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Abstract: We consider the problem of channel coding over multiterminal state-dependent channels
in which neither transmitters nor receivers but only a helper node has a non-causal knowledge
of the state. Such channel models arise in many emerging communication schemes. We start
by investigating the parallel state-dependent channel with the same but differently scaled state
corrupting the receivers. A cognitive helper knows the state in a non-causal manner and wishes to
mitigate the interference that impacts the transmission between two transmit–receive pairs. Outer
and inner bounds are derived. In our analysis, the channel parameters are partitioned into various
cases, and segments on the capacity region boundary are characterized for each case. Furthermore,
we show that for a particular set of channel parameters, the capacity region is entirely characterized.
In the second part of this work, we address a similar scenario, but now each channel is corrupted by
an independent state. We derive an inner bound using a coding scheme that integrates single-bin
Gel‘fand–Pinsker coding and Marton’s coding for the broadcast channel. We also derive an outer
bound and further partition the channel parameters into several cases for which parts of the capacity
region boundary are characterized.

Keywords: dirty paper coding; Gel’fand–Pinsker scheme; non-causal channel state information;
network information theory

1. Introduction

Cellular communication systems are designed to allow multiple users to share the same
communication medium. Traditionally, mobile networks have enabled this feature by dividing the
physical resources (such as time, frequency, code, and space) in an orthogonal manner between users.
An illustration of the typical methods, called Orthogonal Multiuser Access (OMA) is shown in Figure 1.

The future of cellular communications is facing exponential growth in bandwidth demand.
Furthermore, increased popularity in Internet of Things (IoT) applications and the emergence of
Vehicle-to-Vehicle (V2V) connectivity will further grow the number of network consumers. Hence,
fifth-generation (5G) wireless networks are required to support extensive connectivity, low latency,
and higher data rates. Such requirements cannot be satisfied using the traditional OMA methods and
thus to sustain more users and higher transmission rates, non-orthogonal multiuser access (NOMA)
has been intensively investigated, where interference mitigation is the key issue for non-orthogonal
transmission. A comprehensive survey on NOMA from an information theoretic perspective is given
in [1].
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Figure 1. Orthogonal Multiple Access Techniques.

In this work, we study a particular communication model that can be used in future NOMA
techniques. Specifically, we investigate a type of state-dependent channel with a helper, illustrated
in Figure 2, in which two transmitters wish to send messages to their corresponding receivers over
a parallel state-dependent channel. The state is not known to either transmitter or receiver but is
non-causally (the side information in all times is given to the encoder before the block transmission)
known to a state-cognitive helper, who tries to assist each receiver in mitigating the interference caused
by the state. This model captures interference cancelation in various practical scenarios. For example,
users in multi-cell systems may be interfered by a base station located in other cells. Such a base station,
being as the source that causes the interference, clearly knows the information of the interference
(modeled by state) and can serve as a helper to mitigate the interference. Alternatively, that base
station can also convey the interference information to other base stations via the backhaul network
so that other base stations can serve as helpers to reduce the interference. As another example,
consider a situation where there are two Device to Device (D2D) links located in two distinct cells,
and there is a downlink signal sent from the base station to some conventional mobile user in the
cell. Also, there is some central unit that knows in a non-causal manner the signal to be sent by each
base station, the helper in our model, and tries to assist the D2D communication links by mitigating
the interference (see Figure 3). As a comparison, this type of state-dependent models differs from
the original state-dependent channels studied in, e.g., [2,3], in that the state-cognitive helper is not
informed of the transmitters’ messages, and hence its state cancelation strategies are necessarily
independent of message encoding at the transmitters.
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Figure 2. General State-Dependent Parallel Channel with a helper.
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Figure 3. Particular NOMA configuration.

The study of channel coding in the presence of channel side information (CSI) was initiated by
Shannon [4] who considered a discrete memoryless channel (DMC) channel with random parameters
and side information provided causally to the transmitter. The single-letter expression for the capacity
of the point-to-point DMC with non-causal CSI at the encoder (the G-P channel) was derived in the
seminal work of Gel’fand and Pinsker [2]. One of the most interesting special cases of the G-P channel
is the Gaussian additive noise and interference setting in which the additive interference plays the
role of the state sequence, which is known non-causally to the transmitter. Costa showed in [3] that
the capacity of this channel is equal to the capacity of the same channel without additive interference.
The capacity achieving scheme of [3] (which is that of [2] applied to the Gaussian case) is termed
“writing on dirty paper” (WDP), and consequently, the property of the channel where the known
interference can be completely removed is dubbed “the WDP property”. Cohen and Lapidoth [5]
showed that any interference sequence can be removed entirely when the channel noise is ergodic
and Gaussian.

The models we study in this work all have a broadcasting node. The discrete memoryless broadcast
channel (DM-BC) was introduced by Cover [6]. The capacity region of the DM-BC is still an open
problem. The largest known inner bound on the capacity region of the DM-BC with private messages
was derived by Marton [7]. Liang [8] derived an inner bound on the capacity region of the DM-BC
with an additional common message. The best outer bound for DM-BC with a common message is
due to Nair and El Gamal [9]. There are, however, some special cases where the capacity region is
fully characterized. For example, the capacity region of the degraded DM-BC was established by
Gallager [10]. The capacity region of the Gaussian BC was derived by Bergmans [11]. An interesting
result is the capacity region of the Gaussian MIMO BC which was established by Weingarten et al. [12].
The authors introduced a new notion of an enhanced channel and used it jointly with the Entropy Power
Inequality (EPI) to show their result. The capacity achieving scheme relies on the dirty paper coding
technique. Liu and Viswanath [13] developed an extremal inequality proof technique and showed
that it can be used to establish a converse result in various Gaussian MIMO multiterminal networks,
including the Gaussian MIMO BC with private messages. Recently, Geng and Nair [14] developed
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a different technique to characterize the capacity region of Gaussian MIMO BC with common and
private messages.

Degraded DM-BC with causal and non-causal side information was introduced by Steinberg [15].
Inner and outer bounds on the capacity region were derived. For the particular case in which the
nondegraded user is informed about the channel parameters, it was shown that the bounds are tight,
thus obtaining the capacity region for that case. The general DM-BC with non-causal CSI at the encoder
was studied by Steinberg and Shamai [16]. An inner bound was derived, and it was shown to be tight
for the Gaussian BC with private messages and independent additive interference at both channels.
The latter setting was recently extended to the case of common and private messages in the Gaussian
framework with K users in [17]. The special case where the transmitter sends only a common message
to all receivers over an additive BC has been initially studied in [18] and has been recently extended to
the compound setting in [19]. Outer bounds for DM-BC with CSI at the encoder were derived in [20].

The models addressed in this paper have a mismatched property, that is the state sequence
is known only to some nodes, which differs from the classical study on state-dependent channels.
The type of channels with mismatched property has been addressed in the past for various models,
for example, in [21–25], the state-dependent multiple access channel (MAC) is studied with the state
known at only one transmitter. The best outer bound for the Gaussian MAC setting was recently
reported in [26]. The point-to-point helper channel studied in [27,28] can be considered as a special case
of [25], where the cognitive transmitter does not send any message. Further in [28], the state-dependent
MAC with an additional helper was studied, and the partial/full capacity region was characterized
under various channel parameters. Moreover, some state-dependent relay channel models can also be
viewed as an extension of the state-dependent channel with a helper, where the relay serves the role
of the helper by knowing the state information. In [29], the state-dependent relay channel with state
non-causally available at the relay is considered. An achievable rate was derived using a combination of
decode-and-forward, Gel‘fand–Pinsker (GP) binning and codeword splitting. Also, in [30], additional
noiseless cooperation links with finite capacity were assumed between the transmitter and the relay,
and various coding techniques were explored. The authors of [31] have recently considered a different
scenario with a state-cognitive relay. The state-dependent Z-IC with a common state known in a
non-causal manner only to the primary user was studied in [32]. A good tutorial on channel coding in
the presence of CSI can be found in [33].

The basic state-dependent Gaussian channel with a helper is illustrated in Figure 4. It was first
introduced in [27], where the capacity in the infinite power regime was characterized and was shown
to be achievable by lattice coding. The capacity under arbitrary state power was established for some
special cases in [28]. Based on a single-bin GP binning scheme the following lower bound was derived
for the discrete memoryless case

R ≤ max
PUX0 |SPX

min{I(X;Y|U), I(UX;Y)− I(U;S)}.

