Descriptions of Entropy with Fractal Dynamics and Their Applications to the Flow Pressure of Centrifugal Compressor
Abstract
:1. Introduction
2. Fundamental Theory
2.1. Mono-Fractal and Related Parameters
2.1.1. Mono-Fractal
2.1.2. Hurst Exponent and Dynamic Pressure
2.2. Multi-Fractal Spectrum and Related Parameters
2.2.1. Multi-Fractal and Variables of Multi-Fractal Spectrums
2.2.2. Relationships between Variables of Multi-Fractal Spectrums
2.2.3. Application of Multi-Fractal Spectrum to Dynamic Pressure
3. Data Acquisition and Spectrum Analysis of Dynamic Pressure
3.1. Data Acquisition System
3.2. Frequency Spectrum of Dynamic Pressure
4. Mono-Fractal Characteristics of Dynamic Pressure
4.1. Autocorrelation Characteristics
4.2. Hurst Exponent and Variance of Dynamic Pressure
5. Nonlinear Behavior of Structure Function for Dynamic Pressure
6. Relationships between Multi-Fractal Spectrum and Fluctuation of Dynamic Pressure
7. The Statistical Reliability of Multi-Fractal Spectrum for Dynamic Pressure
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sorokes, J.; Kuzdzal, M. Centrifugal Compressor Evolution; Texas A&M: College Station, TX, USA, 2010. [Google Scholar]
- Liu, Y.; Chen, D.M.; Liu, L.G.; Wang, H.; Cheng, K. Exploring mono-fractal characteristics of dynamic pressure at exit of centrifugal compressor. J. Northwest. Polytech. Univ. 2013, 31, 60–66. [Google Scholar]
- Moghaddam, J.J.; Farahani, M.H.; Amanifard, N. A neural network based sliding-mode control for rotating stall and surge in axial compressors. Appl. Soft Comput. 2011, 11, 1036–1043. [Google Scholar] [CrossRef]
- Lin, S.; Yang, C.; Wu, P.; Song, Z. Fuzzy logic surge control in variable speed axial compressors. In Proceedings of the 2013 10th IEEE International Conference on Control and Automation (ICCA), Hangzhou, China, 12–14 June 2013. [Google Scholar]
- Liao, S.F.; Chen, J.Y. Time frequency analysis of rotating stall by means of wavelet transform. ASME 1996, 345, 1–7. [Google Scholar] [CrossRef]
- Gholamrezaei, M.; Ghorbanian, K. Application of integrated fuzzy logic and neural networks to the performance prediction of axial compressors. Proc. Inst. Mech. Eng. Part A J. Power Energy 2015, 229, 928–947. [Google Scholar] [CrossRef]
- Anciger, D.; Jung, A.; Aschenbrenner, T. Prediction of Rotating Stall and Cavitation Inception in Pump Turbines; IOP Publishing: Bristol, UK, 2010. [Google Scholar]
- Guariglia, E. Entropy and fractal antennas. Entropy 2016, 18, 84. [Google Scholar] [CrossRef]
- Liu, Y.; Mu, D.J.; Zhang, J.Z. Traffic prediction for LAN based on multifractal spectrums. J. Syst. Simul. 2009, 21, 3743–3747. [Google Scholar]
- Liu, Y.; Mu, D.J. Study on the multi-fractal spectrum of LAN traffic and their correlations. Appl. Res. Comput. 2008, 25, 3153–3155. [Google Scholar]
- Liu, Y.; Zhang, J.Z. Predicting traffic flow in local area networks by the largest Lyapunov exponent. Entropy 2016, 18, 32. [Google Scholar] [CrossRef]
- Mandelbrot, B. The Fractal Geometry of Nature; Freeman: San Francisco, CA, USA, 1982. [Google Scholar]
- Liu, Z.L. Fractal theory and application in city size distribution. Inf. Technol. J. 2013, 12, 4158–4162. [Google Scholar]
- Asmussen, S.R. Steady-state properties of GI/G/1. Appl. Probab. Queues Stoch. Model. Appl. Probab. 2003, 51, 266–301. [Google Scholar]
- Feder, J. Fractals; Plenum Press: New York, NY, USA, 1988. [Google Scholar]
- David, H. Multifractals; Chapman & Hall: London, UK, 2001. [Google Scholar]
- Lévy, V.J.; Sikdar, B. A multiplicative multifractal model for TCP traffic. In Proceedings of the Sixth IEEE Symposium on Computers and Communications Proceedings, Hammamet, Tunisia, 3–5 July 2001; pp. 714–719. [Google Scholar]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A Stat. Mech. Appl. 2002, 316, 87–114. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.G.; Wang, H. Prediction of congestion and bursting phenomena in network traffic based on multifractal spectrums. J. Dyn. Syst. Meas. Control Trans. ASME 2013, 135, 031012. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, D.X. Nonlinear characteristics of electrocardiograph signals based on fractal. J. Northwest. Polytech. Univ. 2018, 36, 287–293. [Google Scholar] [CrossRef]
- Oswiecimka, P.; Kwapien, J.; Drozdz, S. Multifractality in the stock market: Price increments versus waiting times. Phys. A Stat. Mech. Appl. 2005, 347, 626–638. [Google Scholar] [CrossRef]
Driving Motor Power | Diffuser Blade Number | Blade Number | Rotor Velocity | Mach Number | Dynamic Acquisition System | Sample Frequency |
---|---|---|---|---|---|---|
800 kW | 24 | 16 | 960 r/min | 0.6 | CoCo80 | 20.48 kHz |
Time/s | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
Hurst | 0.6816 | 0.6867 | 0.7018 | 0.6783 | 0.7019 | 0.6515 | 0.6841 | 0.7253 | 0.7391 | 0.8069 |
Variance | 9.50E-04 | 0.0019 | 0.002 | 0.0016 | 0.0013 | 0.001 | 0.0014 | 0.0022 | 0.004 | 0.0075 |
Time/s | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
Hurst | 0.8578 | 0.9102 | 0.9083 | 0.9231 | 0.9312 | 0.8385 | 0.854 | 0.8381 | 0.8518 | 0.8281 |
Variance | 0.0125 | 0.0175 | 0.0219 | 0.0226 | 0.031 | 0.0295 | 0.027 | 0.0252 | 0.0317 | 0.0255 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ding, D.; Ma, K.; Gao, K. Descriptions of Entropy with Fractal Dynamics and Their Applications to the Flow Pressure of Centrifugal Compressor. Entropy 2019, 21, 266. https://doi.org/10.3390/e21030266
Liu Y, Ding D, Ma K, Gao K. Descriptions of Entropy with Fractal Dynamics and Their Applications to the Flow Pressure of Centrifugal Compressor. Entropy. 2019; 21(3):266. https://doi.org/10.3390/e21030266
Chicago/Turabian StyleLiu, Yan, Dongxiao Ding, Kai Ma, and Kuan Gao. 2019. "Descriptions of Entropy with Fractal Dynamics and Their Applications to the Flow Pressure of Centrifugal Compressor" Entropy 21, no. 3: 266. https://doi.org/10.3390/e21030266
APA StyleLiu, Y., Ding, D., Ma, K., & Gao, K. (2019). Descriptions of Entropy with Fractal Dynamics and Their Applications to the Flow Pressure of Centrifugal Compressor. Entropy, 21(3), 266. https://doi.org/10.3390/e21030266