Study on Asphalt Pavement Surface Texture Degradation Using 3-D Image Processing Techniques and Entropy Theory
Abstract
:1. Introduction
2. Field Data Collection
3. Characterizing Surface Texture of Asphalt Pavement Using Entropy Theory
4. Characterization of Macrotexture Degradation with Entropy
4.1. Degradation of Macrotexture Entropy
4.2. Changing Trends of Entropy in Macrotexture
4.3. Relationship of Macrotexture Entropy and MTD with DFT60
5. Characterization of Microtexture Degradation with Entropy
5.1. Degradation of Entropy of Microtexture
5.2. Changing Trends of Entropy of Microtexture
6. Discussion
7. Conclusions
- (1)
- The entropy distribution range of the 3-D macrotexture of asphalt pavements is wide, and there are significant differences among different gradation pavement types. There are significant differences in the entropy of the 3-D macrotextures of asphalt pavements with different mixture designs. The difference of 3-D microtextures is not very obvious. Furthermore, the distribution range of macrotexture entropy is wider than that of microtextures. The macrotexture of asphalt pavements is mainly affected by the gradation of mixture, while the microtexture is mainly affected by the surface morphology of aggregates.
- (2)
- There are significant differences in the decay characteristics of 3-D macrotextures of asphalt pavements with different mixture types, which indicates that the decay characteristics of the macrotexture of asphalt pavement surfaces could be significantly improved by choosing appropriate mixture types and optimizing the design.
- (3)
- Compared with the traditional macrotexture parameter MTD, entropy contains more physical information and a better correlation with the pavement anti-skid performance index. It has significant advantages in describing the relationship between macrotexture characteristics and anti-skid performances of asphalt pavements.
- (4)
- This paper attempts to collect the 3-D microtexture of pavement surfaces with a 0.05 mm sampling interval. The decay law of the 3-D microtexture of different types of asphalt pavements is not very significant; this may require a longer observation time and more innovative methods to obtain more detailed microtextures for further studies.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kogbara, R.B.; Masad, E.A.; Kassem, E.; Scarpas, A.; Anupam, K. A state-of-the-art review of parameters influencing measurement and modeling of skid resistance of asphalt pavements. Constr. Build. Mater. 2016, 114, 602–617. [Google Scholar] [CrossRef]
- Henry, J.J. Evaluation of Pavement Friction of Characteristics; Transportation Research Board, National Research Council: Washington, DC, USA, 2000.
- American Association of State Highway and Transportation Officials (AASHTO). Guide for Pavement Friction; AASHTO: Washington, DC, USA, 2008. [Google Scholar]
- PIARC. Technical Committee Report No 1: Surface Characteristics. In Proceedings of the XVIII World Road Congress, Brussels, Belgium, 13–19 September 1987. [Google Scholar]
- Praticò, F.G.; Vaiana, R. A study on the relationship between mean texture depth and mean profile depth of asphalt pavements. Constr. Build. Mater. 2015, 101, 72–79. [Google Scholar] [CrossRef]
- Plati, C.; Pomoni, M.; Stergiou, T. Development of a Mean Profile Depth to Mean Texture Depth Shift Factor for Asphalt Pavements. Transp. Res. Rec. 2017, 2641, 156–163. [Google Scholar] [CrossRef]
- Miao, Y.; Song, P.; Gong, X. Fractal and Multifractal Characteristics of 3D Asphalt Pavement Macrotexture. J. Mater. Civ. Eng. 2014, 26, 04014033. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Liu, Y.; Sun, L. The characterisation of three-dimensional texture morphology of pavement for describing pavement sliding resistance. Road Mater. Pavement Des. 2018. [Google Scholar] [CrossRef]
