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Abstract

:

Maximum distance separable (MDS) self-dual codes have useful properties due to their optimality with respect to the Singleton bound and its self-duality. MDS self-dual codes are completely determined by the length n, so the problem of constructing q-ary MDS self-dual codes with various lengths is a very interesting topic. Recently X. Fang et al. using a method given in previous research, where several classes of new MDS self-dual codes were constructed through (extended) generalized Reed-Solomon codes, in this paper, based on the method given in we achieve several classes of MDS self-dual codes.
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1. Introduction


Let Fq be the finite field with q elements. A q-ary [n,k,d] linear code C is a k-dimensional subspace of Fqn with minimum (Hamming) distance d. If the parameters [n,k,d] satisfy k+d=n+1, the code is called an MDS (maximum distance separable) code. A self-dual code is a linear code satisfying C=C⊥. A linear complementary-dual code is a linear code satisfying C∩C⊥={0}.



The study of MDS self-dual codes has attracted a great deal of attention in recent years due to its theoretical and practical importance. The center of the study of MDS codes includes the existence of MDS codes [1], classification of MDS codes [2], balanced MDS codes [3], non-Reed-Solomon MDS codes [4], complementary-dual MDS codes [5,6], and lowest density MDS codes [7].



As the parameters of an MDS self-dual code are completely determined by the code’s length n, the main interest here is to determine the existence and give the construction of q-ary MDS self-dual codes for various lengths. The problem is completely solved for the case where q is even [8]. Many MDS self-dual codes over finite fields of odd characteristics were constructed [9,10,11,12,13,14].



In [11], Jin and Xing constructed several classes of MDS self-dual code from generalized Reed-Solomon code. Yan generalized Jin and Xing’s method and constructed several classes of MDS self-dual codes via generalized Reed-Solomon codes and extended generalized Reed-Solomon codes [14]. In [12], Ladad, Liu and Luo produced more classes of MDS self-dual codes based on [11] and [14]. In [9], based on the [11,12,14] more new parameter MDS self-dual codes were presented. Based on the method raised in [9], we present some classes of MDS self-dual codes.




2. Preliminaries


In this section we introduce some basic notations of generalized Reed-Solomon codes and extended generalized Reed-Solomon codes. For more details, the reader is referred to [15].



Throughout this paper, q is a prime power, Fq is the finite fields with q elements and let n be a positive integer with 1<n≤q. For any x∈Fq2, we denote by x¯ the conjugation of x. Given an [n,k,d] linear code C, its Euclidean dual code (resp. Hermitian dual code) is denoted by C⊥ (resp. C⊥H). The codes C⊥ and C⊥H are defined by


C⊥={x=(x1,x2,…,xn)∈Fqn:∑i=1nxiyi=0,∀y=(y1,y2,…,yn)∈C},










C⊥H={x=(x1,x2,…,xn)∈Fq2n:∑i=1nxiyi¯=0,∀y=(y1,y2,…,yn)∈C},








respectively. In this paper, we only consider the Euclidean inner product.



Let a→=(α1,α2,…,αn), where α1,α2,…,αn are n distinct elements of Fq. Fix n nonzero elements v1,v2,…,vn of Fq (vi are not necessarily distinct), put v→=(v1,v2,…,vn). For 1≤k≤n, the k-dimensional generalized Reed-Solomon code (GRS for short) of length n associated with a→ and v→ is defined to be


GRSk(a→,v→)={(v1f(α1),v2f(α2),…,vnf(αn)):f(x)∈Fq[x],deg(f(x))≤k−1}.



(1)







It is well known that the code GRSk(a→,v→) is a q-ary [n,k,n−k+1] MDS code and the dual of a GRS code is again a GRS MDS code; indeed


GRSk⊥(a→,v→)=GRSn−k(a→,v→′)








for some v→′=(v1′,v2′,…,vn′) with vi′≠0 for all 1≤i≤n (e.g., see [15]).



Furthermore, the extended generalized Reed-Solomon code GRSk(a→,v→,∞) given by


GRSk(a→,v→,∞)={(v1f(α1),v2f(α2),…,vnf(αn),fk−1):f(x)∈Fq[x],deg(f(x))≤k−1},



(2)




where fk−1 stands for the coefficient of xk−1 in f(x). It is also well known that GRSk(a→,v→,∞) is a q-ary [n+1,k,n−k+2] MDS code and the dual code is also a GRS MDS code (e.g., see [15]).