This lower bound was further evaluated for Gaussian channel by appropriate choice of the
maximizing input distribution. The surprising result of that study was that when the helper power is
above some threshold, then the interference caused by the state is entirely canceled and the capacity of
the channel without the state can be achieved. This threshold does not depend on the state power, and
hence it was shown that this channel also has WDP property, that is the capacity of the channel is the
same as the capacity of the similar channel without the interference (which is modeled as the state).

The most relevant work to this study is [34], in which the state-dependent parallel channel with a
helper was studied, for the regime with infinite state power and with two receivers being corrupted by
two independent states. A time-sharing scheme was proved to be capacity achieving under certain
channel parameters. In contrast, in this study, we expand those results for the arbitrary state power
regime. We also consider two extreme cases. At first, we address the problem where the two receivers
of the parallel channel are corrupted by the same but differently scaled states, and in the second part,
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those states are independent. For both cases, we show that the time-sharing scheme is no longer
optimal. Our main contribution in this work is a derivation of inner bound, which is an extension of
the Marton coding scheme for the discrete broadcast channel to the current model. We will apply this
bound for the MIMO Gaussian setting and characterize the segments of the capacity region for various
channel parameters. The material in this paper was presented in part at [35,36].
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Figure 4. Point-to-Point Helper Channel.

2. Preliminaries

2.1. Notation Conventions

Throughout the paper, random variables are denoted using a sans-serif font, e.g., X, their
realizations are denoted by the respective lower-case letters, e.g., x, and their alphabets are denoted
by the respective calligraphic letters, e.g., X . Let X n stand for the set of all n-tuples of elements
from X . An element from X n is denoted by xn = (x1, x2, . . . , xn) and substrings are denoted by
xj

i = (xi, xi+1, . . . , xj). The cardinality of a finite set, say X , is denoted by |X |. The probability
distribution function of X, the joint distribution function of X and Y, and the conditional distribution
of X given Y are denoted by PX, PX,Y and PX|Y respectively. The expectation of X is denoted by E [X].
The probability of an event E is denoted as P{E}. The set of jointly ε-typical n-tuples (xn, yn) is
defined as T (n)

ε (PXY) [37]. A set of consecutive integers starting at 1 and ending in d2nRe is denoted as
I (n)R , {1, 2, . . . , d2nRe}. We assume throughout this paper that 2nR are integers, for any R and n→ ∞.

We denote the covariance of a zero mean vector X by ΣX , E
[
XXT], ΣXY , E

[
XYT] is the

cross-correlation, and the conditional correlation matrix of X given Y as MX|Y , ΣX − ΣXYΣ−1
Y ΣYX.

2.2. Definitions

Definition 1. Random variables X, Y, Z are said to form a Markov chain in that order (denoted by X→ Y → Z)
if the conditional distribution of Z depends only on Y and is conditionally independent of X. Specifically, X, Y
and Z form a Markov chain X→ Y → Z if the joint probability mass function can be written as

PXYZ = PXPY|XPZ|Y. (1)

2.3. Auxiliary Results

This section introduces some auxiliary results that are relevant to the analysis in this work [37].

Lemma 1 (Data-processing inequality). If X→ Y → Z, then

I(X;Y) ≥ I(X;Z). (2)

The following inequality will be frequently used in the proofs of outer bounds on the
capacity regions.

Lemma 2 (Fano’s Inequality). Let (X,Y) ∼ PXY and Pe = Pr(X 6= Y). Then

H(X|Y) ≤ H(Pe) + Pe log |X | ≤ 1 + Pe log |X |. (3)
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The covering lemma and the packing lemma will be used in the achievability proofs throughout
this paper.

Lemma 3 (Covering Lemma). Let (U,X, X̂) ∼ PUXX̂ and ε′ < ε. Let (Un,Xn) ∼ PUnXn be a pair of random
sequences with

lim
n→∞

P{(Un,Xn) ∈ T (n)
ε′ (PUX)} = 1,

and let X̂n(m), m ∈ A, where |A| ≥ 2nR, be random sequences, conditionally independent of each other and of
Xn given Un, each distributed according to ∏n

i=1 PX̂|U(x̂i|ui). Then, there exists δ(ε) that approaches zero as
ε→ 0 such that

lim
n→∞

P{(Un,Xn, X̂n(m)) /∈ T (n)
ε for all m ∈ A} = 0, (4)

if R > I(X; X̂|U) + δ(ε).

Lemma 4 (Packing Lemma). Let (U,X,Y) ∼ PUXY. Let (Ũn, Ỹn) ∼ PŨnỸn be a pair of arbitrarily distributed
random sequences, not necessarily distributed according to ∏n

i=1 PUY(ũi, ỹi). Let Xn(m), m ∈ A, where
|A| ≤ 2nR, be random sequences, each distributed according to ∏n

i=1 PX|U(xi|ũi). Further assume that Xn(m),
m ∈ A, is pairwise conditionally independent of Ỹn given Ũn, but is arbitrarily dependent on other Xn(m)

sequences. Then, there exists δ(ε) that approaches zero as ε→ 0 such that

lim
n→∞

P{(Ũn,Xn(m), Ỹn) ∈ T (n)
ε for some m ∈ A} = 0,

if R < I(X;Y|U)− δ(ε).

3. The MIMO Gaussian Channel with Same but Differently Scaled States

3.1. Channel Model

In this section, we study the state-dependent parallel network with a state-cognitive helper, in
which two transmitters communicate with two corresponding receivers over a state-dependent parallel
channel. The two receivers are corrupted by the same but differently scaled state, respectively. The state
information is not known to either the transmitters or the receivers, but a helper non-causally. Hence,
the helper assists these receivers to cancel the state interference (see Figure 5).

Enc 1 + + + Dec 1

Helper

Enc 2 + + + Dec 2

Sn
Xn

0

G1

G2 Gs2

Gs1
Zn

1

M1
Xn

1 Yn
1

M̂1
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Zn
2

M2
Xn

2 Yn
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Figure 5. The state-dependent parallel channel with same but differently scaled states and a
state-cognitive helper.

More specifically, the encoder at transmitter l, fl : I (n)Rl
→ X n

l , maps a message ml ∈ I
(n)
Rl

to
a codeword xn

l , for l = 1, 2. The inputs xn
1 and xn

2 are sent respectively over the two subchannels
of the parallel channel. The two receivers are corrupted by the same but differently scaled and
identically distributed (i.i.d.) state sequence sn ∈ Sn, which is known to a common helper non-causally.
Hence, the encoder at the helper, f0 : Sn → X n

0 , maps the state sequence sn ∈ Sn into a codeword
xn

0 ∈ X n
0 . The channel transition probability is given by PY1|X0X1S · PY2|X0X2S. The decoder at receiver l,

gl : Yn
l → I

(n)
Rl

, maps a received sequence yn
l into a message m̂l ∈ I

(n)
Rl

, for l = 1, 2. We assume that the
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messages are uniformly distributed over the sets I (n)R1
and I (n)R2

. We define the average probability of
error for a length-n code as

P(n)
e =

1
2n(R1+R2)

2nR1

∑
m1=1

2nR2

∑
m2=1

P{(m̂1, m̂2) 6= (m1, m2)}. (5)

Definition 2. A rate pair (R1, R2) is said to be achievable if there exist a sequence of message sets I (n)R1
and I (n)R2

,

and encoder-decoder tuples
(

f (n)0 , f (n)1 , f (n)2 , g(n)1 , g(n)2

)
such that the average probability of error P(n)

e → 0 as
n→ ∞.

Definition 3. We define the capacity region of the channel as the closure of the set of all achievable rate pairs
(R1, R2).

In this section, we focus on the MIMO Gaussian channel, with the outputs at the two receivers for
one channel use given by

Yl = GlX0 + Xl + Gsl S + Zl l ∈ {1, 2}, (6)

where X0, X1, X2, S2, Z1 and Z2 are all real vectors of size t× 1, and

• X0, X1, X2 are the input vectors that are subject to the covariance matrix constraints 1
n ∑n

i=1 xlixT
li �

Kl , l ∈ {0, 1, 2},
• Yl is the output vector, l ∈ {1, 2},
• S is a real Gaussian random vector with zero mean and covariance matrix KS = E

[
SST] � 0,

• Zl is a real Gaussian random vector with zero mean and an identity covariance matrix KZl = I,
for l ∈ {1, 2}.