- Erichsen, E. Relationship between PSV and in situ friction: A Norwegian case study. Bull. Eng. Geol. Environ. 2009, 68, 339–343. [Google Scholar] [CrossRef]
- Smith, A.B.; Fu, C.N. Correlation of Laboratory and Field Friction Measurements to Optimize Utilization of Bituminous Surface Aggregates in Utah. In Proceedings of the Transportation Research Board—94th Annual Meeting, Washington, DC, USA, 11–15 January 2015. No. 15-4418. [Google Scholar]
- Huang, C. Mathematical Characterization of Road Surface Texture and Its relation to Laboratory Friction Measures; Michigan Technological University: Houghton, MI, USA, 2002. [Google Scholar]
- Abbas, A.; Kutay, M.E.; Azari, H.; Rasmussen, R. Three-dimensional surface texture characterization of portland cement concrete pavements. Comput.-Aided Civ. Infrastruct. Eng. 2007, 22, 197–209. [Google Scholar] [CrossRef]
- Ech, M.; Yotte, S.; Morel, S.; Breysse, D.; Pouteau, B. Laboratory evaluation of pavement macrotexture durability. Revue Europé-enne de Génie Civil 2007, 11, 643–662. [Google Scholar] [CrossRef]
- Wen, J. Study on Evaluating Texture Depth of Asphalt Pavement with Digital Technology. Master’s Thesis, Chang’an University, Xi’an, China, 2009. [Google Scholar]
- Cackler, E.T.; Ferragut, T.; Harrington, D.S. Evaluation of U.S. and European Concrete Pavement Noise Reduction Methods; National Concrete Pavement Technology Center, Iowa State University: Ames, IA, USA, 2006. [Google Scholar]
- Gendy, A.E.; Shalaby, A. Mean profile depth of pavement surface macrotexture using photometric stereo techniques. J. Transp. Eng. 2007, 133, 433–440. [Google Scholar] [CrossRef]
- Gendy, A.E.; Shalaby, A.; Saleh, M.; Flintsch, G.W. Stereo-vision applications to reconstruct the 3D texture of pavement surface. Int. J. Pavement Eng. 2011, 12, 263–273. [Google Scholar] [CrossRef]
- Sengoz, B.; Topal, A.; Tanyel, S. Comparison of pavement surface texture determination by sand patch test and 3D laser scanning. Period. Polytech. Civ. Eng. 2012, 56, 73–78. [Google Scholar] [CrossRef]
- Gabriele, B.; Andrea, S.; Fabrizio, G.; Claudio, L. Laser scanning on road pavements: A new approach for characterizing surface texture. Sensors 2012, 12, 9110–9128. [Google Scholar] [CrossRef]
- Čelko, J.; Kováč, M.; Kotek, P. Analysis of the pavement surface texture by 3D scanner. Transp. Res. Procedia 2016, 14, 2994–3003. [Google Scholar] [CrossRef]
- Hu, L.; Yun, D.; Liu, Z.; Du, S.; Zhang, Z.; Bao, Y. Effect of three-dimensional macrotexture characteristics on dynamic frictional coefficient of asphalt pavement surface. Construct. Build. Mater. 2016, 126, 720–729. [Google Scholar] [CrossRef]
- Wang, K.C.P.; Li, L. Pavement surface texture modeling using 1 mm 3D laser images. In Proceedings of the Transportation Systems Workshop 2012, Austin, TX, USA, 5–8 March 2012. [Google Scholar]
- Laurent, J.; Hébert, J.F.; Lefebvre, D.; Savard, Y. Using 3D laser profiling sensors for the automated measurement of road surface conditions. 7th RILEM Int. Conf. Crack. Pavements 2012, 4, 157–167. [Google Scholar]
- Miao, Y.; Wang, L.; Wang, X.; Gong, X. Characterizing Asphalt Pavement 3-D Macrotexture Using Features of Co-occurrence Matrix. Int. J. Pavement Res. Technol. 2015, 8, 243–250. [Google Scholar] [CrossRef]
- Miao, Y.; Chen, G.; Wang, W.; Gong, X. Application of gray-tone difference matrix-based features of pavement macrotexture in skid resistance evaluation. J. Southeast Univ. Engl. Ed. 2015, 31, 389–395. [Google Scholar] [CrossRef]
- Jernigan, M.E.; D’astous, F. Entropy-based texture analysis in the spatial frequency domain. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 2, 237–243. [Google Scholar] [CrossRef]
- Böhlke, T. Application of the maximum entropy method in texture analysis. Comput. Mater. Sci. 2005, 32, 276–283. [Google Scholar] [CrossRef]