Put a→=(α1,α2,…,αn) and denote by Aa→ the matrix


11…1α1α2…αnα12α22…αn2⋮⋮⋱⋮α1n−2α2n−2…αnn−2











Lemma 1

([11]). The solution space of the equation system Aa→XT=0 has dimension 1 and {u→=(u1,u2,…,un)} is a basis of this solution space, where ui=∏1≤j≤n,j≠i(αi−αj)−1. Furthermore, for any two polynomials f(x),g(x)∈Fq[x] with deg(f)≤k−1 and deg(g)≤n−k−1, one has ∑i=1nf(αi)(uig(αi))=0.





We define


La→(αi)=∏1≤j≤n,j≠i(αi−αj).











The conclusion of the following lemma is straightforward. For completeness, we provide its proof.



Lemma 2

([11]). Let n be an even number, if there exists λ∈Fq* such that λLa→(αi) is square element for all i=1,2,…,n, then the code GRSn/2(a→,v→) defined in (1) is MDS self-dual code of length n.





Proof. 

Let f(x),g(x)∈Fq[x] with deg(f)≤n2−1 and deg(g)≤n2−1. By Lemma 1, we have ∑i=1nf(αi)(uig(αi))=0, where ui=∏1≤j≤n,j≠i(αi−αj)−1 for i=1,2,…,n. Hence,


0=λ∑i=1nf(αi)(uig(αi))=∑i=1nf(αi)(λuig(αi))=∑i=1n(vif(αi))(vig(αi))(sinceλui=vi2).











This implies that GRSn/2⊥(a→,v→)=GRSn/2(a→,v→). □





H. Yan [14] observed the following two results.



Lemma 3

([14]). Let n be an even integer and k=n2. If −La→(αi) is square element for all i=1,2,…,n−1, then the code GRSk(a→,v→,∞) defined in (2) is MDS self-dual code of length n.





Lemma 4

([14]). Let m∣q−1 be a positive integer and let α∈Fq be a primitive m-th root of unity. Then for any 1≤i≤m, we have


∏1≤j≤m,j≠i(αi−αj)=mα−i.














3. Main Result


Let q=r2, where r is odd prime power, Fq be the finite fields with q elements. Suppose m∣q−1,α is a primitive m-th root of unity and H=<β> is the cyclic group generated by β.



Theorem 1.

Let q=r2, where r is an odd prime power, r≡1(mod4). Suppose that m∣(q−1) and q−1m is even, m≡0(mod4). If 1≤t≤2(r+1)gcd(2(r+1),m). Then there exists an [n=tm,n2]-MDS self-dual code.





Proof. 

Let α be a primitive m-th root of unity and H=<β> is the cyclic group of order 2(r+1). By the theorem of group homomorphism,


(H×⟨α⟩)/⟨α⟩≅H/(H∩⟨α⟩).











Let i1,i2,…,it be t distinct elements, such that 0≤i1<i2<⋯<it<2(r+1). Denote I={i1,i2,…,it},A=i1+i2+⋯+it and B={βi1,βi2,…,βit} be a set of coset representatives of (H×⟨α⟩)/⟨α⟩. Let


a→=(αβi1,…,αmβi1,αβi2,…,αmβi2,…,αβit,…,αmβit).











Then the entries of a→ are distinct in Fq*.



It is known that xm−ym=∏j=1m(x−αjy). By the statement of Lemma 3, we get


La→(βzαk)=∏1≤j≤m,j≠k(βzαk−βzαj)∏l∈I,l≠z∏j=1m(βzαk−βlαj)=βz(m−1)∏1≤j≤m,j≠k(αk−αj)∏l∈I,l≠z[(βzαk)m−βlm]=βz(m−1)mα−k∏l∈I,l≠z(βzm−βlm).











Let v=∏l∈I,l≠z(βzm−βlm), then


vr=∏l∈I,l≠z(βzmr−βlmr)(sinceβ2(r+1)=1,βr=−β−1)=∏l∈I,l≠z[(−β−1)zm−(−β−1)lm]=∏l∈I,l≠z[(β−1)zm−(β−1)lm]=∏l∈I,l≠z(β−1)zm+lm(βlm−βzm)=(−1)t−1β−(A+(t−2)z)mv











So vr−1=(−1)t−1β−(A+(t−2)z)m.



Let g be a generator of Fq*, then α=gq−1m,β=gr−12,−1=gr2−12,v=gr+12(t−1)−(A+(t−2)z)m2+i(r+1). Note that β,m and α are square elements of Fq*, we take λ=gr+12(t−1), then λLa→(βzαk) is a square element of Fq*.



