figure 2). Defective weld samples (NOK) include samples of various surface defects such as irregular weld bead, excess weld metal, craters, undercut, etc. Welds images are captured under the same illumination and have the same resolution 263 × 300 pixels. The total number of evaluated sample images was 6422.



However, for several reasons the image resolution 263 × 300 pixels is not suitable for a conventional neural network due to the necessity of large amount of allocated memory (about gigabytes for thousands of frames even in a relatively low resolution) and time-consuming network training time.



Several suitable options for data processing that eliminate the above problems are presented next. At first, the background weld segmentation is described. Segmentation provides two outputs - the weld mask and the segmented weld itself. Three transformations of the weld mask into a one-dimensional feature vector are described further. Feature vectors are useful as inputs for the multilayer perceptron (MLP)/radial basis function (RBF) neural networks. Finally, the size of the segmented/unsegmented weld image is reduced when applied in the conventional neural network (if CNN is applied, no size reduction is needed).



2.1. Weld Segmentation


The sample images depict the weld itself and the background—metal sheet. The background does not affect the evaluation of the weld and is masked from the images by the proposed algorithm. The simplified flowchart of the algorithm is shown in Figure 3.



After reading the images, local entropy of each pixel is computed according to [19]:


    ∑   i = 1  K    ∑   j = 1  K   p  i j     log  2   p  i j   ,  



(1)




where    p  i j     represents the probability function for the pixel    [  i , j  ]   .



This value contains information about the complexity/unevenness around the pixel. The neighbourhood radius was set to 8 pixels. To compute the entropy, the filters.rank.entropy function from the Python library scikit-image was used. The resulting local entropy matrix effectively finds the edges and texture complexity in the image. The results of filtering can be seen in Figure 4.



As the entropy resolution values were too detailed for our application, the blur filtering was applied. The anisotropic blur filter from the imager library was implemented, which removes noise/unimportant details while preserving edges better than other types of blur filters. The blur filter with an amplitude of 250 was applied (Figure 5).



The next step is thresholding. In the image matrix, the value 1 (white) represents weld pixels, the value 0 (black) represents background. Thresholding was implemented using the function threshold from the imager library. The optimal threshold value was computed automatically using the kmeans method (Figure 6).



The thresholding result may have some imperfections—small blobs and unfilled areas. Unfilled areas are removed using the inverted output of the function bucketfill (imager library). It is applied on the background of the weld and it finds all pixels of the background. The remaining the pixels are filled with value 1 (white) (Figure 7a).



Very small blobs were removed using the function clean (imager library). This function reduces objects size using morphological erosion, and then increases it. This causes, that very small objects are removed and the shape of larger object is simplified (Figure 7b).



However, larger blobs were not removed in the previous step. To find the largest object in the image, the function split_connected (imager library) was used (Figure 8).



The segmentation result—the mask and the masked weld can be seen in Figure 9.




2.2. Vector of Sums of Subfields in the Mask


The first representation of the mask is a vector which entries are sums of subfields. For input images of resolution 263 × 300 pixels, was selected a subfield of 50 × 50 pixels, which corresponds to 36 values. The function for vector calculation is shown in the Algorithm 1.



The function ceiling rounds a number to the next higher integer. Using division of the index    (  i , j  )    by the size of the subfield, and subsequently the function ceiling, we obtained   i n d I / i n d J   for the selected index   i / j  . The function as.vector retypes the resulting two-dimensional array into a vector by writing the matrix elements column-wise into a vector. Example of retyping can be understood from Figure 10 and Figure 11.



Graphs for OK and NOK welds (Figure 12) can be compared in Figure 13: the OK mask graph has every third value (representing the subfields in the image center) maximal. Values of the NOK weld graph are distributed into more columns and the values do not achieve maximum values. The main drawback of this representation is that it can be used only for images with the same size. The benefit is a multiple reduction of input data (number of mask pixels in our case has been reduced 502-times).





	Algorithm 1. Computing of subfields sums of the mask



	procedure MaskToSums(img, size)

  xLen ←length(img[ ,1])

  yLen ←length(img[1, ])

  nRows ← ceiling(xLen/size)

  nCols ← ceiling(yLen/size)

  res ← matrix(0, nRows, nCols)

  for i in 1:xLen do

    for j in 1:yLen do

     if img[i,j] == TRUE then

       indI ← ceiling(i/size)

       indJ ← ceiling(j/size)

       res[indI, indJ] ++

     end if

    end for

  end for

  return as.vector(res)

end procedure







2.3. Histogram Projection of the Mask


A histogram projection is a vector containing sums of columns and rows of the input image matrix (Figure 14). In the case of an image mask, these are amounts representing numbers of white pixels. Thus, the length of the vector corresponds to the vector of the height and width of the image.



In the graphs (Figure 15 and Figure 16) showing the histogram projection of the mask, the difference between correct and wrong welds is visible. The projection of the correct weld mask is more even, the sums by columns have an even increase and slope, and the sums per line have small variations. On the other hand, the histogram projection of the wrong weld mask has a lot of irregularities. The disadvantage of this representation consists in that it cannot be used for input images of different resolutions. The resulting projection vector is much larger than other representations. The advantage is easy implementation and calculation.




2.4. Vector of Polar Coordinates of the Mask Boundary


A next representation of a weld mask in this paper is the vector of polar coordinates of the mask boundary. To transform weld masks, an algorithm has been proposed and implemented. Its main steps are described below.



The first step is to find the   x ,   y   coordinates of the mask boundary using the function boundary (imager library). Then, coordinates of the center of the object    [  c x ,   c y  ]    are calculated according to:


   c x  =   m a x  ( x )  − m i n  ( x )   2  + m i n  ( x )  ,  



(2)






   c y  =   m a x  ( y )  − m i n  ( y )   2  + m i n  ( y )  ,  



(3)







In the next step, the position of the object is normalized (the center is moved to the position    [  0 , 0  ]   ) according to the found coordinates. Then, for each boundary point, the coordinates are converted from Cartesian to polar    [  r , α  ]    (i.e., distance from center, angle). According to the Pythagorean theorem, the distance is calculated as follows:


  r =    x 2  +  x 2    ,  



(4)







Calculation of the angle is realized by Algorithm 2:





	Algorithm 2. Calculation of angle from Cartesian coordinates



	procedure Angle(x, y)

  z ← x + 1i * y

  a ← 90 - arg(z) / π * 180

  return round(a mod 360)

end procedure






If the resulting number of coordinates is less than 360, the missing angle values are completed and the corresponding distances are calculated from the surrounding values by linear interpolation using the na_approx function (zoo library). The result is a vector with 360 elements, which indices correspond to the angle values in degrees, and the value is the distance r. The resulting graphs of OK and NOK weld masks (Figure 17) are in Figure 18 and Figure 19.



The representation in the form of polar coordinates for the OK weld visibly differs from the NOK one. The big jumps and variations on the graph are caused by large irregularities in the weld shape. The advantage of such representation is that it can be used for any input mask resolution. The disadvantage is a complicated calculation. Generally, mask representations contain information only about the shape of the weld, which can be considered as a disadvantage because texture information is important input data for the neural network.




2.5. Data Preparation for Neural Network


Weld images and feature vectors were stored in two data structures of type list. The first list represented welds classified as NOK (incorrect); the second list welds classified as OK (correct). For neural networks, it was necessary to combine data, i.e., to transform and randomly mix them. For MLP and RBF networks, each input vector has to have assigned a classification value 0 (incorrect) or 1 (correct). Then, the vectors were merged together and with randomly mixed elements. Next, the L2-normalization was applied to the data. Finally, 85% of training and 15% of test samples were selected randomly. For convolution neural networks, the images were 5-times reduced, then the data type was converted to a three-dimensional array data structure. In the arrays, the dimensions were transposed to represent to correspond to the following structure:    [  n u m b e r   o f   i m a g e s ∗ l e n g t h ∗ h e i g h t  ]   . The vector of zeros with the same length as the first dimension corresponded to the first array (array of NOK welds). The vector of ones corresponded to the second array (array of OK welds). The arrays and vectors were merged into a common list and their elements were mixed randomly. Then, 77% of training samples, 15% of test samples and 8% of validation samples were selected.