Both the noise variables, and the state variable are i.i.d. over channel uses. Gs1 (Gs2) is t × t
real matrix that represents the channel matrix connecting the state source to the first (second) user.
Similarly, G1 (G2) is a t× t real channel matrix connecting the helper to the first (second) user. Thus,
our model captures a general scenario, where the helper’s power and the state power can be arbitrary.

Our goal is to characterize the capacity region of the Gaussian channel under various channel
parameters (G1, G2, Gs1 , Gs2 , K0, K1, K2, KS).

3.2. Inner and Outer Bounds

In this section, we first derive inner and outer bounds on the capacity region for the
state-dependent parallel channel with a helper. Then by comparing the inner and outer bounds,
we characterize the segments on the capacity region boundary under various channel parameters.

We start by deriving an inner bound on the capacity region for the DMC based on the single-bin
GP scheme.

Proposition 1. For the discrete memoryless state-dependent parallel channel with a helper under the same
but differently scaled states at the two receivers, an inner bound on the capacity region consists of rate pairs
(R1, R2) satisfying:

R1 ≤ min {I(W, X1; Y1)− I(W; S), I(X1; Y1|W)} , (7a)

R2 ≤ min {I(W, X2; Y2)− I(W; S), I(X2; Y2|W)} , (7b)

for some distribution PW|SPX0|WSPX1 PX2 .

Proof. The proof is relegated to Appendix A.
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We evaluate the inner bound for the Gaussian channel by choosing the joint Gaussian distribution
for random variables as follows:

W = X′0 + AS,

X0 = X′0 + BS,

X′0 ∼ N (0, K′0),

X1 ∼ N (0, K1) X2 ∼ N (0, K2),

(8)

where X′0, X1, X2, S are independent and K′0 � K0.
Let f1(·), g1(·), f2(·) and g2(·) be defined as

f1(A, B, K′0) = I(W, X1; Y1)− I(W; S),

g1(A, B, K′0) = I(X1; Y1|W),

f2(A, B, K′0) = I(W, X2; Y2)− I(W; S),

g2(A, B, K′0) = I(X2; Y2|W),

where the mutual information terms are evaluated using the joint Gaussian distribution chosen in (8).
Based on those definitions, we obtain an achievable region for the Gaussian channel.

Proposition 2. An inner bound on the capacity region of the parallel state-dependent MIMO Gaussian channel
with same but differently scaled states and a state-cognitive helper consists of rate pairs (R1, R2) satisfying;

R1 ≤ min{ f1(A, B, K′0), g1(A, B, K′0)}, (9a)

R2 ≤ min{ f2(A, B, K′0), g2(A, B, K′0)}, (9b)

for some real matrices A, B and K′0 satisfying K′0 � 0, K′0 + BKSBT � K0.

We note that the above choice of the helper’s signal incorporates two parts with X′0 designed
using single-bin dirty paper coding, and BS acting as direct state subtraction.

We next present an outer bound which applies the point-to-point channel capacity and the upper
bound derived for the point-to-point channel with a helper in [27].

Denote

Rub1
l (ΣX0S) ,

1
2

log


∣∣∣GlK0GT

l + Kl + GlΣX0SGsl + Gsl Σ
T
X0SGT

l + Gsl KSGT
sl
+ I
∣∣∣∣∣∣GlK0GT

l + GlΣX0SGT
sl
+ Gsl Σ

T
X0SGT

l + Gsl KSGT
sl
+ I
∣∣∣


+

1
2

log
(∣∣∣Gl(K0 − ΣX0SK−1

S ΣT
X0S)G

T
l + I

∣∣∣) . (10)

Proposition 3. An outer bound on the capacity region of the state-dependent parallel MIMO Gaussian channel
with a helper consists of rate pairs (R1, R2) satisfying:

Rl ≤ min

{
Rub1

l (ΣX0S),
1
2

log (|Kl + I|)
}

, (11)

for every l ∈ {1, 2} and ΣX0S that satisfies ΣX0SK−1
S ΣT

X0S � K0.

Proof. The second term in (11) is simply the capacity of a point-to-point channel without state. The first
term is derived in Appendix B.
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3.3. Capacity Region Characterization

In this section, we optimize A and B in Proposition 2, and compare the rate bounds with the outer
bounds in Proposition 3 to characterize the points or segments on the capacity region boundary.

Since the inner bound in Proposition 2 is not convex, it is difficult to provide a closed form for the
jointly optimized bounds. Therefore, we first optimize the bounds for R1 and R2 respectively, and then
provide conditions on channel parameters such that these bounds match the outer bound. Based on
the conditions, we partition the channel parameters into the sets, in which different segments of the
capacity region boundary can be obtained.

We first consider the rate bound for R1 in (9a). By setting

Aa , (G1K′0GT
1 + I)−1K′0GT

1 (G1B + I), Ba , Σ?
X0SGs1 K−1

S ,

f1(A, B, K′0) takes the following form

f1(Aa, Ba, K′0) =
1
2

log

(
|G1K0GT

1 + K1 + G1Σ?
X0SGs1 + GT

s1
Σ?T

X0SGT
1 + Gs1 KSGT

s1
+ I|

|G1K0GT
1 + G1Σ?

X0SGs1 + GT
s1

Σ?T
X0SGT

1 + Gs1 KSGT
s1
+ I|

)

+
1
2

log
(
|G1K′0GT

1 + I|
)

,

where Σ?
X0S maximizes f1(Aa, B(ΣX0S), K′0). In fact, Aa maximizes f1(A, B, K′0) for fixed B, and Ba

maximizes the function with A = Aa.
If f1(Aa, Ba, K′0) ≤ g1(Aa, Ba, K′0), R1 = f1(Aa, Ba, K′0) is achievable, and this matches the outer

bound in (11). Thus, one segment of the capacity region is specified by

R1 = f1(Aa, Ba, K′0), (12a)

R2 ≤ min{ f2(Aa, Ba, K′0), g2(Aa, Ba, K′0)}. (12b)

We further observe that the second term g1(A, B, K′0) in (9a) is optimized by setting Ab = B +

G−1
1 Gs1 , and hence

g1(Ab, B, K′0) =
1
2

log(|K1 + I|).

If g1(B− G−1
1 Gs1 , B, K′0) ≤ f1(B− G−1

1 Gs1 , B, K′0), i.e.,

K′0G1K′0GT
1 � AKS AT(K1 + I)− K′0G1 AKS ATGT

1 , (13)

then the inner bound for R1 becomes R1 = 1
2 log(|K1 + I|), which is the capacity of the point-to-point

channel without state and matches the outer bound in (11). Thus, another segment of the capacity is
specified by

R1 =
1
2

log(|K1 + I|), (14a)

R2 ≤ min{ f2(Ab, B, K′0), g2(Ab, B, K′0)}. (14b)

We then consider the rate bound for R2. Similarly, the following segments on the capacity
boundary can be obtained. If f2(Ac, Bc, K′0) ≤ g2(Ac, Bc, K′0), one segment of the capacity region
boundary is specified by
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R1 ≤ min{ f1(Ac, Bc, K′0), g1(Ac, Bc, K′0)}, (15a)

R2 =
1
2

log

(
|G2K0GT

2 + K2 + G2Σ?
X0SGs2 + GT

s2
Σ?T

X0SGT
2 + Gs2 KSGT

s2
+ I|

|G2K0GT
2 + G2Σ?

X0SGs2 + GT
s2 Σ?T

X0SGT
2 + Gs2 KSGT

s2 + I|

)
+

1
2

log
(
|G2K′0GT

2 + I|
)

, (15b)

where
Ac , (G2K′0GT

2 + I)−1K′0GT
2 (G2B + GS), Bc , Σ??

X0SGs1 K−1
S ,

and Σ∗∗X0S maximizes f2(Ac, Bc, K′0).
Furthermore, if g2(A, A − G−1

2 Gs2 , K′0) ≤ f2(A, A − G−1
2 Gs2 , K′0), one segment of the capacity

region boundary is specified by

R1 ≤ min
{

f1(A, A− G−1
2 Gs2 , K′0), g1(A, A− G−1

2 Gs2 , K′0)
}

(16a)

R2 =
1
2

log(|K2 + I|). (16b)

Appendix C describes how (Aa, Ba), (Ab, Bb), (Ac, Bc) and (Ad, Bd) were chosen.
Summarizing the above analysis, we obtain the following characterization of segments of the

capacity region boundary.