- Sun, Q.; Huang, Y.; Wang, J.; Zhao, S.; Zhang, L.; Tang, W.; Wu, N. Applying CT texture analysis to determine the prognostic value of subsolid nodules detected during low-dose CT screening. Clin. Radiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Li, J.; Zheng, X.; Wang, L. Field investigation of skid resistance degradation of asphalt pavement during early service. Int. J. Pavement Res. Technol. 2016, 9, 313–322. [Google Scholar] [CrossRef]
- Yao, H.; You, Z. Effectiveness of Micro-and Nanomaterials in Asphalt Mixtures through Dynamic Modulus and Rutting Tests. J. Nanomater. 2016. [Google Scholar] [CrossRef]
- Yao, H.; Dai, Q.; You, Z.; Bick, A.; Wang, M. Modulus simulation of asphalt binder models using Molecular Dynamics (MD) method. Construct. Build. Mater. 2018, 162, 430–441. [Google Scholar] [CrossRef]
- Xu, H.; Xing, C.; Zhang, H.; Li, H.; Tan, Y. Moisture seepage in asphalt mixture using X-ray imaging technology. Int. J. Heat Mass Transf. 2019. [Google Scholar] [CrossRef]
- Xu, H.; Guo, W.; Tan, Y. Internal structure evolution of asphalt mixtures during freeze-thaw cycles. Mater. Des. 2015, 86, 436–446. [Google Scholar] [CrossRef]
- MacKay, D.J.C. Information Theory, Inference, and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
Surface Type | Model Sum of Squares | Error Sum of Squares | Corrected Total Sum of Squares | F Value | P > F |
---|---|---|---|---|---|
DAC | 0.4518 | 0.3416 | 0.7935 | 6.61 | 0.0499 |
RAC | 0.0893 | 0.0353 | 0.1246 | 12.63 | 0.0163 |
SMA | 0.000343 | 0.0152 | 0.0156 | 0.11 | 0.7509 |
UTWC | 0.1531 | 0.0548 | 0.208 | 22.35 | 0.0015 |
DAC | RAC | SMA | UTWC | ||||
---|---|---|---|---|---|---|---|
MSE | R2 | MSE | R2 | MSE | R2 | MSE | R2 |
0.0683 | 0.5695 | 0.0071 | 0.7167 | 0.0030 | 0.0256 | 0.0068 | 0.7365 |
Surface Type | DAC | RAC | SMA | UTWC |
---|---|---|---|---|
a | −0.3929 | −0.1525 | 0.0105 | −0.1609 |
b | 4.9734 | 5.6611 | 5.6569 | 5.8139 |
Surface Type | DAC | RAC | SMA | UTWC |
---|---|---|---|---|
Mean E VS Mean MTD | 0.6041 | 0.7139 | −0.0932 | 0.7997 |
Mean E VS Mean DFT60 | 0.8283 | 0.3407 | 0.7036 | 0.9169 |
Mean MTD VS Mean DFT60 | 0.5323 | 0.7298 | −0.0635 | 0.8474 |
Surface Type | Model Sum of Squares | Error Sum of Squares | Corrected Total Sum of Squares | F Value | P > F |
---|---|---|---|---|---|
DAC | 229.9 | 0.1848 | 0.2590 | 2487.7 | <0.0001 |
RAC | 276.1 | 0.3141 | 0.3848 | 2197.2 | <0.0001 |
SMA | 270.9 | 0.267 | 0.4222 | 2536.0 | <0.0001 |
UTWC | 358.6 | 0.2981 | 0.3765 | 4210.4 | <0.0001 |
DAC | RAC | SMA | UTWC | ||||
---|---|---|---|---|---|---|---|
MSE | R2 | MSE | R2 | MSE | R2 | MSE | R2 |
0.0462 | 0.2864 | 0.0628 | 0.1836 | 0.0534 | 0.3676 | 0.0426 | 0.2082 |
Surface Type | DAC | RAC | SMA | UTWC |
---|---|---|---|---|
a | 6.2081 | 6.279 | 6.412 | 6.4559 |
b | −0.0257 | −0.0216 | −0.0357 | −0.0183 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Y.; Wu, J.; Hou, Y.; Wang, L.; Yu, W.; Wang, S. Study on Asphalt Pavement Surface Texture Degradation Using 3-D Image Processing Techniques and Entropy Theory. Entropy 2019, 21, 208. https://doi.org/10.3390/e21020208
Miao Y, Wu J, Hou Y, Wang L, Yu W, Wang S. Study on Asphalt Pavement Surface Texture Degradation Using 3-D Image Processing Techniques and Entropy Theory. Entropy. 2019; 21(2):208. https://doi.org/10.3390/e21020208
Chicago/Turabian StyleMiao, Yinghao, Jiaqi Wu, Yue Hou, Linbing Wang, Weixiao Yu, and Sudi Wang. 2019. "Study on Asphalt Pavement Surface Texture Degradation Using 3-D Image Processing Techniques and Entropy Theory" Entropy 21, no. 2: 208. https://doi.org/10.3390/e21020208
APA StyleMiao, Y., Wu, J., Hou, Y., Wang, L., Yu, W., & Wang, S. (2019). Study on Asphalt Pavement Surface Texture Degradation Using 3-D Image Processing Techniques and Entropy Theory. Entropy, 21(2), 208. https://doi.org/10.3390/e21020208