3. Configuration and Training of Neural Networks


Several neural network architectures were configured for comparison and testing. Their parameters were changed during the experiments and the experiment results were compared and evaluated. Both RBF and MLP networks were configured in The Stuttgart Neural Network Simulator for R language - RSNNS library, the MLP networks were configured in the Keras library, and the convolution networks were configured in the Keras and the MXNet libraries.



3.1. RBF Network


To implement the RBF network, the RSNNS library was chosen (just in this one the RBF network template is available). Three RBF networks were configured using the function rbf (RSNN library). The set parameters were the number of units in the hidden layer and the number of epochs, the initial parameters had default values. The best configurations were chosen experimentally. Configuration details are in Figure 20, Figure 21 and Figure 22.




3.2. MLP Network


Experiments with training and testing of MLP networks showed, that a one-layer architecture is sufficient for our data representation. The performance of the network was very good and the difference from multiple hidden layers was negligible. To keep the objectivity, MLP networks had the same configuration in both libraries. The sigmoid activation function and the randomize weights initialization functions were used. For the NN training, the error backpropagation algorithm with learning parameter 0,1 was used.



The implementation in the RSNNS library uses the mlp function for configuration and training. Configuration details are in Figure 23, Figure 24 and Figure 25.



The implementation of the MLP network in the Keras library required a detailed list of layers in the code. Two layer_dense layers were used; the first one defines the hidden layer with the ReLU activation function, and the second one defines the output layer with the size 2 (two output categories) using the softmax activation function (Figure 26).




3.3. Convolution Neural Network


For an objective comparison of the Keras and MXNet libraries, the same convolution network architecture in both libraries was used at first, however in the MXNet library, training such a neural network was too slow. Thus, we designed our own architecture with a better learning time performance. The discussion about the results is provided in the next Section 4.



The architecture of the convolution network 1 is shown in Figure 27 and visualized in Figure 28. The architecture includes a list of all layers and the size of output structures for both NN. Two pairs of convolution and pooling layers were used, the convolution being applied twice before the first pooling layer. The input image size was 56 × 60. The number of convolution filters was 32 at the beginning, in further convolution filters it rose to 64. A dropout was used between some layers to prevent overtraining of the neural network by deactivating a certain percentage of randomly selected neurons. At the end, the flatten layer was used to convert the resulting structure into a one-dimensional vector used as an input for a simple MLP network with one hidden layer containing 256 neurons.



Parameters of individual layers are shown in the diagram in Figure 28. For example, the convolution layer (red) contains a list of 3 × 3 - filter size, 3 × 3 - stride, 32 - number of filters.



The architecture of the convolution network 2 is visualized in Figure 29. Two pairs of convolution and pooling layers were used, however in this case a double convolution occurs only in the second layer. There is also a difference in the design of the convolution, where the parameter stride (step of the filter) is 3,3. Dropout was used only in two places.





4. Results


This chapter presents results of code profiling, weld segmentation and evaluation of neural networks.



4.1. Code Profiling


Profiling was done using the profvis library at the level of the code line. The output is an interactive visualization using memory listing in MB and computing time in ms for each code line. The example can be seen in Figure 30.



Profiling was performed on a desktop computer with parameters listed in Table 1 (the graphic card was not used).




4.2. Results of Data Preparation and Segmentation


Segmentation was successful for all tested weld samples. For some NOK defective welds which consisted of several parts or contained droplets, only the largest continuous weld surface was segmented, which was considered to be a correct segmentation for proposed methodology. Segmentation examples are shown in Figure 31.



The segmentation time is an important indicator in comparison of results. Results of profiling different parts of the segmentation process can be seen in Figure 32. Code profiling was carried out using a computer with the technical specification shown in Table 1.



Segmentation was performed by concatenating the outputs from functions load.image, grayscale, entropyFilter, createMask, and segmentWeld. Almost all functions in this section of the program were performed very quickly (within 30 ms) except for the entropyFilter function, which took an average of 158 ms to be completed. This function is the most important part of the segmentation algorithm; the time was acceptable. The average time to complete the whole segmentation was 194 ms. The average amount of memory allocated was 74.76 MB. For MLP and RBF networks, the next step was to transform masks into feature vectors. The profiling results of functions performing three types of transformations can be seen in Figure 33.



The results show that these functions are optimal, taking up minimal memory and time. The mean values for computing the vector of sums of subfields in the mask are 16 ms and 0.1 MB; for the histogram projection vector, it is less than 10 ms and less than 0.1 MB (estimation of profiling tool, real values are immeasurably small). Values for the polar coordinates vector are 18 ms and 7.56 MB. Presented results are also shown in Table 2.




4.3. Criteria for Evaluation of Neural Network Results


As the main criterion for results evaluation the confusion matrix was chosen. The main diagonal of the confusion matrix contains the numbers of correctly classified samples, the antidiagonal contains the numbers of incorrectly classified samples; the smaller values in the antidiagonal, the more successful the prediction model. In a binary classification this matrix contains four values (Figure 34): TP—true positive; FP—false positive; FN—false negative; TN—true negative.



The accuracy was computed from the confusion matrix and is expressed as the ratio of correctly classified samples to all samples, see Equation (5) [20].


  A c c u r a c y =   ∑ T P + ∑ T N   ∑ a l l   s a m p l e s   ,  



(5)







Accuracy is an objective criterion only if the FN and FP values are similar.



A more objective criterion for comparing results is the F-score. The F-score is calculated as the harmonic average of the precision and the recall (sensitivity) values [20], the best score corresponds to F-score = 1:


  P r e c i s i o n =   ∑ T P   ∑ T P + ∑ F P   ,  



(6)






  R e c a l l =   ∑ T P   ∑ T P + ∑ F N   ,  



(7)






  F - s c o r e =   2 ∗ R e c a l l ∗ P r e c i s i o n   ∑ T P + ∑ F N   R e c a l l + P r e c i s i o n   ,  



(8)







To visualize the success of neural network classification, the ROC (Receiver operating characteristics) curve was chosen. It shows the recall (sensitivity) value depending on the value 1-specificity at the variable threshold [20] (Figure 35):


  S p e c i f i c i t y =   ∑ T N   ∑ T N + ∑ F P   ,  



(9)







The ROC curve for the best possible classifier is rectangular with the vertex [0,1].




4.4. Results of Neural Network Classificaton


We configured and tested neural networks for all data representations (in total 15 experiments). For a better clarity, the experiments results are labelled using labels from Table 3.



The first tests were carried out for RBF and MLP networks with input data formats according to Table 3. Resulting confusion matrices for RBF networks are as follows:


      r b f − r s n − s u m 01 =  [      502     14       15     433      ]  ,       r b f − r s n − h p r 02 =    [      434    0      83     447      ]  ,       r b f − r s n − p o l 03 =  [      435    0      82     447      ]  ,      



(10)







From the matrices (10) it is evident that the RBF network performed bad when classifying NOK welds—they are often classified as OK. ROC curves of trained RBF networks are depicted in Figure 36.



ROC curves for MLP networks are depicted Figure 37 and Resulting confusion matrices are as follows:


      m l p − r s n − s u m 04 =  [      516    1     1    446      ]  ,       m l p − r s n − h p r 05 =  [      5017    0     0    447      ]  ,       m l p − r s n − p o l 06 =  [      514    1     3    446      ]  ,      



(11)






      m l p − k e r − s u m 07 =  [      517     15       17     446      ]  ,       m l p − k e r − h p r 08 =  [      511    2      23     459      ]  ,       m l p − k e r − p o l 09 =  [      522     13       12     448      ]  ,      



(12)







The results show that the MLP implementation in the RSNNS library was more successful compared with the Keras library. The networks had no problem to classify correct (OK) or incorrect (NOK) welds. FP and FN values were approximately similar. The resulting calculated accuracy and F-scores shown in Table 4 describe the performance of the trained neural networks.