This implies there exists a q-ary [n,n2] MDS self-dual code. □





Example 1.

Let r=173,q=1732,r≡1(mod4),m=4×43,q−1m=174 is even. For 1≤t≤2(r+1)gcd(2(r+1),m)=87, we choose t=81. By Theorem 1, there exists the MDS self-dual code with length n=mt= 13,932.





Theorem 2.

Let q=r2, where r is an odd prime power. Suppose that m is odd, m∣(q−1) and q−1m is even. If 1≤t≤min{r+1gcd(2(r+1),m),r+12} and t is odd, then there exists a q-ary [n=tm+1,n2] MDS self-dual code over Fq.





Proof. 

Let α and β be the same as in Theorem 1, we choose t distinct even number i1,i2,…,it, 0≤i1<i2<⋯<it<2(r+1). Denote I={i1,i2,⋯,it},A=i1+i2+…+it. Suppose all ij≡2(mod4),j=1,2,⋯,t. The proof is as similar as in Theorem 1. We get


La→(βzαk)=βz(m−1)mα−k∏l∈I,l≠z(βzm−βlm).











Let v=∏l∈I,l≠z(βzm−βlm), then we get


vr−1=(−1)t−1β−(A+(t−2)z)m,v=gr+12(t−1)−(A+(t−2)z)m2+i(r+1),








since A+(t−2)z2 is even, it implies that v is a square element of Fq*. So −La→(βzαk) is square element of Fq*. By Lemma 3, there exists a q-ary [n,n2] MDS self-dual code. □





Example 2.

Let r=67,q=672,m=11,q−1m=408 is even. Since 2(r+1)=136=4×34, for 1≤t≤r+1gcd(2(r+1),m)=68, we choose t=27. By Theorem 2, there exists the MDS self-dual code with length n=mt+1=298.





Theorem 3.

Let q=r2, where r is an odd prime power, r≡1(mod4). Suppose that m is odd, m∣(q−1) and q−1m is even. If 1≤t≤min{r+1gcd(2(r+1),m),r+12} and t is odd, then there exists a q-ary [n=tm+1,n2] MDS self-dual code over Fq.





Proof. 

Let α and β be the same as in Theorem 1, we choose t distinct even number i1,i2,…,it, 0≤i1<i2<⋯<it<2(r+1). Denote I={i1,i2,⋯,it},A=i1+i2+…+it, and ij≡2(mod4),j=1,2,⋯,t. We define the generalized Reed -Solomon code GRSk(a→,v→) with


a→=(0,αβi1,…,αmβi1,αβi2,…,αmβi2,…,αβit,…,αmβit).











For any z∈I and 1≤k≤m, we get


La→(βzαk)=βzαk∏1≤j≤m,j≠k(βzαk−βzαj)∏l∈I,l≠z∏j=1m(βzαk−βlαj)=βzmm∏l∈I,l≠z(βzm−βlm)








and


La→(0)=∏l∈I∏j=1m(0−βlαj)=(−1)mtαm(m+1)2(∏l∈Iβl)m.











Since r≡1(mod4),q−1m is even, so α,β,m,−1 are square elements of Fq*, we only need to consider v=∏l∈I,l≠z(βzm−βlm). As the calculation in the proof of Theorem 1, v=gr+12(t−1)−(A+(t−2)z)m2+i(r+1). Since all ij≡2(mod4) and t is odd, so (A+(t−2)z)m2 is even. La→(βzαk), La→(0) are square elements of Fq*. By Lemma 2, there exists a q-ary [n,n2] MDS self-dual code. □





Example 3.

Let r=101,r≡1(mod4),q=1012,m=75,q−1m=136 is even. Since 2(r+1)=204=4×51, for 1≤t≤r+1gcd(2(r+1),m)=34, we choose t=33. By Theorem 2, there exists the MDS self-dual code with length n=mt+1=2476.





Theorem 4.

Let q=r2, where r is an odd prime power. Suppose that m∣(q−1),q−1m is even. If 1≤t≤2(r+1)gcd(2(r+1),m) and tm is even, then there exists a q-ary [n=tm+2,n2] MDS self-dual code over Fq.





Proof. 

Let α and β be the same as in Theorem 1. We define the extended generalized Reed -Solomon code GRSk(a→,v→,∞) with


a→=(0,αβi1,⋯,αmβi1,αβi2,⋯,αmβi2,⋯,αβit,⋯,αmβit).











