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Abstract

:

Generalized expressions of the entropy and related concepts in non-Fourier heat conduction have attracted increasing attention in recent years. Based on standard and fractional phonon Boltzmann transport equations (BTEs), we study entropic functionals including entropy density, entropy flux and entropy production rate. Using the relaxation time approximation and power series expansion, macroscopic approximations are derived for these entropic concepts. For the standard BTE, our results can recover the entropic frameworks of classical irreversible thermodynamics (CIT) and extended irreversible thermodynamics (EIT) as if there exists a well-defined effective thermal conductivity. For the fractional BTEs corresponding to the generalized Cattaneo equation (GCE) class, the entropy flux and entropy production rate will deviate from the forms in CIT and EIT. In these cases, the entropy flux and entropy production rate will contain fractional-order operators, which reflect memory effects.
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1. Introduction


Entropic and thermodynamic frameworks in heat transport have attracted increasing attention in recent years [1,2,3]. In equilibrium thermodynamics, the Clausius statement restricts the direction of heat transfer, which guarantees the non-negativity of entropy generation. Further descriptions such as the entropy production rate require irreversible and non-equilibrium thermodynamics. In classical irreversible thermodynamics (CIT) [3,4,5], the entropy density sC=sC(x,t) is written as sC=∫T−1cdT with T=T(x,t) the local temperature and c the specific volumetric heat capacity, while the entropy flux JC=JC(x,t) is JC=T−1q with q=q(x,t) denoting the heat flux. Here, the subscript C means that the entropy and entropy flux are expressed in the framework of CIT. According to the entropy balance equation, the CIT entropy production rate σC=σC(x,t) is obtained as


σC=∂tsC+∇·JC=q·∇(1T)



(1)







For classical Fourier’s law, q+λ∇T=0 with λ the thermal conductivity, σC is non-negative as if the thermal conductivity is positive. However, Fourier’s law indicates infinite speeds of heat propagation for constant material properties. Non-Fourier heat conduction models therefore arise [6,7,8,9,10,11,12,13]. The Cattaneo-Vernotte (CV) model [8,9] is “the most obvious and simple generalization of Fourier’s law that will give rise to finite speeds of propagation” [6]: q+τ∂tq=−λ∇T with τ standing for the relaxation time. The CV model reflects relaxation in heat conduction, while there are other non-Fourier effects such as nonlocality and nonlinearity. Nonlocal heat conduction is widely observed in phonon heat transport, i.e., the phonon hydrodynamic and Guyer-Krumhansl (GK) models [11]. Typical examples for nonlinear heat conduction are the Lagrange multiplier [14], tempered diffusion [15] and thermomass [16,17] models. These nonlinear models predict an interesting phenomenon termed flux-limited behavior [18], namely that the heat flux tends to a finite upper bound as the temperature gradient increases. The flux-limited behavior is sometimes paired with size effects that the macroscopic expressions will not exist for small-scale heat conduction problems [19].



One inconsistency caused by some of these models is the negativity of σC [20,21]. In order to overcome this inconsistency, generalized formulations for the entropic functionals were developed. A commonly used approach is to introduce non-equilibrium macroscopic quantities such as q into the entropy density. For instance, in extended irreversible thermodynamics (EIT) [3], the entropy density is defined by sE=sC−τ2λT2q·q, which enables the CV model to satisfy a non-negative entropy production. The subscript E means that the entropic framework is defined in EIT. Because the entropy production rate depends on not only the entropy density but also the entropy flux, investigations on the generalized entropy flux are likewise necessary. The nonlocal entropy flux J commonly takes a form as J=JC+K [1], wherein K is the so-called entropy-density extra flux. Although these entropic functionals were well-discussed for macroscopic heat conduction models and proved by Grad’s method in the kinetic theory of gases, the entropic framework was not studied as much for phonon heat transport based on the phonon Boltzmann transport equation (BTE). Moreover, the factional-order heat conduction models and their corresponding factional BTEs have not been investigated.



In the present work, we mainly study the macroscopic estimations for the entropy density and entropy flux based on the phonon BTE with the relaxation time approximation [22]:


∂tf+vg·∇f=f0−fτ



(2)




wherein vg is the phonon group velocity, f=f(x,t,k) is the distribution function, k denotes the wave vector, f0=1exp(ℏω/kBT)−1 is the equilibrium distribution, ℏ is the reduced Planck constant, ω is the angular frequency, and kB is the Boltzmann constant. We consider the entropic concepts in Boltzmann-Gibbs (BG) statistical mechanics. Using the power series expansion, the entropic concepts in statistical mechanics are approximated by macroscopic quantities. Besides Equation (2), several fractional BTEs are also discussed, which educes a class of fractional-order heat conduction models termed generalized Cattaneo equation (GCE) [23].