The results show that MLP networks are much more successful. Using default RBF initialization weights the RBF network less successful. From a practical point of view, MLP networks are more suitable for weld evaluation.



It was hard to compare the results for MLP networks, they provided similar results for all data representations. The RBF network achieved significantly better results in the vector of sums of subfields in the mask data representation.



It was found out, that using the same network configuration in the two libraries yields slightly different results. The implementation in the RSNNS library was almost 100% successful and therefore it was considered as the best candidate for practical use.



Training profiling for RSNN library was done next. Although training in the Keras library allocated less memory, the training time was several times longer than in case of the RSNNS library. Using vector of sums of subfields in the mask, the MLP network training time in RSNNS took less than one second, while using the Keras library was tens of seconds. The list of training profiling results is shown in Table 5.



Comparison of convolution neural nets was again based on the confusion matrices, ROC curves, accuracy and F-scores. The input of the networks were just images of welds without any filtration and masked welds without background (black background). Confusion matrices are as follows:


      c n n − k e r − o r i 10 =  [      534    1     0    460      ]  ,       c n n − m x n − o r i 12 =    [      559    8     1    431      ]  ,       c n n − m x n − o r i 14 =  [      498    0     0    460      ]  ,      



(13)






      c n n − k e r − s e g 11 =  [      534    0     0    461      ]  ,         c n n − m x n − s e g 13 =    [      558    0     2    439      ]  ,       c n n − m x n − s e g 15 =  [      498    0     0    460      ]  ,      



(14)







Classification error in convolution neural networks was minimal, therefore the ROC curve was evaluated as ideal for all experiments with indistinguishable differences. For all neural nets, the ROC curve was the same (Figure 38).



The resulting accuracy and F-scores along with the number of epochs needed to train the networks are listed in Table 6.



For convolution networks, changes of accuracy after each epoch for both training (blue line) and validation data (green line) are shown in Figure 39. The charts show that training with non-segmented weld images started at a lower accuracy and the learning was slower (Figure 40).



The progress of training for the Keras library was more uniform, without steps. The graphs can be seen in Figure 41 and Figure 42.



The success rate for all networks was higher than 99%. The decisive factor for comparison were the code profiling results shown in Table 7.



It can be concluded, that the network with the architecture shown in Figure 29 in Section 3.3 implemented using the MXNet library was the fastest. With a training time 12.170 ms and a 100% success also for non-segmented data it is considered the best choice for practical use.



Although the MLP network (mlp-rsn-sum04) was similarly successful and several times faster in training, the preparation of the representation in the form of the vector of sums of subfields in the mask took considerably more time. The number of training samples was approximately 5400, the average time to obtain a mask of one sample was 164 ms, and the vector calculation was 16 ms, in total 972 ms.




4.5. Profiling Single Weld Diagnostics


In practice, neural network training is not a frequent process. Usually, the network is trained once and then implemented for prediction. Therefore, at the end we decided to evaluate the prediction of one weld for the most successful models. The provided results represent the average of five independent tests. The list can be seen in Table 8 along with the average image preparation time and memory required to prepare the weld input image for the specific diagnostic model.



The diagnostic profiling results confirmed that the best solution was the classification of the weld using the convolution net with the architecture shown in Figure 29 in Section 3.3. The average image loading time and its 5× reduction took only 14 ms on average, and evaluation time was 14 ms.





5. Discussion


The aim of this paper was to develop a neural network based methodology to evaluate quality of welds. Several types of neural networks implemented in several software libraries were compared with respect to performance. It was necessary to prepare the data (images of welds) into a format suitable for neural network processing. For some types of networks (convolution) the input data preparation was minimal (segmentation or no segmentation), while for other networks (MLP, RBF), a sophisticated data preprocessing was required (filtering, equalizing and segmenting the image based on entropy). Each library required its own input data format which also had to be taken into account during programming. The main result of the paper is confirmation, that the convolutional neural networks can be used for weld quality evaluation without using image preprocessing and in case of using no segmentation, they can be used for evaluation not only weld metal but also adjected zones.



Neural networks were configured experimentally to achieve the best performance and the obtained results were compared. In all cases, neural networks implemented and trained using the proposed approach delivered excellent results with a success rate of nearly 100%. Thus, we can recommend any of the tested libraries to solve the weld quality evaluation problem. The best results were achieved using convolution neural networks which provided excellent results and with almost no pre-processing of image data required. The longer training time of these networks is acceptable in practical usage.



In summary, based on achieved experimental results, convolution neural networks have shown to be a promising approach for weld evaluation and will be applied in the future research dealing with evaluation of images in the real welding processes. The convolutional neural networks can be used for weld quality evaluation without using image preprocessing.







Author Contributions


O.H. proposed the idea in this paper and prepared data; O.H., E.K., P.D. and J.C. designed the experiments, E.K. and P.D. performed the experiments; O.H., and E.K. analyzed the data; O.H. wrote the paper; E.K., P.D. and J.C. edited and reviewed the paper; All authors read and approved the final manuscript.




Funding


This research was supported by the Slovak research and Development Agency under the contract no. APVV-17-0190, by the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic under the grant VEGA 1/0819/17, and by the Cultural and Educational Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, KEGA 038STU-4/2018.




Acknowledgments


We would like to thank to Alena Kostuňová for helping with programming the implementation.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Akşit, M. The Role of Computer Science and Software Technology in Organizing Universities for Industry 4.0 and beyond. In Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018, Poznań, Poland, 9–12 September 2018. [Google Scholar]

	



Dahal, S.; Kim, T.; Ahn, K. Indirect prediction of welding fume diffusion inside a room using computational fluid dynamics. Atmosphere 2016, 7, 74. [Google Scholar] [CrossRef]

	



Huang, W.; Kovacevic, R. A laser-based vision system for weld quality inspection. Sensors 2011, 11, 506–521. [Google Scholar] [CrossRef] [PubMed]

	



Noruk, J. Visual weld inspection enters the new millennium. Sens. Rev. 2001, 21, 278–282. [Google Scholar] [CrossRef]

	



Deng, S.; Jiang, L.; Jiao, X.; Xue, L.; Deng, X. Image processing of weld seam based on beamlet transform. Hanjie Xuebao/Trans. China Weld. Inst. 2009, 30, 68–72. [Google Scholar]

	



Deng, S.; Jiang, L.; Jiao, X.; Xue, L.; Cao, Y. Weld seam edge extraction algorithm based on Beamlet Transform. In Proceedings of the 1st International Congress on Image and Signal Processing, CISP 2008, Hainan, China, 27–30 May 2008. [Google Scholar]

	



Zhang, X.; Yin, Z.; Xiong, Y. Edge detection of the low contrast welded joint image corrupted by noise. In Proceedings of the 8th International Conference on Electronic Measurement and Instruments, ICEMI 2007, Xi’an, China, 16–18 August 2007. [Google Scholar]

	



Hou, X.; Liu, H. Welding image edge detection and identification research based on canny operator. In Proceedings of the 2012 International Conference on Computer Science and Service Systems, CSSS 2012, Nanjing, China, 11–13 August 2012. [Google Scholar]

	



Shen, Z.; Sun, J. Welding seam defect detection for canisters based on computer vision. In Proceedings of the 6th International Congress on Image and Signal Processing, CISP 2013, Hangzhou, China, 16–18 December 2013. [Google Scholar]

	



Liao, Z.; Sun, J. Image segmentation in weld defect detection based on modified background subtraction. In Proceedings of the 6th International Congress on Image and Signal Processing, CISP 2013, Hangzhou, China, 16–18 December 2013. [Google Scholar]

	



Khumaidi, A.; Yuniarno, E.M.; Purnomo, M.H. Welding defect classification based on convolution neural network (CNN) and Gaussian Kernel. In Proceedings of the 2017 International Seminar on Intelligent Technology and Its Application: Strengthening the Link between University Research and Industry to Support ASEAN Energy Sector, ISITIA 2017, Surabaya, Indonesia, 28–29 August 2017. [Google Scholar]

	