Theorem 1. The channel parameters (G1, G2, Gs1 , Gs2 , K0, K1, K2, KS) can be partitioned into the sets
A1,B1, C1, where

A1 = {(G1, G2, Gs1 , Gs2 , K0, K1, K2, KS) : f1(Aa, Ba, K′0) ≤ g1(Aa, Ba, K′0)},
C1 = {(G1, G2, Gs1 , Gs2 , K0, K1, K2, KS) : K′0G1K′0GT

1 � AKS AT(K1 + I)− K′0G1 AKS ATGT
1

where K′0 = K0 − (A− G−1
1 Gs1)KS(A− G−1

1 Gs1)
T , for some A ∈ ΩA},

B1 = (A1 ∪ C1)
c.

If (G1, G2, Gs1 , Gs2 , K0, K1, K2, KS) ∈ A1, then (12a)–(12b) captures one segment of the capacity
region boundary, where the state cannot be fully canceled. If (G1, G2, Gs1 , Gs2 , K0, K1, K2, KS) ∈ C1,
then (14a)–(14b) captures one segment of the capacity region boundary where the state is fully canceled.
If (G1, G2, Gs1 , Gs2 , K0, K1, K2, KS) ∈ B1, then the R1 segment of the capacity region boundary is
not characterized.

The channel parameters (G1, G2, Gs1 , Gs2 , K0, K1, K2, KS) can also be partitioned into the sets
A2,B2, C2, where

A2 = {(G1, G2, Gs1 , Gs2 , K0, K1, K2, KS) : f2(Ac, Bc, K′0) ≤ g2(Ac, Bc, K′0)}
C2 = {(G1, G2, Gs1 , Gs2 , K0, K1, K2, KS) : K′0G2K′0GT

2 � AKS AT(K2 + I)− K′0G2 AKS ATGT
2

where K′0 = K0 − (A− G−1
2 Gs2)KS(A− G−1

2 Gs2)
T , for some A ∈ ΩA}

B2 = (A2 ∪ C2)
c.

If (G1, G2, Gs1 , Gs2 , K0, K1, K2, KS) ∈ A2, then (15a)–(15b) captures one segment of the capacity
region boundary, where the state cannot be fully canceled. If (G1, G2, Gs1 , Gs2 , K0, K1, K2, KS) ∈ C2,
then (16a)–(16b) captures one segment of the capacity boundary where the state is fully canceled.
If (G1, G2, Gs1 , Gs2 , K0, K1, K2, KS) ∈ B2, then the R2 segment of the capacity region boundary is
not characterized.

The above theorem describes two partitions of the channel parameters, respectively under
which segments on the capacity region boundary corresponding to R1 and R2 can be characterized.
Intersection of two sets, each from one partition, collectively characterizes the entire segments on the
capacity region boundary.
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Figure 6 lists all possible intersection of sets that the channel parameters can belong to. For each
case in Figure 6, we use red solid line to represent the segments on the capacity region that are
characterized in Theorem 1, and we also mark the value of the capacity that each segment corresponds
to as characterized in Theorem 1. Please note that the case B1 ∩ B2 is not illustrated in Figure 6 since
no segments are characterized in this case.

R1

R2

R1 = f1(A
a, Ba,K ′

0)

R2 = f2(A
c, Bc,K ′

0)

(a) A1 ∩A2

R1

R2

R1 = f1(A
a, Ba,K ′

0)

(b) A1 ∩ B2

R1

R2

R1 = f1(A
a, Ba,K ′

0)

R2 =
1
2 log(|K2 + I|)

(c) A1 ∩ C2

R1

R2

R2 = f2(A
c, Bc,K ′

0)

(d) B1 ∩A2

R1

R2

R2 =
1
2 log(|K2 + I|)

(e) B1 ∩ C2

R1

R2

R1 =
1
2 log(|K1 + I|)

R2 = f2(A
c, Bc,K ′

0)

(f) C1 ∩A2

R1

R2

R1 =
1
2 log(|K1 + I|)

(g) C1 ∩ B2

R1

R2

R1 =
1
2 log(|K1 + I|)

R2 =
1
2 log(|K2 + I|)

(h) C1 ∩ C2

Figure 6. Segments of the capacity region for all cases of channel parameters.

One interesting example in Theorem 1 is the case with G−1
1 Gs1 = G−1

2 Gs2 , in which R1 and R2 are
optimized with the same set of coefficients A and B when (G1, G2, Gs1 , Gs2 , K0, K1, K2, KS) ∈ C1 ∩ C2.
Thus, the point-to-point channel capacity is simultaneously obtained for both R1 and R2, with state
being fully canceled. We state this result in the following theorem.

Theorem 2. If G−1
1 Gs1 = G−1

2 Gs2 , K′0G1K′0GT
1 � AKS AT(K1 + I)− K′0G1 AKS ATGT

1 and K′0G2K′0GT
2 �

AKS AT(K2 + I)− K′0G2 AKS ATGT
2 where K′0 = K0− (A−G−1

1 Gs1)KS(A−G−1
1 Gs1)

T , for some A ∈ ΩA
then the capacity region of the state-dependent parallel Gaussian channel with a helper and under the same but
differently scaled states contains (R1, R2) satisfying

R1 ≤ 0.5 log(|K1 + I|),
R2 ≤ 0.5 log(|K2 + I|).

The channel conditions of Theorem 2 are not just of mathematical importance but also have a
practical utility. Consider, for example, a scenario where the helper is also the interferer (see Figure 3),
in such case it is reasonable to assume that Gs1 = G1 and Gs2 = G2, and thus the aforementioned
conditions are satisfied.

3.4. Numerical Example

We now examine our results via simulations. In particular, we focus on the scalar channel case, i.e.,
G1 ← 1, G2 ← b, Gs1 ← 1, Gs2 ← a, K0 ← P0, K′0 ← P′0, K1 ← P1, K2 ← P2 and KS ← Q. Furthermore,
we denote A← α , B← β and ρ0S , β

√
P0Q.

We set P0 = 6, P1 = P2 = 5, Q = 12, and b = 0.8, and plot the inner and outer bounds for
the capacity region (R1, R2) for two values of a. It can be observed from Figure 7 that the upper
bound is defined by the rectangular region of channel without state. The inner bound, in the contrary,
is susceptible to the value of a, such that in the case where a = b, our inner and outer bounds
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coincide everywhere, while in the case a 6= b they coincide only on some segments. Both observations
corroborate the characterization of the capacity in Theorems 1 and 2.

R
1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

R
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time Sharing a=0.8

Inner Bound a=0.3

Inner Bound a=0.5

Inner Bound a=0.6

Inner Bound a=0.7

Inner Bound a=0.8

Outer Bound

Figure 7. Capacity bounds for channel parameters P0 = 6, P1 = P2 = 5, Q = 12, b = 0.8 and various
state gain a.

It is also interesting to illustrate how the channel parameters (a, b) affect our ability to characterize
the capacity region boundary. For this we propose the following setup:

• we choose α and β such that R1 lies on the capacity region boundary;
• we further choose ρ0S that maximizes the achievable R2, denoted as RI2 ;
• we compare it to the outer bound of R2, RO2 , and plot the gap ∆ , RO2 − RI2 .

Figure 8 shows the results of such simulation for two values of P0: P0 = 1 for which the state is not
fully canceled for user 1 and P0 = 6, for which the state is canceled. We fix other parameters as before,
that is P1 = P2 = 5 and Q = 12. The right figure shows that the capacity gap is small around the line
a = b, this result is not surprising, and it appears in Theorem 2. The left Figure is also interesting.
It shows that there is a curve a 6= b for which the capacity gap is also near zero. The reason for this
phenomenon is explained as follows.

• The chosen channel parameters satisfy (a, b, P0, P1, P2, Q) ∈ A1, and hence

α1 =
(1 + β1)P′0

P′0 + 1
β1 = ρ?0S

√
P0

Q
(17)

optimize R1.
• Thus, if a

b satisfies
a
b
= α1 − β1, (18)

and b2P′20 ≥ α2
1Q(P2 + 1 − b2P′0), then (a, b, P0, P1, P2, Q) ∈ C2, i.e., R2 = 1

2 log(1 + P2) is
achievable.
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Figure 8. Capacity gap for foxed P0.

We illustrate this result in Figure 9, where we fixed the channel parameters b = 1, P1 = P2 = 5,
Q = 12, and calculate the capacity gap for various values of a and P0. The shaded area is the region of
P0 where the capacity of the point-to-point helper channel is not characterized.

(a) b = 2 (b) b = 5
Figure 9. Capacity gap for fixed b.