For any z∈I and 1≤k≤m, we get


La→(βzαk)=βzαk∏1≤j≤m,j≠k(βzαk−βzαj)∏l∈I,l≠z∏j=1m(βzαk−βlαj)=βzmm∏l∈I,l≠z(βzm−βlm)








and


La→(0)=∏l∈I∏j=1m(0−βlαj)=(−1)mtαm(m+1)2(∏l∈Iβl)m.











Case 1: If m is even, t is odd.



βzm,m and La→(0) are square elements of Fq*. Let v=∏l∈I,l≠z(βzm−βlm), as the calculation in Theorem 1, v=gr+12(t−1)−(A+(t−2)z)m2+i(r+1). So we only need to consider the parity of (A+(t−2)z)m2.

	
i1,i2,…,it are even number, so A+(t−2)z≡0(mod2),v is a square element of Fq*.



	
i1,i2,…,it are odd number, so A+(t−2)z≡0(mod2),v is a square element of Fq*.








Case 2: If m and t are even, r≡3(mod4), we assume A is an even integer. It follows that r+12(t−1)−(A+(t−2)z)m2 is an even integer.



Case 3: If m is odd, t is even.

	
t≡0(mod4)

	(1)

	
If r≡1(mod4), all i1,i2,…,it are odd, and A≡0(mod4), then then (r+1)(t−1)−(A+(t−2)z)m≡0(mod4),v is a square element of Fq*.




	(2)

	
If r≡3(mod4), all i1,i2,…,it are even, and A≡2(mod4), then (r+1)(t−1)−(A+(t−2)z)m≡0(mod4),v is a square element of Fq*.









	
t≡2(mod4).

	(1)

	
If r≡1(mod4),A≡2(mod4), then (r+1)(t−1)−(A+(t−2)z)m≡0(mod4),v is square of Fq*.




	(2)

	
If r≡3(mod4),A≡0(mod4), then (r+1)(t−1)−(A+(t−2)z)m≡0(mod4),v is square of Fq*.











 □





We can extend the Theorem 1 to a more general case.



Theorem 5.

Let q=r2, where r is an odd prime power. Suppose that m∣(q−1),q−1m is even, s∣m,s∣r−1 and r−1s is even. If 1≤t≤s(r+1)gcd(s(r+1),m), then there exists a q-ary [n=tm,n2] MDS self-dual code over Fq.





Proof. 

Let α be a primitive m-th root of unity and H=<β> is the cyclic group of order s(r+1). By the theorem of group homomorphism,


(H×⟨α⟩)/⟨α⟩≅H/(H∩⟨α⟩),











Let i1,i2,…,it be t distinct elements, such that 0≤i1<i2<⋯<it<2(r+1). Denote I={i1,i2,…,it},A=i1+i2+…+it and B={βi1,βi2,…,βit} be a set of coset representatives of H×⟨α⟩. Let


a→=(αβi1,⋯,αmβi1,αβi2,⋯,αmβi2,⋯,αβit,⋯,αmβit).











Similar with Theorem 1, we get


La→(βzαk)=∏1≤j≤m,j≠k(βzαk−βzαj)∏l∈I,l≠z∏j=1m(βzαk−βlαj)=βz(m−1)·m·α−k∏l∈I,l≠z(βzm−βlm.)











Since βs(r+1)=1, then βr+1=ξs, where ξs is s-th primitive root of unity. So βr=ξsβ−1. Let v=∏l∈I,l≠z(βzm−βlm). Since s∣m, then


vr=∏l∈I,l≠z((β−1)zm−(β−1)lm)=∏l∈I,l≠zβ−(l+z)m(βlm−βzm)=(−1)t−1β−(A+(t−2)z)mv.











So vr−1=(−1)t−1β−(A+(t−2)z)m.



Let g be a generator of Fq*. It follows that β=gr−1s and −1=gr2−12. So


v=g(r+1)2(t−1)−[A+(t−2)z]ms.











Case 1: If m odd and t even, we can take λ=g(r+1)2(t−1)−A·ms. Hence, we have λLa→(βzαk) is square element of Fq*.



Case 2: If m even and 2∣ms, we can take λ=g(r+1)2(t−1). Hence, we have λLa→(βzαk) is square element of Fq*.



So there exists a q-ary MDS self-dual code with length n.  □






4. Conclusions


In this paper, based on the method from [9], we construct several classes of MDS self-dual code over finite fields with odd characteristics via the generalized Reed-Solomon code and extend the generalized Reed-Solomon code.
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