Pandiyan, V.; Murugan, P.; Tjahjowidodo, T.; Caesarendra, W.; Manyar, O.M.; Then, D.J.H. In-process virtual verification of weld seam removal in robotic abrasive belt grinding process using deep learning. Robot. Comput. Integr. Manuf. 2019, 57, 477–487. [Google Scholar] [CrossRef]

	



Chen, J.; Wang, T.; Gao, X.; Wei, L. Real-time monitoring of high-power disk laser welding based on support vector machine. Comput. Ind. 2018, 94, 75–81. [Google Scholar] [CrossRef]

	



Wang, T.; Chen, J.; Gao, X.; Qin, Y. Real-time monitoring for disk laser welding based on feature selection and SVM. Appl. Sci. 2017, 7, 884. [Google Scholar] [CrossRef]

	



Haffner, O.; Kucera, E.; Kozak, S.; Stark, E. Proposal of system for automatic weld evaluation. In Proceedings of the 21st International Conference on Process Control, PC 2017, Štrbské Pleso, Slovakia, 6–9 June 2017. [Google Scholar]

	



Haffner, O.; Kučera, E.; Kozák, Š. Weld segmentation for diagnostic and evaluation method. In Proceedings of the 2016 Cybernetics and Informatics, K and I 2016—Proceedings of the the 28th International Conference, Levoca, Slovakia, 2–5 February 2016. [Google Scholar]

	



Haffner, O.; Kučera, E.; Kozák, Š.; Stark, E. Application of Pattern Recognition for a Welding Process. In Proceedings of the Communiation Papers of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, 3–6 September 2017. [Google Scholar]

	



Haffner, O.; Kučera, E.; Bachurikova, M. Proposal of weld inspection system with single-board computer and Android smartphone. In Proceedings of the 2016 Cybernetics and Informatics, K and I 2016—Proceedings of the the 28th International Conference, Levoca, Slovakia, 2–5 February 2016. [Google Scholar]

	



Gajowniczek, K.; Ząbkowski, T.; Orłowski, A. Comparison of decision trees with Rényi and Tsallis entropy applied for imbalanced churn dataset. In Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, FedCSIS 2015, Łódź, Poland, 13–16 September 2015. [Google Scholar]

	



Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]








[image: Entropy 21 01168 g001 550] 





Figure 1. Laboratory sample of an OK weld. 






Figure 1. Laboratory sample of an OK weld.



[image: Entropy 21 01168 g001]







[image: Entropy 21 01168 g002 550] 





Figure 2. Laboratory sample of NOK weld. 






Figure 2. Laboratory sample of NOK weld.



[image: Entropy 21 01168 g002]







[image: Entropy 21 01168 g003 550] 





Figure 3. The simplified flowchart of the segmentation algorithm. 






Figure 3. The simplified flowchart of the segmentation algorithm.



[image: Entropy 21 01168 g003]







[image: Entropy 21 01168 g004 550] 





Figure 4. Step 1—local entropy computing. 






Figure 4. Step 1—local entropy computing.



[image: Entropy 21 01168 g004]







[image: Entropy 21 01168 g005 550] 





Figure 5. Step 2—blur filtering. 






Figure 5. Step 2—blur filtering.



[image: Entropy 21 01168 g005]







[image: Entropy 21 01168 g006 550] 





Figure 6. Step 3—thresholding. 






Figure 6. Step 3—thresholding.



[image: Entropy 21 01168 g006]







[image: Entropy 21 01168 g007 550] 





Figure 7. Step 4—filling holes (a) and morphological simplification (b). 






Figure 7. Step 4—filling holes (a) and morphological simplification (b).



[image: Entropy 21 01168 g007]







[image: Entropy 21 01168 g008 550] 





Figure 8. Step 5—Finding the largest object. 






Figure 8. Step 5—Finding the largest object.



[image: Entropy 21 01168 g008]







[image: Entropy 21 01168 g009 550] 





Figure 9. Results of segmentation. 






Figure 9. Results of segmentation.



[image: Entropy 21 01168 g009]







[image: Entropy 21 01168 g010 550] 





Figure 10. Two-dimensional array of sums. 






Figure 10. Two-dimensional array of sums.



[image: Entropy 21 01168 g010]







[image: Entropy 21 01168 g011 550] 





Figure 11. Resulting vector of sums. 






Figure 11. Resulting vector of sums.



[image: Entropy 21 01168 g011]







[image: Entropy 21 01168 g012 550] 





Figure 12. Weld masks. 






Figure 12. Weld masks.



[image: Entropy 21 01168 g012]







[image: Entropy 21 01168 g013 550] 





Figure 13. Graphs of vector of sums of subfields in the mask for OK (a) and NOK (b) weld. 






Figure 13. Graphs of vector of sums of subfields in the mask for OK (a) and NOK (b) weld.



[image: Entropy 21 01168 g013]







[image: Entropy 21 01168 g014 550] 





Figure 14. Weld masks for histogram projection. 






Figure 14. Weld masks for histogram projection.



[image: Entropy 21 01168 g014]







[image: Entropy 21 01168 g015 550] 





Figure 15. Graph of histogram projection of an OK weld. 






Figure 15. Graph of histogram projection of an OK weld.



[image: Entropy 21 01168 g015]







[image: Entropy 21 01168 g016 550] 





Figure 16. Graph of histogram projection of a NOK weld. 






Figure 16. Graph of histogram projection of a NOK weld.



[image: Entropy 21 01168 g016]







[image: Entropy 21 01168 g017 550] 





Figure 17. Mask of OK and NOK weld. 






Figure 17. Mask of OK and NOK weld.



[image: Entropy 21 01168 g017]







[image: Entropy 21 01168 g018 550] 





Figure 18. Graph of polar coordinates vector of an OK weld mask. 






Figure 18. Graph of polar coordinates vector of an OK weld mask.



[image: Entropy 21 01168 g018]







[image: Entropy 21 01168 g019 550] 





Figure 19. Graph of polar coordinates vector of a NOK weld mask. 






Figure 19. Graph of polar coordinates vector of a NOK weld mask.



[image: Entropy 21 01168 g019]







[image: Entropy 21 01168 g020 550] 





Figure 20. Settings for RBF network—for the vector of sums of subfields in the mask. 






Figure 20. Settings for RBF network—for the vector of sums of subfields in the mask.



[image: Entropy 21 01168 g020]







[image: Entropy 21 01168 g021 550] 





Figure 21. Settings for RBF network—for the histogram projection vector. 






Figure 21. Settings for RBF network—for the histogram projection vector.



[image: Entropy 21 01168 g021]







[image: Entropy 21 01168 g022 550] 





Figure 22. Settings for RBF network—for the polar coordinates vector. 






Figure 22. Settings for RBF network—for the polar coordinates vector.



[image: Entropy 21 01168 g022]







[image: Entropy 21 01168 g023 550] 





Figure 23. Settings for MLP network—for vector of sums of subfields in the mask. 






Figure 23. Settings for MLP network—for vector of sums of subfields in the mask.



[image: Entropy 21 01168 g023]







[image: Entropy 21 01168 g024 550] 





Figure 24. Settings for MLP network—for histogram projection vector. 






Figure 24. Settings for MLP network—for histogram projection vector.



[image: Entropy 21 01168 g024]







[image: Entropy 21 01168 g025 550] 





Figure 25. Settings for MLP network - for the polar coordinates vector. 






Figure 25. Settings for MLP network - for the polar coordinates vector.



[image: Entropy 21 01168 g025]







[image: Entropy 21 01168 g026 550] 





Figure 26. MLP network architecture—for vector of sums of subfields in the mask. 






Figure 26. MLP network architecture—for vector of sums of subfields in the mask.



[image: Entropy 21 01168 g026]







[image: Entropy 21 01168 g027 550] 





Figure 27. Architecture of the convolution neural network 1. 






Figure 27. Architecture of the convolution neural network 1.



[image: Entropy 21 01168 g027]







[image: Entropy 21 01168 g028 550] 





Figure 28. Architecture visualization of the convolution neural network 1. 