In practical situations the channel parameters a and b are fixed but the helper can control P0.
The results here imply that for a fixed (a, b) we can choose P0 such that the capacity gap is close to zero.
We emphasize this in Figure 10, where we plot the inner and outer bounds on achievable (R1, R2) with
the following channel parameters

(a, b, P0, P1, P2, Q) = (3.5, 5, 2.17, 5, 5, 12). (19)
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Figure 10. Inner and outer bounds for (a, b, P0, P1, P2, Q) = (3.5, 5, 2, 5, 5, 12).

4. MIMO Gaussian Channel with Independent States

In this section, we consider the problem of channel coding over MIMO Gaussian parallel
state-dependent channel with a cognitive helper where the states are independent. We start with
deriving an achievable region for a general discrete memoryless case. We then, evaluate this region for
the Gaussian setting by choosing an appropriate jointly Gaussian input distribution.

4.1. Problem Formulation

Consider a 3-transmitter, 2-receiver state-dependent parallel DMC depicted in Figure 11, where
Transmitter 1 wishes to communicate a message M1 to Receiver 1, and similarly Transmitter 2 wishes
to transmit a message M2 to its corresponding Receiver 2. The messages M1 and M2 are independent.
The communication takes over a parallel state-dependent channel characterized by a probability
transition matrix p(y1, y2|x0, x1, x2, s). The transmitter at the helper has non-causal knowledge of the
state and tries to mitigate the interference caused in both channels. The state variable S is random
taking values in S and drawn from a discrete memoryless source (DMS)

PSn(sn) =
n

∏
i=1

PS(si).

A (2nR1 , 2nR2 , n) code for the parallel state-dependent channel with state known non-causally at
the helper consists of

• two message sets I (n)R1
and I (n)R2

,
• three encoders, where the encoder at the helper assigns a codeword xn

0 (s
n) to each state sequence

sn ∈ Sn, encoder 1 assigns a codeword xn
1 (m1) to each message m1 ∈ I

(n)
R1

and encoder 2 assigns a

codeword xn
2 (m2) to each message m2 ∈ I

(n)
R2

, and

• two decoders, where decoder 1 assigns an estimate m̂1 ∈ I
(n)
R1

or an error message e to each

received sequence yn
1 , and decoder 2 assigns an estimate m̂2 ∈ I

(n)
R2

or an error message e to each
received sequence yn

2 .
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Helper

Enc 1 + + + Dec 1

Enc 2 + + + Dec 2
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1 ∼ N (0, 1)
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M̂1
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2 ∼ N (0, 1)

M2
Xn

2 Yn
2

M̂2

Sn
1

Sn
2G2

Figure 11. MIMO State-Dependent Parallel Channel with a Helper.

We assume that the message pair (M1,M2) is uniformly distributed over I (n)R1
× I (n)R2

. The average
probability of error for a length-n code is defined as

P(n)
e = P{M̂1 6= M1 or M̂2 6= M2}. (20)

A rate pair (R1, R2) is said to be achievable if there exists a sequence of (2nR1 , 2nR2 , n) codes
such that limn→∞ P(n)

e = 0. The capacity region C is the closure of the set of all achievable rate pairs
(R1, R2).

We observe that due to the lack of cooperation between the receivers, the capacity region of this
channel depends on the p(y1, y2|x0, x1, x2, s) only through the conditional marginal PMFs p(y1|x0, x1, s)
and p(y2|x0, x2, s). This observation is similar to the DM-BC ([37], Lemma 5.1).

Our goal is to characterize the capacity region C for the state-dependent Gaussian parallel channel
with additive state known at the helper. Here, the state S = (S1, S2)

T . The channel is modeled by a
Gaussian vector parallel state-dependent channel

Yl = GlX0 + Xl + Sl + Zl , l = 1, 2, (21)

where G1, G2 are t× t channel gain matrices. X0, X1, X2 are the helper and the noncognitive transmitters
channel input signals, each subject to an average matrix power constraint

1
n

n

∑
i=1

Xl,iX
T
l,i � Kl , l = 0, 1, 2. (22)

The additive state variables Sl and noise Zl are independent and identically distributed (i.i.d.)
Gaussian with zero mean and strictly positive definite covariance matrix KSl and I respectively.

4.2. Outer and Inner Bounds

To characterize the capacity region of this channel, we first consider the following outer bound on
the capacity region for the Gaussian setting.

Let,

KS ,

(
KS1 0

0 KS2

)
, (23)

and

Rub2
l (ΣX0S) ,

1
2

log

(
|GlK0GT

l + Kl + GlΣX0Sl + ΣT
X0Sl

GT
l + KSl + I|

|GlK0GT
l + GlΣX0Sl + ΣT

X0Sl
GT

l + KSl + I|

)

+
1
2

log
(
|Gl(K0 − ΣX0SK−1

S ΣT
X0S)G

T
l + I|

)
. (24)
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Proposition 4. Every achievable rate pair (R1, R2) of the state-dependent parallel Gaussian channel with a
helper must satisfy the following inequalities

Rl ≤ min
{

Rub2
l (ΣX0S),

1
2

log(|Kl + I|)
}

, (25)

for l = {1, 2} and some covariance matrices (ΣXS1 , ΣXS2), such that ΣX0SK−1
S ΣT

X0S � K0, where

ΣX0S ,
(

ΣX0S1 ΣX0S2

)
. (26)

The proof of this outer bound is quite similar to the proof of the outer bound in Proposition 3 and
is given in Appendix D.

The upper bound for each rate consists of two terms, the first one reflects the scenario when the
interference cannot be completely canceled, and the second is simply the point-to-point capacity of the
channel without the state. Furthermore, the individual rate bounds are connected through the choice
of ΣX0S1 and ΣX0S2 .

We next derive an achievable region for the channel based on an achievable scheme that integrates
Marton’s coding, single-bin dirty paper coding, and state cancelation. More specifically, we generate
two auxiliary random variables, U and V to incorporate the state information so that Receiver 1
(and respectively 2) decodes U ( and respectively V) and then decodes the respective transmitter
information. Based on such an achievable scheme, we derive the following inner bound on the capacity
region for the DM case.

Proposition 5. An inner bound on the capacity region of the discrete memoryless parallel state-dependent
channel with a helper consists of rate pairs (R1, R2) satisfying:

R1 ≤ min{I(U, X1; Y1)− I(U; S), I(X1; Y1|U)}, (27a)

R2 ≤ min{I(V, X2; Y2)− I(V; S), I(X2; Y2|V)}, (27b)

R1 + R2 ≤ min{I(U, X1; Y1)− I(U; S) + I(V, X2; Y2)− I(V; S)− I(V; U|S),
I(X1; Y1|U) + I(X2; Y2|V)}, (27c)

for some PMF PUVX0|SPX1 PX2 .

Remark 1. The achievable region in Proposition 5 is equivalent to the following region

R1 ≤ min{I(U, X1; Y1)− I(U; S), I(X1; Y1|U)}, (28a)

R2 ≤ min{I(V, X2; Y2)− I(V; U, S), I(X2; Y2|V)}, (28b)

for some PMF PUVX0|SPX1 PX2 .

Proof. The proof of the inner bound is relegated to Appendix E.
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We evaluate the latter inner bound for the Gaussian channel by choosing the joint Gaussian
distribution for random variables as follows:

U = X′01 + A11S1 + A12S2,

V = X′02 + A20X′01 + A21S1 + A22S2,

X0 = X′01 + B1S1 + X′02 + B2S2,

X′01 ∼ N (0, K′01) X′02 ∼ N (0, K′02),

X1 ∼ N (0, K1) X2 ∼ N (0, K2),

(29)

where X′01, X′02, X1, X2, S1, S2 are independent. For simplicity of representation, denote Ā1 =

(A11, A12), Ā2 = (A20, A11, A12) and B̄ = (B1, B2) . Let f1(·), g1(·), f2(·) and g2(·) be defined as

f1(Ā1, B̄, K′01, K′02) = I(U, X1; Y1)− I(U; S),

g1(Ā1, B̄, K′01, K′02) = I(X1; Y1|U),

f2(Ā2, B̄, K′01, K′02) = I(V, X2; Y2)− I(V; U, S),

g2(Ā2, B̄, K′01, K′02) = I(X2; Y2|V),

where the mutual information terms are evaluated using the joint Gaussian distribution set at (29).
Based on those definitions we obtain an achievable region for the Gaussian channel.