2. Standard Boltzmann Transport Equation


We establish macroscopic quantities including the phonon energy density e=e(x,t), heat flux q and flux of heat flux Q=Q(x,t):


e=∫fℏωdk, q=∫vgfℏωdk, Q=∫vgvgfℏωdk



(3)







The conventional temperature is defined in the sense of equilibrium or local equilibrium. Here, we use Chen’s definition of the local temperature in non-Fourier heat conduction [22], which is a measure of the local energy density, namely, de=cdT. Upon multiplying Equation (2) by ℏω and integrating it over the wave vector space, we obtain the local energy conservation equation ∂te=−∇·q. Similarly, multiplying Equation (2) by vgℏω and integrating yields q+τ∂tq=−τ∇·Q. With λ=13|vg|2cτ, the CV model is immediately recovered.



The BG entropy density for the phonon distribution function sf=sf(x,t) is written as


sf=kB∫[(f+1)ln(f+1)−flnf]dk



(4a)




whose time derivative reads


∂tsf=kB∫∂tf[ln(f+1)−lnf]dk



(4b)







The subscript f means that the entropic framework is defined in terms of the distribution function and statistical mechanics. Upon substituting Equation (2) into Equation (4b), we arrive at


∂tsf=−∇·{∫vgkB[(f+1)ln(f+1)−flnf]dk}+kB∫f0−fτlnf+1fdk



(5)




From Equation (5), we can find that the BG entropy flux Jf=Jf(x,t) takes the following form


Jf=∫vgkB[(f+1)ln(f+1)−flnf]dk



(6)




while the BG entropy production rate σf=σf(x,t) is given by


σf=kB∫f0−fτlnf+1fdk



(7)







One can acquire ∂Tsf=f0=kB∫∂Tf0lnf0+1f0dk and noting that ℏωkBT=lnf0+1f0, ∂Tsf=f0=T−1∫∂Tf0ℏωdk=T−1c. Thus, we have sf=f0≡sC and when f≠f0 yet |f0−f|≪f0, sf can be expanded as


sf=sf=f0+kB∫(f−f0)lnf0+1f0dk+kB∫−(f−f0)22f0(f0+1)dk+kB∫O(f−f0)3dk



(8)




In Equation (8), sf=f0≡sC is the zero-order term, and substituting ℏωkBT=lnf0+1f0 into the second term in Equation (8) yields


kB∫(f−f0)ℏωkBTdk=1T∫(f−f0)ℏωdk=0



(9)




Through combining with Equation (2), the third term in Equation (8) becomes


kB∫−(f−f0)22f0(f0+1)dk=kBτ2∫(f−f0)f0(f0+1)∂tfdk+kBτ2∫(f−f0)vg·∇ff0(f0+1)dk



(10)




In the right-hand side of Equation (10), the first term can be simplified as follows


kBτ2∫(f−f0)f0(f0+1)∂tfdk=kBτ2[∫(f−f0)f0(f0+1)∂tf0dk+∫(f−f0)f0(f0+1)∂t(f−f0)dk]=−τ2∂t(1T)∫(f−f0)ℏωdk+kBτ2∫O[∂t(f−f0)2]dk=kBτ2∫O[∂t(f−f0)2]dk



(11)




while the second term in the right-hand side of Equation (10) is rewritten as


kBτ2∫(f−f0)vg·∇ff0(f0+1)dk=kBτ2∫(f−f0)vg·[∇f0+∇(f−f0)]f0(f0+1)dk=kBτ2∇(1T)·∫(f−f0)dk+kBτ2∫vg·O[∇(f−f0)2]dk=−τ2q·∇(1T)+kBτ2∫vg·O[∇(f−f0)2]dk



(12)




Accordingly, the second-order estimation of sf is given by


sf=sC−τ2q·∇(1T)+kBτ∫O[∂t(f−f0)2+vg·∇(f−f0)2+(f−f0)3τ]dk



(13)




When τ|∂t(f−f0)2|≪(f−f0)2 and l|∇(f−f0)2|≪(f−f0)2 with l=|vg|τ denoting the mean free path (MFP), one can obtain a macroscopic approximation as follows


sf≅sC−τ2q·∇(1T)



(14a)




If there exists a well-defined effective thermal conductivity λeff, namely, ∇T=−(λeff)−1q, the EIT entropy is formally recovered:


sf≅sC−τ2λeffT2q·q



(14b)




In the anisotropic cases, λeff should be replaced by the thermal conductivity tensor [λij], and thereupon,


sf≅sC−τ2T2q·[λij]−1·q



(14c)




The remainder term kBτ∫O[∂t(f−f0)2+vg·∇(f−f0)2]dk indicates that Equation (14) is restricted to the case with small temporal and spatial derivatives of (f−f0)2. It should be pointed out that despite (f−f0)2≪|f−f0|≪f0, the derivatives of (f−f0)2 can be comparable to or even much larger than the derivative of f.