Figure 28. Architecture visualization of the convolution neural network 1.



[image: Entropy 21 01168 g028]







[image: Entropy 21 01168 g029 550] 





Figure 29. Architecture visualization of the Convolution neural network 2. 






Figure 29. Architecture visualization of the Convolution neural network 2.



[image: Entropy 21 01168 g029]







[image: Entropy 21 01168 g030 550] 





Figure 30. Example of profiling output using profvis. 






Figure 30. Example of profiling output using profvis.



[image: Entropy 21 01168 g030]







[image: Entropy 21 01168 g031a 550][image: Entropy 21 01168 g031b 550] 





Figure 31. Examples of weld segmentation results (a–p). 






Figure 31. Examples of weld segmentation results (a–p).



[image: Entropy 21 01168 g031a][image: Entropy 21 01168 g031b]







[image: Entropy 21 01168 g032 550] 





Figure 32. Results of segmentation process profiling. 






Figure 32. Results of segmentation process profiling.



[image: Entropy 21 01168 g032]







[image: Entropy 21 01168 g033 550] 





Figure 33. The profiling results of data transformation. 






Figure 33. The profiling results of data transformation.



[image: Entropy 21 01168 g033]







[image: Entropy 21 01168 g034 550] 





Figure 34. Confusion matrix. 






Figure 34. Confusion matrix.



[image: Entropy 21 01168 g034]







[image: Entropy 21 01168 g035 550] 





Figure 35. ROC curves: excellent (blue); good (green); worthless (red). 






Figure 35. ROC curves: excellent (blue); good (green); worthless (red).



[image: Entropy 21 01168 g035]







[image: Entropy 21 01168 g036a 550][image: Entropy 21 01168 g036b 550] 





Figure 36. ROC curves for experiments with RBF networks. 






Figure 36. ROC curves for experiments with RBF networks.



[image: Entropy 21 01168 g036a][image: Entropy 21 01168 g036b]







[image: Entropy 21 01168 g037a 550][image: Entropy 21 01168 g037b 550] 





Figure 37. ROC curves for experiments with MLP networks. 






Figure 37. ROC curves for experiments with MLP networks.



[image: Entropy 21 01168 g037a][image: Entropy 21 01168 g037b]







[image: Entropy 21 01168 g038 550] 





Figure 38. ROC curve for all convolution nets. 






Figure 38. ROC curve for all convolution nets.



[image: Entropy 21 01168 g038]







[image: Entropy 21 01168 g039 550] 





Figure 39. Progress of accuracy for cnn-ker-ori10. 






Figure 39. Progress of accuracy for cnn-ker-ori10.



[image: Entropy 21 01168 g039]







[image: Entropy 21 01168 g040 550] 





Figure 40. Progress of accuracy during epochs for cnn-ker-seg11. 






Figure 40. Progress of accuracy during epochs for cnn-ker-seg11.



[image: Entropy 21 01168 g040]







[image: Entropy 21 01168 g041 550] 





Figure 41. Progress of accuracy during epochs for cnn-mxn-ori14. 






Figure 41. Progress of accuracy during epochs for cnn-mxn-ori14.



[image: Entropy 21 01168 g041]







[image: Entropy 21 01168 g042 550] 





Figure 42. Progress of accuracy during epochs for cnn-mxn-seg15. 






Figure 42. Progress of accuracy during epochs for cnn-mxn-seg15.



[image: Entropy 21 01168 g042]







[image: Table] 





Table 1. Technical specifications of PC.






Table 1. Technical specifications of PC.





	Operating System
	Windows 7 Professional 64-bit



	Processor
	Intel Core i7-2600 CPU @ 3,40 GHz



	Memory
	16 GB DDR3



	Disc
	Samsung SSD 850 EVO 500 GB










[image: Table] 





Table 2. Algorithms results for transform masks into feature vectors.






Table 2. Algorithms results for transform masks into feature vectors.





	Data Interpretation
	Time [ms]
	Memory [MB]





	the vector of sums of subfields in the mask
	16
	0.1



	histogram projection vector
	10
	0.1



	polar coordinates vector
	18
	7.56










[image: Table] 





Table 3. Labels of neural network experiment.






Table 3. Labels of neural network experiment.





	Test Label
	Network Type
	Library
	Data Format





	rbf-rsn-sum01
	RBF
	RSNNS
	Subfields sum



	rbf-rsn-hpr02
	RBF
	RSNNS
	Histogram projection



	rbf-rsn-pol03
	RBF
	RSNNS
	Polar coordinates



	mlp-rsn-sum04
	MLP
	RSNNS
	Subfields sum



	mlp-rsn-hpr05
	MLP
	RSNNS
	Histogram projection



	mlp-rsn-pol06
	MLP
	RSNNS
	Polar coordinates



	mlp-ker-sum07
	MLP
	Keras
	Subfields sum



	mlp-ker-hpr08
	MLP
	Keras
	Histogram projection



	mlp-ker-pol09
	MLP
	Keras
	Polar coordinates



	cnn-ker-ori10
	CNN 1
	Keras
	Original



	cnn-ker-seg11
	CNN 1
	Keras
	Segmented



	cnn-mxn-ori12
	CNN 1
	MXNet
	Original



	cnn-mxn-seg13
	CNN 1
	MXNet
	Segmented



	cnn-mxn-ori14
	CNN 2
	MXNet
	Original



	cnn-mxn-seg15
	CNN 2
	MXNet
	Segmented










[image: Table] 





Table 4. Accuracy a F-score for RBF and MLP networks.






Table 4. Accuracy a F-score for RBF and MLP networks.





	Test Label
	Accuracy
	F-Score





	rbf-rsn-sum01
	0.9699
	0.9719



	rbf-rsn-hpr02
	0.9139
	0.9127



	rbf-rsn-pol03
	0.9149
	0.9139



	mlp-rsn-sum04
	0.9979
	0.9981



	mlp-rsn-hpr05
	1.0000
	1.0000



	mlp-rsn-pol06
	0.9959
	0.9961



	mlp-ker-sum07
	0.9678
	0.9700



	mlp-ker-hpr08
	0.9761
	0.9761



	mlp-ker-pol09
	0.9766
	0.9766










[image: Table] 





Table 5. Profiling of RBF and MLP networks training.






Table 5. Profiling of RBF and MLP networks training.





	Test Label.
	Time [ms]
	Memory [MB]





	rbf-rsn-sum01
	6660
	687.6



	rbf-rsn-hpr02
	42,530
	775.6



	rbf-rsn-pol03
	32,080
	752.3



	mlp-rsn-sum04
	850
	769.8



	mlp-rsn-hpr05
	9890
	653.7



	mlp-rsn-pol06
	17,270
	672.0



	mlp-ker-sum07
	52,830
	485.2



	mlp-ker-hpr08
	45,660
	410.4



	mlp-ker-pol09
	46,420
	401.9










[image: Table] 





Table 6. Accuracy and F-scores for convolution neural network experiments.






Table 6. Accuracy and F-scores for convolution neural network experiments.





	Test Label
	Epochs
	Accuracy
	F-Score





	cnn-ker-ori10
	5
	0.9990
	0.9991



	cnn-ker-seg11
	4
	1.0000
	1.0000



	cnn-mxn-ori12
	6
	0.9910
	0.9920



	cnn-mxn-seg13
	3
	0.9980
	0.9982



	cnn-mxn-ori14
	4
	1.0000
	1.0000



	cnn-mxn-seg15
	4
	1.0000
	1.0000










[image: Table] 





Table 7. Code profiling results for designed convolution neural networks.






Table 7. Code profiling results for designed convolution neural networks.





	Test Label
	Epochs
	Time [ms]
	Memory [MB]





	cnn-ker-ori10
	5
	38,610
	186.9



	cnn-ker-seg11
	4
	30,660
	180.0



	cnn-mxn-ori12
	6
	119,630
	4.7



	cnn-mxn-seg13
	3
	82,580
	2.6



	cnn-mxn-ori14
	4
	12,170
	157.9



	cnn-mxn-seg15
	4
	11,850
	3.7










[image: Table] 





Table 8. Profiling results for single weld diagnostics.