Proposition 6. An inner bound on the capacity region of the parallel state-dependent Gaussian channel with a
helper and with independent states, consists of rate pairs (R1, R2) satisfying;

R1 ≤ min{ f1(Ā1, B̄, K′01, K′02), g1(Ā1, B̄, K′01, K′02)}, (30a)

R2 ≤ min{ f2(Ā2, B̄, K′01, K′02), g2(Ā2, B̄, K′01, K′02)}, (30b)

for some real matrices A20, A21, A22, B1, B2, K′01 and K′02 satisfying K′01, K′02 � 0, K′01 + K′02 + B1KS1 BT
1 +

B2KS2 BT
2 � K0.

Now we provide our intuition behind such construction of the RVs in the proof of Proposition 6.
X0 contains two parts, the one with Bl , l = 1, 2 controls the direct state cancelation of each state.
The second part X′0l , l = 1, 2, is used for dirty paper coding via generation of the state-correlated
auxiliary RVs U and V.

4.3. Capacity Region Characterization

In this section, we will characterize segments on the capacity boundary for various channel
parameters using the inner and outer bounds that were derived in Section 4.2. Consider the inner
bounds in (30a)–(30b). Each bound has two terms in the argument of min. We suggest optimizing
each term independently and then comparing it to the outer bounds in (25). In the last step we
will state the conditions under which those terms are valid. Our technique for optimal choice
of (A11, , A12, A20, A21, A22) be such that cancels the respective interfering terms from the mutual
information quantities. We explain how those matrices were chosen in Appendix F.

We begin by considering what choice of (A11, A12) can maximize f1(Ā1, B̄, K′01, K′02). Let

Aa
11 = (G1(K′01 + K′02)G

T
1 + I)−1K′01GT

1 (G1B1 + I),

Aa
12 = (G1(K′01 + K′02)G

T
1 + I)−1K′01GT

1 G1B2.
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Then f1(Ā1, B̄, K′01, K′02) takes the following form

f1(Āa
1, B̄, K′01, K′02) =

1
2

log

(
|G1K0GT

1 + K1 + G1B1KS1 + KS1 BT
1 GT

1 + KS1 + I|
|G1K0GT

1 + G1B1KS1 + KS1 BT
1 GT

1 + I|

)

+
1
2

log

(
|G1(K′01 + K′02)G

T
1 + I|

|G1K′02GT
1 + I|

)
. (31)

If f1(Āa
1, B̄a, K′01, K′02) ≤ g1(Āa

1, B̄a, K′01, K′02), then R1 = f1(Āa
1, B̄a, K′01, K′02) is achievable.

Moreover, if we choose K′02 = 0, then R1 = f1(Aa
11, Aa

12, Ba
1, Ba

2, K′0, 0) meets the outer bound (the
first term in “min” in (25)) with B1KS1 = ΣX0S1 and B2KS2 = ΣX0S2 . Furthermore, by setting

Ab
11 = B1 + G−1

1 , Ab
12 = B2,

we obtain

g1(Āb
1, B̄, K′01, K′02) =

1
2

log

(
|G1K′02GT

1 + K1 + I|
|G1K′02GT

1 + I|

)
.

If g1(Āb
1, B̄, K′01, K′02) ≤ f1(Āb

1, B̄, K′01, K′02), then

R1 =
1
2

log

(
|G1K′02GT

1 + K1 + I|
|G1K′02GT

1 + I|

)

is achievable. Similarly, by choosing K′02 = 0, then R1 = 1
2 log |K1 + I| is achievable and this meets the

outer bound (the second term in “min” in (25)). Next we consider the bound on R2. Let

Aa
20 = (G2K′02GT

2 + I)−1K′02GT
2 G2,

Aa
21 = (G2K′02GT

2 + I)−1K′02GT
2 G2B1,

Aa
22 = (G2K′02GT

2 + I)−1K′02GT
2 (G2B2 + I).

Then f2(Ā2, B̄, K′01, K′02) takes the following form

f2(Āa
2, B̄, K′01, K′02) =

1
2

log

(
|G2K0GT

2 + K2 + G2B2KS2 + KS2 BT
2 GT

2 + KS2 + I|
|G2K0GT

2 + G2B2KS2 + KS2 BT
2 GT

2 + KS2 + I|

)

+
1
2

log
(
|G2K′02GT

2 + I|
)

. (32)

If f2(Āa
2, B̄, K′01, K′02) ≤ g2(Āa

2, B̄, K′01, K′02), then R2 = f2(Āa
2, B̄, K′01, K′02) is achievable. Moreover,

if we choose K′01 = 0, then R2 = f2(Āa
2, B̄, 0, K′0) meets the outer bound (the first term in “min” in (25)).

Furthermore, we set

Ab
20 = I, Ab

21 = B1, Ab
22 = B2 + G−1

2 , (33)

and then obtain
g2(Āb

2, B̄, K′01, K′02) =
1
2

log (|K2 + I|) . (34)

If g2(Āb
2, B̄, K′01, K′02) ≤ f2(Āb

2, B̄, K′01, K′02), then R2 = 1
2 log (|K2 + I|) is achievable and this meets

the outer bound. This also equals the maximum rate for R2 when the channel is not corrupted by state.
Summarizing the above analysis, we obtain the following characterization of segments of the

capacity region boundary.
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Theorem 3. The channel parameters (G1, G2, K0, K1, K2, KS1 , KS2) can be partitioned into the sets
A1,B1, C1, where

A1 = {(G1, G2, K0, K1, K2, KS1 , KS2) : f1(Āa
1, B̄a, K′01, K′02) ≤ g1(Āa

1, B̄a, K′01, K′02),

C1 = {(G1, G2, K0, K1, K2, KS1 , KS2) : f1(Āb
1, B̄, K′01, K′02) ≥ g1(Āb

1, B̄, K′01, K′02)},
B1 = (A1 ∪ C1)

c.

If (G1, G2, K0, K1, K2, KS1 , KS2) ∈ A1, then R1 = f1(Āa
1, B̄, K′0, 0) captures one segment of the capacity

region boundary, where the state cannot be fully canceled. If (G1, G2, K0, K1, K2, KS1 , KS2) ∈ C1, then
R1 = 1

2 log |K1 + I| captures one segment of the capacity region boundary where the state is fully canceled.
If (G1, G2, K0, K1, K2, KS1 , KS2) ∈ B1, then the R1 segment of the capacity region boundary is not characterized.

The channel parameters (G1, G2, K0, K1, K2, KS1 , KS2) can also be partitioned into the sets
A2,B2, C2, where

A2 = {(G1, G2, K0, K1, K2, KS1 , KS2) : f2(Āa
2, B̄, K′01, K′02) ≤ g2(Āa

2, B̄, K′01, K′02),

C2 = {(G1, G2, K0, K1, K2, KS1 , KS2) : f2(Āb
2, B̄, K′01, K′02) ≥ g2(Āb

2, B̄, K′01, K′02),

B2 = (A2 ∪ C2)
c.

If (G1, G2, K0, K1, K2, KS1 , KS2) ∈ A2, then R2 = f2(Āa
2, B̄, 0, K′0) captures one segment of the capacity

region boundary, where the state cannot be fully canceled. If (G1, G2, K0, K1, K2, KS1 , KS2) ∈ C2, then
R2 = 1

2 log (|K2 + I|) captures one segment of the capacity boundary where the state is fully canceled.
If (G1, G2, K0, K1, K2, KS1 , KS2) ∈ B2, then the R2 segment of the capacity region boundary is not characterized.

The above theorem describes two partitions of the channel parameters, respectively under
which segments on the capacity region boundary corresponding to R1 and R2 can be characterized.
Intersection of two sets, each from one partition, collectively characterizes the entire segments on the
capacity region boundary.

We note that our inner bound can be tight for some set of channel parameters. As an example,

assume that (G1, G2, K0, K1, K2, KS1 , KS2) ∈ C1 ∩ C2. In such case, R1 = 1
2 log

(
|G1K′02GT

1 +K1+I|
|G1K′02GT

1 +I|

)
and

R2 = 1
2 log (|K2 + I|) are achievable. For the point-to-point helper channel [28], it was shown that if

the helper power is above some threshold, the state is completely canceled, whereas in our model we
have two parallel channels. If the helper power is high enough, it can split its signal, similarly as for
the Gaussian BC, such that one part of it is intended for Receiver 2, where by using dirty paper coding
it eliminates completely the interference caused by the state and the part of the signal intended for
Receiver 1. In the same time the part of the helper signal intended for Receiver 1, can only cancel the
interference caused by the state while the part intended to Receiver 2 is treated as noise.