We now consider Jf, which is expanded as


Jf=kB∫vg(f−f0)lnf0+1f0dk+kB∫−vg(f−f0)22f0(f0+1)dk+kB∫vgo(f−f0)2dk



(15)




The first-order term in the former equation coincides with JC exactly:


kB∫vg(f−f0)lnf0+1f0dk=kB∫vg(f−f0)ℏωkBTdk=qT=JC



(16)




Using the method stated above, the second-order term in Equation (15) can be expressed as


kB∫vg(f−f0)22f0(f0+1)dk=−τ2Q·∇(1T)+kBτ∫vgO[∂t(f−f0)2+vg·∇(f−f0)2]dk



(17)




Hence, the entropy-density extra flux is expressed by


K=−τ2Q·∇(1T)+kBτ∫vgO[∂t(f−f0)2+vg·∇(f−f0)2+(f−f0)3τ]dk



(18)




When τ|∂t(f−f0)2|≪(f−f0)2 and l|∇(f−f0)2|≪(f−f0)2, a second-order approximation emerges: K≅−τ2Q·∇(1T). With well-defined λeff, this approximation fulfills the form by Sellitto et al. [1]: K=αQ·q=αQT·q (Q is symmetrical in phonon heat transport). Besides sf and Jf, σf can also be expanded:


σf=kBτ∫(f0−f)lnf0+1f0dk+kBτ∫(f−f0)2f0(f0+1)dk+kBτ∫O(f−f0)3dk



(19)




Equation (19) implies that σf is a second-order quantity, and combining it with Equation (8) leads to


sf=sf=f0−τσf2+kB∫O(f−f0)3dk



(20)







Consequently, the extra entropic functional (sf−sf=f0) should be non-positive at least in the near-equilibrium region. Because the remainder term kB∫O(f−f0)3dk does not contain any temporal or spatial derivatives, the approximation sf≅sC−τσf2 is more universal than Equation (14). Similar connection between the entropy generation and non-equilibrium contribution to the entropic functional has been derived in Reference [3]. This derivation is based on the decay to equilibrium in the isolated volume element, which does not rely on any specific transport equation. Through this approximation, the entropy balance equation is rewritten as


σf=∂tsf+∇·Jf≅∂t(sf=f0−τσf2)+∇·(JC+K)⇒σf+τ2∂tσf=σC+∇·K



(21)




Equation (21) exhibits a memory behavior between σf and (σC+∇·K), namely,


σf(x,t)=σf(x,0)+2τ∫0t(σC+∇·K)(x,t−ξ)exp(−2ξτ)dξ



(22)




Equation (22) does not require small temporal or spatial derivatives, which may be valid in super-transient and large-gradient heat conduction.




3. Fractional Models


In the previous section, we discuss entropic functionals based on the standard BTE, which gives rise to integer-order heat conduction models such as the CV model. There are also fractional-order heat conduction models, i.e., the GCE class [23], whose entropic frameworks have not been studied based on the fractional BTE approach. In the following, the entropic frameworks of the GCE class will be investigated based on fractional BTEs. The first model is q+τγDtγq=−λ∇T, which can be derived from a fractional BTE as follows:


τγ−1Dtγf+vg·∇f=f0−fτ



(23)




where 0<γ≤1 and Dtγ is the Riemann-Liouville (RL) operator [24]. With the initial value terms neglected, Dt1−γDtγ equals ∂t, and Equation (23) is reformed as


∂tf+τ1−γDt1−γ(vg·∇f)=τ1−γDt1−γ(f0−fτ)



(24)




Combining Equations (24) and (4) yields


∂tsf=kB∫[Dt1−γ(f0−fτγ)−τ1−γDt1−γ(vg·∇f)]lnf+1fdk



(25)




Accordingly, the entropy flux and entropy production rate take the following forms, respectively,


∇·Jf=kB∫lnf+1fτ1−γDt1−γ(vg·∇f)dk



(26)






σf=kB∫lnf+1fDt1−γ(f0−fτγ)dk



(27)




As the form of sf does not change, the second-order estimation in Equation (13) still holds. Unlike the above case, Equation (26) is an implicit form whose first-order term deviates from JC. Due to the existence of fractional operator, Jf cannot be expanded directly. Hence, we use lnf+1f=lnf0+1f0+O(f−f0), and Equation (26) becomes


∇·Jf=kB∫[lnf0+1f0+O(f−f0)]τ1−γDt1−γ(vg·∇f)dk=∇·[τ1−γDt1−γqT]+∇·∫kBvgO(f−f0)τ1−γDt1−γfdk⇒Jf=τ1−γDt1−γqT+∫kBvgO(f−f0)τ1−γDt1−γfdk.