Table 8. Profiling results for single weld diagnostics.





	Test Label
	Image Time Preparation [ms]
	Diagnostic Time [ms]
	Memory [MB]





	mlp-rsn-sum04
	210
	20
	0.2



	mlp-rsn-hpr05
	194
	240
	3.0



	mlp-rsn-pol06
	198
	105
	1.8



	cnn-mxn-ori14
	14
	14
	0.5



	cnn-mxn-seg15
	194
	4
	0.5











© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file81.jpg
(3

80

T T
90 o

@jes aAgisod anu |

zo

00

10

08

06

04

02

00

False positive rate





media/file13.jpg
(a) filling holes (b) morphological simplification





media/file4.png





media/file73.jpg
o

0

0 0 o e
(3) ROC curve for rbf-rsn-sumol

o

o

(b) ROC curve for rbf-rsn-hpro2






media/file52.png





media/file39.jpg
Class: rbf->rsnns
Number of inputs: 36
Number of output:
Maximal iterations: So

Initialization function: RBF_weights
Initialization function parameters: 0 1 0 0.02 0.04
Learning function: RadialBasisLearning

Learning function parameters: le-05 0 1e-05 0.1 0.8
update function:Topological_order

update function parameters: 0

patterns are shuffled internally: TRUE

Compute error in every iteration: TRUE
Architecture Parameters:

$size

72






media/file18.png
(a) The resulting weld mask (b) The resulting segmented weld





media/file21.jpg
1] 0 6 6891583 0 0 017551699 O 0 O
[13] 0 1851696 622 0 O O 0 216 452 0 O
[25] o o o o o o o o o o o o





media/file44.png
Class: rbf->rsnns

Number of inputs: 360

Number of outputs: 2

Maximal iterations: 50

Initialization function: RBF_weights

Initialization function parameters: 0 1 0 0.02 0.04
Learning function: RadialBasisLearning

Learning function parameters: 1le-05 0 1e-05 0.1 0.8
Update function:Topological_order

Update function parameters: 0

Patterns are shuffled internally: TRUE

Compute error in every iteration: TRUE
Architecture Parameters:

$size

[1] 60





media/file26.png
2500 - 2500 -

2000 - 2000 -
E .

© 1500 - < 1500
> >
5 €
n N

1000 - 1000 -

500 - 500 -

J 0
- 30 10 20

10 20
Subfield index Subfield index
(a) (b)





media/file57.jpg
Convoluion Actvaton Convoluion
convolutonl2 o scsuonts conolutonls  +
/356,32 Py X 3X0,64

Actvason Convoluion Actvaion.

Dropet
e ctsnenl” o convelutonld o cuvsnont
ey 530,68 Py opoutl0
o e . [

o Rilconmeteds - sciaiont? o P o o

£ s 3





media/file55.jpg
Comvolion Activstion Comvolion Actvaion
comoluion > sciation - comvoluion] > sctiatond

b -y -
B rcoin
oo S, S oot
s e b ]
B scivio

— B o el —o
Py






media/file7.jpg





media/file28.png
(a) OK weld mask (b) NOK weld mask





media/file10.png
(a) Local entropy matrix (b) Result of anisotropic blur filtering





media/file89.jpg
Accuracy

:

g

;

0925

0900

Epochs

colour

— Train. Accuracy
— Val Accuracy





media/file49.jpg
Class: mlp->rsnns

Number of inputs: 360

Number of outputs: 2

Maximal iterations: 40

Initialization function: Randomize_weights
Initialization function parameters: -0.3 0.3
Learning function: std_sackpropagation
Learning function parameters: 0.1

uUpdate function:Topological_order

update function parameters: 0

Patterns are shuffled internally: TRUE
Compute error in every iteration: TRUE
Architecture Parameters:

$size

[1] 36





media/file71.jpg
True positive (sensitivity)

False positive (100-specificity)






media/file79.png
sens

1.0

08

06

04

0.2

0.0

(a) ROC curve for mlp-rsn-sum04

sens

10

08

06

04

0.2

0.0

T T T T T
0.0 02 04 06 08

1-spec

(b) ROC curve for mlp-rsn-hpr(05

1.0






media/file11.jpg
(a) Input for thresholding (b) Output - a mask





media/file6.png
Image reading

Local entropy
computing

\ 4

Blur filtering

Tresholding

v

Filling

v

Blobs removing

Biggest object
choosing

\ 4

Mask segmentation






media/file88.png
Accuracy

o —/ e ———

0.95 1
colour

0.90 == Train. Accuracy
=== \al. Accuracy

0.85 1

0.80 1 '

1 2 3 4

Epochs





media/file36.png
150"

1251

= 100

751

50-

0 100 200 300
Index [°]





media/file15.jpg





nav.xhtml


  entropy-21-01168


  
    		
      entropy-21-01168
    


  




  





media/file84.png
0.750 -

0.70

accuracy

I

N -

W -

M acc M val_acc

il

n
5

num. of epochs





media/file54.png
Model

Layer (type) Output Shape
conv2d_1 (Conv2D) (None, 27, 30, 32)
activation_1l (Activation) (None, 27, 30, 32)
conv2d_2 (Conv2D) (None, 14, 15, 64)
activation_2 (Activation) (None, 14, 15, 64)
max_pooling2d_1 (MaxPooling2D) (None, 7, 7, 64)
dropout_1 (Dropout) (None, 7, 7, 64)
conv2d_3 (Conv2D) (None, 7, 7, 64)
activation_3 (Activation) (None, 7, 7, 64)
max_pooling2d_2 (MaxPooling2D) (None, 3, 3, 64)
dropout_2 (Dropout) (None, 3, 3, 64)
flatten_1 (Flatten) (None, 576)
dense_1 (Dense) (None, 256)
activation_4 (Activation) (None, 256)
dropout_3 (Dropout) (None, 256)
dense_2 (Dense) (None, 2)
activation_5 (Activation) (None, 2)






media/file2.png





media/file53.jpg
wodel

Layer (type) output shape
conv2d_1 (conv2o) T Gione, 27, 30, 3
activation_1 (activation) (None, 27, 30, 32)
conv2d_2 (conv2p) (None, 14, 15, 64)
activation_2 (Activation) (None, 14, 15, 64)
max_pooling2d_1 (MaxPooling20) (None, 7, 7, 64)
dropout_1 (oropout) (None, 7, 7, 64)
conv2d_3 (Conv2D) (None, 7, 7, 64)
activation_3 (Activation) (None, 7, 7, 64)
max_pooling2d_2 (MaxPooling20) (None, 3, 3, 64)
dropout_2 (oropout) (None, 3, 3, 64)
flatten1 (Flatten) (None, 576)
dense_1 (Dense) (None, 256)
activation 4 (Activation) (None, 256)
dropout_3 (oropout) (None, 256)
dense_2 (pense) (None, 2)

activation_s (activation) (None, 2)






media/file23.jpg
11 ES

(a) OK weld mask (b) NOK weld mask






media/file83.jpg
accuracy

W acc Wvalace

num. of epochs





media/file59.jpg
<axpr>

hen < peovan |
Gerai, 2 Tengen daears, 1)) < mormaiise dacal, - dengeh saeati, 1))
Lo arpie'a, meew data), repiace-tiE, pedbee 0,85, 6,35

SxasningDate <- dacaisndeet, 3:length dhtats, 1))
Cerchuca - duea dndeed, 2 hengen data 1,

conttogtonpes < dasatimi=t, 11
SeTarger < datinae, 11

Seasningibeis < to_catagericnt ceaisingTazses
Certanais e cscagericat sescTasser

[T P g———Y
Tuges.dunea miss = sise, sstivasion = ‘selu’. Sspus_shaoe =
gt T, -

[Spep—

B3






media/file24.png
(a) OK weld mask (b) NOK weld mask






media/file29.jpg
Sum






media/file1.jpg





media/file72.png
True positive (sensitivity)