4.4. Numerical Results

In this section, we provide specific numerical examples to illustrate the bounds obtained in the
previous sections. In particular, we focus on scalar Gaussian channel setting, such that: G1 ← η1;
G2 ← η2; K0 ← P0; K′01 ← P′01; K′02 ← P′02; K1 ← P1; K2 ← P2, KS1 ← Q1; KS2 ← Q2. We also denote
(A11, A12, A20, A21, A22, B1, B2) ← (α11, α12, α20, α21, α22, β1, β2). We plot the inner and outer bounds
for various values of helper power P0, channel gains, η1 and η2 and different state power. The results
are shown in Figure 12. The outer bound is based on Proposition 4. The inner bound is the convex hull
of all the achievable regions, with interchange between the roles of the decoders. The time-sharing
inner bound is according to point-to-point helper channel achievable region [28]. The scenario where
the helper power is less than the users power is depicted in Figure 12a,b, while the channel gains
in Figure 12a are equal, they are mismatched in Figure 12b. Please note that in both cases our inner
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bound outperforms the time-sharing bound, especially in the mismatched case, and some segments of
the capacity region are characterized.

The scenario with helper power being higher than the user power and matched and mismatched
channel gain is depicted in Figure 12c,d respectively. Similar to for low helper power regime, our
proposed achievability scheme performs better than time-sharing.
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Figure 12. Numerical Results.

5. Conclusions

In the first part of this paper, we have studied the parallel state-dependent Gaussian channel
with a state-cognitive helper and with same but differently scaled states. An inner bound was derived
and was compared to an upper bound, and the segments of the capacity region boundary were
characterized for various channel parameters. We have shown that if the channel gain matrices satisfy
a certain symmetry property, the full rectangular capacity region of the two point-to-point channels
without the state can be achieved. Furthermore, for the scalar channel case, we have shown that for a
given ratio of state gain over the helper signal gain, a/b, one can find a value of the helper power—P0,
such that the capacity region is fully characterized.

A different model of the parallel state-dependent Gaussian channel with a state-cognitive helper
and independent states was considered in the second part of this study. Inner and outer bounds
were derived, and segments of the capacity region boundary were characterized for various channel
parameters. We have also demonstrated our results using numerical simulation and have shown that
our achievability scheme outperforms time-sharing that was shown to be optimal for the infinite state
power regime in [34].

These two models represent a special case of a more general scenario with correlated states,
our results in both studies imply that as the states get more correlated, it is easier to mitigate the
interference. Furthermore, the gap between the inner bound and the outer bound in this work suggests
that a new techniques for outer bound derivation is needed as we believe that the inner bounds
consisting of pairs (R1, R2) = ( f1(Āa

1, B̄, K′01, K′02), f2(Ā2, B̄, K′01, K′02)) is indeed tight for some set of
channel parameters.
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Appendix A. Proof of Proposition 1

Fix the following joint PMF

PSWX0X1X2Y1Y2 = PSPW|SPX0|SWPX1
PX2 PY1|SX0X1

PY2|SX0X2
. (A1)

Appendix A.1. Codebook Generation

Randomly and independently generate 2nR̃ sequences wn(m̃), m̃ ∈ I (n)R̃ , each according to

∏n
i=1 PW(wi). Similarly, for l = {1, 2}, generate 2nRl sequences xn

l (ml), ml ∈ I
(n)
Rl

, each according
to ∏n

i=1 PXl
(xli). These sequences constitute the codebook, which is revealed to the encoders and

the decoders.

Appendix A.2. Encoding

Appendix A.2.1. Encoder at the Helper

Fix ε′ > 0. Given sn, find m̃′, such that (wn(m̃′), sn) ∈ T (n)
ε′ (PSW). If no such sequence exists,

it declares an error. Then, given (wn(m̃′), sn), generate xn
0 according to ∏n

i=1 PX0|SW(x0i|si, wi(m̃′)).
The encoder at the helper then transmits x0i at time i ∈ [1 : n].

Appendix A.2.2. Encoder at Transmitter l

To send message ml , encoder l transmits xn
l (ml), for l = {1, 2}.

Appendix A.3. Decoding

Let ε > ε′ and l ∈ {1, 2}. Upon receiving yn
l , the decoder at Receiver l declares that m̂l ∈ I

(n)
Rl

is sent if it is the unique message such that (wn(m̂), xn
l (m̂l), yn

l ) ∈ T
(n)

ε (PWXlYl
) for some m̂ ∈ I (n)R̃ ;

otherwise it declares an error.

Appendix A.4. Analysis of the Probability of Error

The encoder at the helper declares an error if the following event occurs

E0 = {(Sn,Wn(m̃)) /∈ T (n)
ε′ (PSW) for all m̃ ∈ I (n)R̃ }. (A2)

By the covering lemma (Section 2.3), with setting the original random variables (U,X, X̂) as
(∅,S,W) respectively, and A = I (n)R̃ , P{E0} tends to zero as n→ ∞ if

R̃ > I(W;S). (A3)
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Assume without loss of generality that (M1,M2) = (1, 1), condition (A3) holds, and let M̃ denote
the index of the chosen wn sequence for sn. The decoder at Receiver l makes an error only if one or
more of the following events occur:

El1 = {(Wn(M̃),Xn
l (1),Y

n
l ) /∈ T (n)

ε (PWXlYl
)},

El2 = {(Wn(M̃),Xn
l (ml),Y

n
l ) ∈ T

(n)
ε (PWXlYl

) for some ml 6= l},

El3 = {(Wn(m̃),Xn
l (ml),Y

n
l ) ∈ T

(n)
ε (PWXlYl

) for some ml 6= 1 and m̃ 6= M̃}.

Thus, by the union of events bound,

P{El} = P{El1 ∪ El2 ∪ El3} ≤ P{El1}+ P{El2}+ P{El3}. (A4)

By the LLN, the first term P{El1} tend to zero as n→ ∞. For the second term, note that for ml 6= 1,

p(wn(M̃), xn
l (ml), yn

l )

= ∑
xn

l (1),x
n
0 (M̃),sn

p(wn(M̃), xn
0 (M̃), xn

l (1), xn
l (ml), sn, yn

l )

= p(xn
l (ml)) ∑

xn
l (1),x

n
0 (M̃),sn

p(wn(M̃), xn
0 (M̃), sn)p(xn

l (1))p(yn
l |x

n
0 (M̃), xn

l (1), sn)

=
n

∏
i=1

p(xli(ml)) ∑
xn

l (1),x
n
0 (M̃),sn

n

∏
i=1

p(wi(M̃), x0i(M̃), si)p(xli(1))p(yli|x0i(M̃), xli(1), si)

=
n

∏
i=1

p(xli(ml))p(wi(M̃), yli).

Hence, by the packing lemma, choosing the original random variable (U,X,Y) as (∅,Xl , (W,Yl))

respectively, A = I (n)Rl
, P{El2} tends to zero as n → ∞ if Rl < I(Xl ;Yl ,W). Since Xl and W are

independent, Rl < I(Xl ;Yl |W). Finally, for the third term, note that for ml 6= 1 and m̃ 6= M̃

p(wn(m̃), xn
l (ml), yn

l )

= ∑
wn(M̃),xn

l (1),x
n
0 (M̃),sn

p(wn(m̃), wn(M̃), xn
0 (M̃), xn

l (1), xn
l (ml), sn, yn

l )

= p(xn
l (ml))p(wn(m̃)) ∑

wn(M̃),xn
l (1),x

n
0 (M̃),sn

p(wn(M̃), xn
0 (M̃), sn)p(xn

l (1))p(yn
l |x

n
0 (M̃), xn

l (1), sn)

=
n

∏
i=1

p(xli(ml))p(wi(m̃))p(yli).

Again, by the packing lemma, choosing the original random variable (U,X,Y) as (∅, (W,Xl),Yl)

respectively, A = I (n)Rl
× I (n)R̃ , P{El3} tends to zero as n→ ∞ if R̃ + Rl < I(W,Xl ;Yl).