(28)




If f fulfills the condition lnf0+1f0=ℏωkBT≫|f−f0|, which may be valid in low-temperature situations, a macroscopic approximation arises: Jf≅T−1τ1−γDt1−γq. This macroscopic approximation can also be derived from the energy conservation equation. By multiplying Equation (23) by ℏω and integrating it over the wave vector space, we deduce a fractional-order energy balance equation as follows


∂te=−τ1−γDt1−γ(∇·q)



(29)




In the presence of near-equilibrium, ∂tsf≅∂tsf=f0 and the entropy balance equation is approximated as


∂tsf≅∂tsf=f0=1T∂te=−∇·Jγ+σγ



(30)




where Jγ=Jγ(x,t) and σγ=σγ(x,t) denote the approximate entropy flux and entropy production rate respectively. Substituting Equation (29) into Equation (30) leads to


∂tsf=f0=1T∂te=−∇·(τ1−γDt1−γqT)+(τ1−γDt1−γq)·∇(1T)=−∇·Jγ+σγ



(31)




When γ=1, Jγ and σγ should reduce to the CIT formalism, and therefore, we can derive


Jγ=τ1−γDt1−γqT



(32)






σγ=(τ1−γDt1−γq)·∇(1T)



(33)




Jγ(x,t) and σγ(x,t) are fundamentally different from the CIT or EIT formalism, which are not determined by instantaneous q but depend on the integrated history of q in [0,t].



The temporal fractional operator can occur in the temperature gradient as well [23]: q+τγDtγq=−τ1−γDt1−γ(λ∇T), which can be derived from the fractional BTE as follows


τγ−1Dtγf+τ1−γDt1−γ(vg·∇f)=f0−fτ



(34)




With the initial value terms neglected, Equation (36) becomes


∂tf+τ2−2γDt2−2γ(vg·∇f)=τ1−γDt1−γ(f0−fτ)



(35)




The corresponding entropy balance equation is given by


sf=kB∫[Dt1−γ(f0−fτγ)−τ2−2γDt2−2γ(vg·∇f)]lnf+1fdk



(36)




σf remains Equation (27), while Jf fulfills:


∇·Jf=kB∫lnf+1fτ2−2γDt2−2γ(vg·∇f)dk



(37)




Similar to Equation (28), Equation (37) can be expanded as:


Jf=τ2−2γDt2−2γqT+∫kBvgO(f−f0)τ2−2γDt2−2γfdk.



(38)




The energy conservation equation from Equation (34) is given by


∂te=−τ2−2γDt2−2γ(∇·q)



(39)




and substituting it into the entropy balance equation leads to


∂tsf=f0=−∇·(τ2−2γDt2−2γqT)+(τ2−2γDt2−2γq)·∇(1T)=−∇·Jγ+σγ⇒Jγ=τ2−2γDt2−2γqT,σγ=(τ2−2γDt2−2γq)·∇(1T)



(40)




Another model is q+τ∂tq=−τ1−γDt1−γ(λ∇T) [23], which emerges from:


∂tf+τ1−γDt1−γ(vg·∇f)=f0−fτ



(41)




The corresponding entropy balance equation is given by


∂tsf=kB∫[f0−fτ−τ1−γDt1−γ(vg·∇f)]lnf+1fdk



(42)




σf remains Equation (6), while Jf is still Equation (25). The last one is a fractional single-phase-lagging (SPL) model [23,25], namely, q(x,t+τ)=−τ1−γDt1−γ[λ∇T(x,t)]. Discussion on entropic problems for the integer-order SPL model can be found in References [26,27]. The fractional SPL model can emerge from the following BTE


Dt1−γ[vg·∇f(x,t)]=f0(x,t)−f(x,t+τ)τ



(43)