False positive (100-specificity)





media/file12.png
(a) Input for thresholding (b) Output — a mask





media/file9.jpg
(a) Local entropy matris ®)

esult of anisotropic blur filtering.





media/file42.png
Class: rbf->rsnns

Number of inputs: 563

Number of outputs: 2

Maximal iterations: 50

Initialization function: RBF_weights

Initialization function parameters: 0 1 0 0.02 0.04
Learning function: RadialBasisLearning

Learning function parameters: 1le-05 0 1e-05 0.1 0.8
Update function:Topological_order

Update function parameters: 0

patterns are shuffled internally: TRUE

Compute error in every iteration: TRUE
Architecture Parameters:

$size

[1] 50





media/file68.png
<expr>

profvis ({

testImlla
testImOlb
testImlOlc
testImlOlc

testImlZa
testImlZb
testImlZc
testImlZc

testIml3a
testIm03b
testIml3c
testIml3c

testIml4a
testIml4b
testIml4c
testIml4c

testImlsSa
testImlOSb
testIml5c
testImO5Sc

1)

maskToSums (testIm0Olmask, size = SUMSSIZE)
maskToHistprojection testImOlmask)
maskToPolar (testImOlmask)

testImlOlcsr

maskToSums testImOZmask, size = SUMSSIZE)
maskToHistprojection (testImOZmask)
maskToPolar testImlOZmask)

testIml2csSr

maskToSums (testIm0O3mask, size = SUMSSIZE)
maskToHistprojection testImO3mask)
maskToPolar (testImO3mask)

testIml03csr

maskToSums testImOd4mask, size = SUMSSIZE)
maskToHistprojection testImldmask
maskToPolar (testImO4mask)

testIml4csr

maskToSums (testIm0OSmask, size = SUMSSIZE)
maskToHistprojection (testImOSmask)
maskToPolar testImOSmask)

testImlO5Scsr

0.5

101

71

69

69

6.8

Time

10

10

10

10

10






media/file56.png





media/file47.jpg
class: mlp->rsnns

Number of inputs: 563

Number of outputs: 2

Maximal iterations: 40

Initialization function: Randomize_weights
Initialization function parameters: -0.3 0.3
Learning function: std_sackpropagation
Learning function parameters: 0.1

update function:Topological_order

update function parameters: 0

patterns are shuffled internally: TRUE
Compute error in every iteration: TRUE
Architecture Parameters:

$size

i 12





media/file38.png
100-

50-

0 100 | 200 300
Index [°]





media/file86.png
0.910 4

'] accuracy

-

n
4

num. of epochs





media/file78.jpg
‘True postive rate:

o

E:
HE]
R w e e e e 1
. [om—

(9 ROC curve for mip-rsn-pol06

(@) ROC curve for mip-ker-sum07

w0

H
is
H
i,
is
w o e s e @ o o e 1
[e— [ro—
() ROC curve for mip-ker-hpr08 (HROC curve for mip-ker-pol09






media/file65.jpg
prosus
“ereisst <o lowd.smaqer./Jevacy/avacy s depienim
poradin avariORpridi) SvaRpesatie G013 00"
Sersisol - grajacale cercisdi
Cestimsiame - ameopTiicert seseisdi

Sereiz <~ doad.smage "/ /evacy/avasy o depinenim
porain svasiORpradi) Svarpatsie. GOE13. 00"
“estimozmans - emecpyTiiters teseissa

Sarcis < lowd.smage (" /. /xvacy/svasy » dopisenyn
e 303 3o
Sereimismank < enteepyTiiters teseisas

Cersiace <= Sowd.smage "/ Jzvacy/avasy o depisenyn
porain seaeotporadia) racsh BLLEE Tp
Sareiodmank < enteopyTiicest teseisas
CarcimOinegm < segmancheld cascinds, cercimotmask)

Sareis <= ioad.smage "/ Jevacy/avasy o depinenim
T Bt st

Cestimsteank - emeopyTiitert sesisds

“artimstaegm - segmantieid Cesiinds, estisdseask)

2§

)
70

B

4

En
3

¥8 ¥E 3% 3%

885 5

T -1 1 1






media/file17.jpg





media/file60.png
<expr> Memory Time
MLPZ <- functicni(data, size, maxit) {
use_session_with_seed(l)
pRes <- profvis({
data[,2:length(data(l,])] <- normalize(data[,2:lengthi(datall,])]) I 165.7 80
ind <- sample (2, nrow(data), replace=TRUE, prob=c(0.85, 0.15))

N

(%]

J Y "

trainingData <- datalind==1, Z:lengthi(datall,])] 233 10
testData <- datal[ind==2, Z2:lengthidatall,])]

o

(75

10 trainingTarget <- datalind==1, 1]
11 testTarget <- datalind==2, 1]

traininglabels <- to_categorical (trainingTarget) 46 10
testlabels <- to_categorical (testTarget)

[
(

model <- keras model sequential()

17 model %>% 08 30

18 layer dense(units = size, activation = 'relu', input_shape =
c(lengthi(datall,])-1)) %>%

x layer_dense (units = 2, activation = 'softmax’)

] oY U W

21 model %>% compile! 01 30
22 loss = 'categorical_ crossentropy’,
23 cptimizer = 'adam’',

24 metrics = 'accuracy')

27 trainingData,

28 traininglLabels,

239 epochs = maxit,
batch_size = 5,

31 validation_split = 0.2,
32 verbose = 0)

34 par imfrow=c(l1l,2))
35 plot (historysmetricssloss, main="Model Loss", xlab = "epoch”, 438 5780
ylab="loss", col="blue", type="1")






media/file30.png
300

200
=

Su

100






media/file90.png
1.000 1

0.975 1

Accuracy
o
w0
S

0.925 -

0.900 -

colour

=== Train. Accuracy

= Val. Accuracy

Epochs





media/file51.jpg
A — -

e





media/file82.png
0l

80

T T
90 70

ajel aanisod any |

Z0

00

10

08

06

04

02

00

False positive rate





media/file35.jpg
150

25

100

i3

00

Index [°]





media/file77.jpg
w0

o

o

o

o

o

w0

o

o

o

0

o

s o2 e os o

(2) ROC curve for mlp-rsn-sum04

o o2 o e on

(b) ROC curve for mip-rsn-hpr05.

o






media/file48.png
Class: mlp->rsnns

Number of inputs: 563

Number of outputs: 2

Maximal iterations: 40

Initialization function: Randomize_weights
Initialization function parameters: -0.3 0.3
Learning function: std_Backpropagation
Learning function parameters: 0.1

Update function:Topological_order

Update function parameters: 0

Patterns are shuffled internally: TRUE
Compute error in every iteration: TRUE
Architecture Parameters:

$size

[1] 12





media/file27.jpg
(a) OK weld mask (b) NOK weld mask





media/file3.jpg





media/file22.png
[1] 0 6 689 1583 0 0 0 1755 1699 0 0 0
[13] 0 185 1696 621 0 0 0 0 216 452 0 0
[25] 0 0 0 0 0 0 0 0 0 0 0 0





media/file19.jpg
[1][2][3][4][5][6]

1,1 0 0 0
[2,] 6 1755 185
[3,] 689 1699 1696
[4,] 1583 0 621
15:] 0 0 0
[6.1 0 0 0