If a Taylor expansion f(x,t+τ)=f+τ∂tf+O(τ2) is applied to Equation (43), we arrive at ∂tf+τ1−γDt1−γ(vg·∇f)=f0−fτ+O(τ). The fractional operator occurs in the gradient term and there exists a remainder term O(τ), which is different from Equation (23). When ∇f=0, Equation (23) corresponds to Mittag-Leffler decay to the equilibrium distribution function, which becomes power-law in the long-time limit. For Equation (43), the distribution function must equal to the equilibrium distribution function for any t>τ. Thus, Equation (43) possesses much larger decaying rate than Equation (23). Jf remains Equation (25), while σf is given by


σf(x,t)=kB∫f0(x,t)−f(x,t+τ)+∂tf(x,t)τlnf(x,t)+1f(x,t)dk



(44)




Unlike the above case, the zero-order term of Equation (44) is not zero:


∫f0(x,t)−f0(x,t+τ)+τ∂tf0(x,t)τlnf0(x,t)+1f0(x,t)dk=1Tτ[e(x,t)+τ∂te(x,t)−e(x,t+τ)]



(45)




Therefore, there is only zero-order approximation for σf, namely,


σf(x,t)≅1Tτ[e(x,t)+τ∂te(x,t)−e(x,t+τ)]



(46)







Equation (46) is very different from the above forms, which rely only on the energy density and is independent of the heat flux.



Compte and Metzler have also mentioned entropy framework for fractional transport equations, which will be compared with our results in the following. In the study by Compte and Metzler, the conservation and constitutive equations are independent of each other. A given constitutive equation can be combined with an arbitrary conservation equation. In this work, both conservation and constitutive equations are obtained by the BTE, and their relation is restricted by the BTE as well. A given constitutive equation corresponds to a unique BTE, and hence the conservation equation is not arbitrary. In contrast with the result by Compte and Metzler, the entropic framework of the present paper cannot be separated from the conservation law. Besides the GCE class, there are also more complicated fractional and phonon heat transport equations [28,29,30,31], which deserve further discussion.




4. Conclusions


	
For the BG entropy in phonon heat transport, we provide a second-order approximation, namely, sf≅sC−τ2q·∇(1T), which is valid for both integer-order and fractional-order BTEs. If there exists a well-defined effective thermal conductivity, this approximation will coincide with the EIT entropy. This approximation requires small temporal and spatial derivatives of (f−f0)2. We also provide an approximation which does not rely on small temporal and spatial derivatives: sf≅sC−τσf2.



	
There are different forms of the entropy flux for different BTEs. For the standard BTE, we obtain the entropy-density extra flux in coincidence with EIT, which is a second-order approximation. In contrast with the standard BTE, the entropy flux for the fractional BTE deviates from the CIT formalism even in the near-equilibrium region. Thus, the form J=JC+K is not applicable for the fractional heat conduction models. Based on the energy conservation equation, we propose a macroscopic form for the entropy flux, namely, Jγ=T−1τF(γ)DtF(γ)q, where function F(γ) is determined by the fractional BTE.



	
For the standard BTE, we deduce a convolution form for the entropy production rate, σf(x,t)=σf(x,0)+2τ∫0t(σC+∇·K)(x,t−ξ)exp(−2ξτ)dξ, which reflects memory or relaxation between σf and (σC+∇·K). Like the entropy flux, the entropy production rate of the fractional BTE can deviate from the CIT formalism in the presence of near-equilibrium. The macroscopic approximation of the entropy production rate usually takes the form σγ=[τF(γ)DtF(γ)q]·∇(T−1), while the fractional SPL model corresponds a different expression, σf(x,t)≅1Tτ[e(x,t)+τ∂te(x,t)−e(x,t+τ)].



	
For fractional models, the entropic functionals perform a history-dependence, which has not been involved in existing phenomenological thermodynamics of irreversible processes [32,33,34,35]. Although our results agree with the framework of EIT in specific cases, Equation (13) indicates possible deviation induced by large temporal and spatial derivatives. In a recent work, Guo et al. [36] investigated the entropic framework for the phonon hydrodynamic model. They observed a deviation from the EIT entropy, which depends on (∇q)oS=12[(∇q)+(∇q)T]−13(∇·q)I. Noting that ∇·q=−c∂tT, the deviation term is then associated with the temporal and spatial derivatives.



	
One possible application scenario in which the non-classical entropic expressions can be important for nanoscale heat transfer is information processing. In essence, it is the entropy transport needed by information erasure that entails heat transfer. Based on conceptual connections between information theory and thermodynamics [37], information erasure can directly correspond to entropy transport, which is commonly achieved through heat transfer. Accordingly, it is necessary to establish the relation between entropy transport and heat transfer, especially when information processing is performed in non-classical cases such as nanoscale.
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