0
216
452

0

0

oooooOo

(0 — - -]





media/file66.png
profvis({
testIml0l <- load.image('./../zvary/zvary s doplnenym
pozadim/zvarNOKpozadie/zvarNOKpozadie 00133.jpg')
testIml0l <- grayscale (testIm0l)
testIm0Olmask <- entropyFilterl (testIm01l)
testImOlmask <- createMaskl testImOl)
testImlOlsegm <- segmentWeld testImll, testImOlmask)

testIml02 <- load.image('./../zvary/zvary s doplnenym
pozadim/zvarNOKpozadie/zvarNOKpozadie 00523.3jpg’)

testIml2 <- grayscale testIml2)

testImOZ2mask <- entropyFilterl (testIml2)

testImlZmask < createMaskl testImlZ)

testImlZsegm <~ segmentiWeld testImlZ, testImlOZmask

testIml03 <- load.image('./../zvary/zvary s doplnenym
pozadim/zvarOKpozadie/zvarOK _00023.jpg’)

testIml3 <- grayscale testIml3)

testImO3mask <- entropyFilterl (testIm03)

testImO3mask <- createMaskl testIm03)

testIml3segm <- segmentWeld testIml3, testImlO3mask)

testIml04 <- load.image('./../zvary/zvary s doplnenym
pozadim/zvarOKpozadie/zvarOK _01555.3pg’)

testIml4 <- grayscale testIml4)

testImO4mask <- entropyFilterl (testIm04)

testImldmask <- createMaskl testIm04)

testImld4segm <~ segmentiWeld testIml4, testImOdmask)

testImlS <- load.image('./../zvary/zvary s doplnenym
pozadim/zvarOKpozadie/zvarOK _01555.jpg’)

testImlS <- grayscale testImlS)

testImOSmask <- entropyFilterl (testIm05)

testImOSmask <- createMaskl testIm0S)

testImlSsegm <~ segmentiWeld testIml5, testImOSmask

436
258

141

379
27.0

195

36.1
141

19.2

36.1
210

8.7

163
271
27.3

Time

140

10

140

160

210

10

10
140

-






media/file58.png
Convolution Activation Convolution
convolutionl2 ——» activationl6 convolutionl3 - »
3X3/3X3, 32 relu 3X3 /3X3, 64
Activation Convolution Activation Dr.
S : " opout
= activationl? ——»= convolutionld —» activationl$ dropout10
relu 3X3 /3X3, 64 relu i

Flatten FullyConnected Activation ) — FullyConnected
- ——» fullyconnectedS —# activationld —# . F — & fullyconnected®
flattend 2 dropoutll £

25 relu 2





media/file85.jpg
accuracy

W acc W valace

T
num. of epochs





media/file40.png
Class: rbf->rsnns

Number of inputs: 36

Number of outputs: 2

Maximal iterations: 50

Initialization function: RBF_weights

Initialization function parameters: 0 1 0 0.02 0.04
Learning function: RadialBasisLearning

Learning function parameters: 1e-05 0 1e-05 0.1 0.8
Update function:Topological_order

Update function parameters: 0

patterns are shuffled internally: TRUE

Compute error in every iteration: TRUE
Architecture Parameters:

$size

[1] 72





media/file33.jpg
111N

(a) OK weld ma: (b) NOK weld mask





media/file80.png
sens

True positive rate

10

08

06

04

0.2

0.0

1.0

08

0.6

04

0.2

0.0

0.0 02 04 06 08 1.0
1-spec
(c) ROC curve for mlp-rsn-pol06
| | | | | |
00 02 04 06 08 10
False positive rate

(e) ROC curve for mlp-ker-hpr08

True positive rate

True positive rate

10

08

0.6

04

0.2

0.0

1.0

08

0.6

04

0.2

0.0

0.0 0.2 04 06 08 10
False positive rate
(d) ROC curve for mlp-ker-sum07
| | | | | |
0.0 0.2 04 06 08 10
False positive rate

(f) ROC curve for mlp-ker-pol09






media/file32.png
300 1

200

100






media/file14.png
(a) filling holes (b) morphological simplification





media/file67.jpg
cancimots

masToSums (ascindisask, size - SMSSIZE

‘maskToiscprosection escindimask)

masxToSums ceseinszmask, sire - STMSSIZE
masiToiscprosection ceseindzmask)
askTobolar cascimaimark

Cescimozers

[ ———
Cercimoseir

masToSums (cascIndimask, size - SMSSIZE)

maskToHiscprosection Gesciadimask,

masToiacpesection ceseindteask,
maskTobolar ceciztsmark

o5

101

7

69

s





media/file75.png
sens

10

0.8

06

04

0.2

0.0

1.0

08

sens
0.6

04

0.0

0.0

(a) ROC curve for rbf-rsn-sum0O1

0.2

|
04

06 0.8 10 00 0.2 04 06 08

1.
1-spec spec

(b) ROC curve for rbf-rsn-hpr02

1.0






media/file41.jpg
Class: rbf->rsnns

Number of inputs: 563

Number of outputs: 2

Maximal iterations: 50

Initialization function: RBF_weights
Initialization function parameters: 0 1 0 0.02 0.04
Learning function: RadialBasisLearning

Learning function parameters: 1e-05 0 1e-05 0.1 0.8
update function:Topological_order

update function parameters: 0

patterns are shuffled internally: TRUE

Compute error in every iteration: TRUE
Architecture Parameters:

$size

1] so






media/file62.jpg





media/file37.jpg
Index []





media/file46.png
Class: mlp->rsnns

Number of inputs: 36

Number of outputs: 2

Maximal iterations: 50

Initialization function: Randomize_weights
Initialization function parameters: -0.3 0.3
Learning function: Sstd_Backpropagation
Learning function parameters: 0.1

Update function:Topological_order

Update function parameters: 0

patterns are shuffled internally: TRUE
Compute error in every iteration: TRUE
Architecture Parameters:

$size

[1] 6





media/file45.jpg
class: mlp->rsnns

Number of inputs: 36

Number of outputs: 2

Maximal iterations: 50

Initialization function: Randomize_weights
Initialization function parameters: -0.3 0.3
Learning function: std_sackpropagation
Learning function parameters: 0.1

update function:Topological_order

update function parameters: 0O

Patterns are shuffled internally: TRUE
Compute error in every iteration: TRUE
Architecture Parameters:

$size

11 s





media/file16.png





media/file20.png
[,1] [,2] [.3] Ls 4] [, 5] [,6]
[1,] 0 0

[2,] 6 1755 185 o
[3,] 689 1699 1696 216
[4,] 1583 0 621 452
[5,] 0 0 0 0
[6,] 0 0 0 0

COO0OO0O0O
COO0OO0OO0O0O





media/file63.png





media/file50.png
Class: mlp->rsnns

Number of inputs: 360

Number of outputs: 2

Maximal iterations: 40

Initialization function: Randomize_weights
Initialization function parameters: -0.3 0.3
Learning function: Sstd_Backpropagation
Learning function parameters: 0.1

Update function:Topological_order

Update function parameters: 0

patterns are shuffled internally: TRUE
Compute error in every iteration: TRUE
Architecture Parameters:

$size

[1] 36





media/file5.jpg
Local entropy.

Image reading ‘computing Blur filtering.
Tresholding Fillng Blobs removing
Blggestobject Mask segmentation

choosing






media/file70.png
Predicted Values

Positive (1)

Negative (0)

Actual Values

Positive (1) Negative (0)

P

FP

FN

TN






media/file76.png
sens

1.0

08

0.6

04

0.2

0.0

l T | | T
00 02 04 06 08

1-spec

(c) ROC curve for rbf-rsn-pol03

10






media/file87.jpg
Epochs

colour
— Tain Accuracy
— Val. Accuracy





media/file31.jpg
mmmmmm





media/file25.jpg
1 20
Subfield index
@

Sumval

1500

10

20
Subfield index
(b)

EJ





media/file61.jpg





media/file0.png





media/file74.jpg
sens

10

08

06

04

02

00

00

T T T T
02 04 06 08

1-spec

(c) ROC curve for rbf-rsn-pol03

10






media/file8.png





media/file64.png





media/file43.jpg
Class: rbf->rsnns

Number of inputs: 360

Number of outputs: 2

Maximal iterations: 50

Initialization function: RBF_weights
Initialization function parameters: 0 1 0 0.02 0.04
Learning function: RadialBasisLearning

Learning function parameters: 1e-05 0 le-05 0.1 0.8
update function:Topological_order

update function parameters: 0

patterns are shuffled internally: TRUE

Compute error in every iteration: TRUE
Architecture Parameters:

$size

[1] 60






media/file34.png
(a) OK weld mask (b) NOK weld mask





media/file69.jpg
Predicted Values

Positive (1)

Negative (0)

Actual Values

Positive (1) Negative (0)

TP

P

FN