Appendix B. Proof of Proposition 3

We prove for a general l ∈ {1, 2}. By Fano’s inequality (Lemma 2),

H(Ml |Yn
l ) ≤ nRl P

(n)
e + 1 ≤ nεn

where εn tends to zero as n→ ∞ by the assumption that limn→∞ P(n)
e = 0.
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Now consider

nRl + I(Sn; Yn
l |Ml)

= H(Ml)− H(Ml |Yn
l ) + H(Ml |Yn

l ) + I(Sn; Yn
l |Ml)

≤ I(Ml , Sn; Yn
l ) + nεn

= h(Yn
l )− h(Yn

l |Ml , Sn) + nεn

≤ h(Yn
l )− h(Yn

l |Ml , Xn
l , Xn

0 , Sn) + nεn

= h(Yn
l )− h(Zn

l ) + nεn

≤ n
2

log
(
|GlK0GT

l + Kl + GlΣX0SGT
sl
+ Gsl Σ

T
X0SGT

l + Gsl KSGT
sl
+ I|

)
+ nεn.

I(Sn; Yn
l |Ml) can be lower bounded as follows:

I(Sn; Yn
l |Ml) = h(Sn)− h(Sn|Ỹn

l ), (A5)

where Ỹn
l , GlXn

0 + Gsl S
n + Zn

l . The conditional differential entropy can be upper bounded as follows

h(Sn|Ỹn
l ) ≤

n

∑
i=1

h(Si|Ỹli)

≤ n
2

log(2πe)t
∣∣∣KS − ΣSỸl

Σ−1
Ỹl

ΣT
SỸl

∣∣∣ (A6)

where ΣSỸl
= E

[
SỸT

l
]
= KSGT

sl
+ ΣT

X0SGT
l , and

ΣỸl
= GlK0GT

l + GlΣX0SGT
sl
+ Gsl Σ

T
X0SGT

l + Gsl KSGT
sl
+ I.

Now we apply Silvester’s Determinant Theorem [38] to have∣∣∣KS − ΣSỸl
Σ−1

Ỹl
ΣT

SỸl

∣∣∣ = |KS|
∣∣∣I − K−1

S ΣSỸl
Σ−1

Ỹl
ΣT

SỸl

∣∣∣
= |KS|

∣∣∣I − ΣT
SỸl

K−1
S ΣSỸl

Σ−1
Ỹl

∣∣∣
= |KS|

∣∣∣ΣỸl
− ΣT

SỸl
K−1

S ΣSỸl

∣∣∣ ∣∣∣Σ−1
Ỹl

∣∣∣ .

Consider the argument of the middle determinant. Since K−1
S ΣSỸl

= GT
sl
+ K−1

S ΣT
X0SGT

l , it
follows that

ΣT
SỸl

K−1
S ΣSỸl

=
[
Gsl KS + GlΣX0S

] [
GT

sl
+ K−1

S ΣT
X0SGT

l

]
= GSl KSGT

Sl
+ GSl Σ

T
X0SGT

l + GlΣX0SGT
Sl
+ GlΣX0SK−1

S ΣT
X0SGT

l ,

and

ΣỸl
− ΣT

SỸl
K−1

S ΣSỸl
= Gl(K0 − ΣX0SK−1

S ΣT
X0S)G

T
l + I.

Finally, by collecting terms,

I(Sn; Yn
l |Ml) ≥

n
2

log

(
|GlK0GT

l + GlΣX0SGT
sl
+ Gsl Σ

T
X0SGT

l + Gsl KSGT
sl
+ I|

|Gl(K0 − ΣX0SK−1
S ΣT

X0S)G
T
l + I|

)
.

Thus, the bound in (11) is satisfied.
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It remains to show that ΣX0SK−1
S ΣT

X0S � K0. We use the non-negativity property of the covariance
matrix of the vector (X0, S)T

detE
[
(X0, S)T(X0, S)

]
= det

[
K0 ΣX0S

ΣT
X0S KS

]
= |KS| ·

∣∣∣K0 − ΣX0SK−1
S ΣT

X0S

∣∣∣
≥ 0,

where the last inequality follows since any covariance matrix (ΣX0S) is by definition positive definite.
Now we arrange parts to have:

ΣX0SK−1
S ΣT

X0S � K0.

This completes the proof of Proposition 3.

Appendix C. Optimal Coefficients for the MIMO Gaussian with Differently Scaled
States Channel

We first consider the bound on R1. Consider the first argument in min of (7a)

I(W, X1; Y1)− I(W; S) = I(X1; Y1) + I(W; Y1|X1)− I(W; S|X1)

= I(X1; Y1) + h(W|S, X1)− h(W|X1, Y1).

It is straightforward to show that

I(X1; Y1) =
1
2

log

(
|G1K0GT

1 + K1 + G1BKSGT
s1
+ Gs1 KSBTGT

1 + Gs1 KSGT
s1
+ I|

|G1K0GT
1 + G1BKSGT

s1
+ Gs1 KSBTGT

1 + Gs1 KSGT
s1
+ I|

)
,

and

h(W|S, X1) = h(X′0).

As for the third term, denote Ỹ1 = Y1 − X1, thus

h(W|X1, Y1) = h(W|Ỹ1)

= h(W−MW|Ỹ1
Ỹ1)

= h
(

X′0 + AS−MW|Ỹ1

(
G1
(
X′0 + BS

)
+ Gs1 S + Z1

))
.

We require that term S in the argument of the differential entropy be completely canceled,
therefore we choose

Aa = MW|Ỹ1
(G1B + Gs1).

With the above choice of A, we have

h(W|X1, Y1) = h
(

X′0 −MW|Ỹ1

(
G1X′0 + Z1

))
.

Finally, we demand that MW|Ỹ1
be the MMSE of X′0 given G1X′0 + Z1, i.e.

MW|Ỹ1
= (G1K′0GT

1 + I)−1K′0GT
1 .
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In such case

Aa = (G1K′0GT
1 + I)−1K′0GT

1 (G1B + Gs1).

Hence
h(W|X1, Y1) = h(X′0|G1X′0 + Z1),

and thus

h(W|S, X1)− h(W|X1, Y1) = h(X′0)− h(X′0|G1X′0 + Z1)

= I(X′0; G1X′0 + Z1)

=
1
2

log
(
|G1K′0GT

1 + I|
)

.

Furthermore, if we choose Ab = B + G−1
1 Gs1 , then

I(X1; Y1|W) = I(X1; G1(X′0 + BS) + Gs1 S + X1 + Z1|X′0 + (B + G−1
1 Gs1)S)

= I(X1; X1 + Z1)

=
1
2

log (|K1 + I|) .

With this choice of A, h(W|Ỹ1) is equal to

h(W|Ỹ1)

= h(X′0 + AS|G1(X′0 + (A− G−1
1 Gs1)S) + Gs1 S + Z1)

= h(X′0 + AS|G1(X′0 + AS) + Z1)

=
1
2

log(2πe)t
∣∣∣K′0+AKS AT−(K′0GT

1 +AKS ATGT
1 )(G1(K′0+AKS AT)GT

1 + I)−1(K′0GT
1 +AKS ATGT

1 )
T
∣∣∣

=
1
2

log(2πe)t
∣∣∣K′0 + AKS AT − (K′0 + AKS AT)GT

1 (G1(K′0 + AKS AT)GT
1 + I)−1G1(K′0 + AKS AT)T

∣∣∣
=

1
2

log(2πe)t
∣∣∣K′0 + AKS AT

∣∣∣ ∣∣∣I − GT
1 (G1(K′0 + AKS AT)GT

1 + I)−1G1(K′0 + AKS AT)T
∣∣∣

=
1
2

log(2πe)t
∣∣∣K′0 + AKS AT

∣∣∣ ∣∣∣I − (G1(K′0 + AKS AT)GT
1 + I)−1G1(K′0 + AKS AT)TGT

1

∣∣∣
=

1
2

log(2πe)t
∣∣K′0 + AKS AT

∣∣∣∣G1(K′0 + AKS AT)GT
1 + I

∣∣ ∣∣∣(G1(K′0 + AKS AT)GT
1 + I)− G1(K′0 + AKS AT)TGT

1

∣∣∣
=

1
2

log(2πe)t
∣∣K′0 + AKS AT

∣∣∣∣G1(K′0 + AKS AT)GT
1 + I

∣∣ .
Thus

I(W, X1; Y1)− I(W; S) =
1
2

log

(
|K′0||G1(K′0 + AKS AT)GT

1 + K1 + I|
|K′0 + AKS AT |

)
.

We would like to obtain a condition under which g1(Ab, B, K′0) ≤ f1(Ab, B, K′0), i.e.

|K′0||G1(K′0 + AKS AT)GT
1 + K1 + I| ≥ |K′0 + AKS AT ||K1 + I|

that is equivalent to

K′0G1(K′0 + AKS AT)GT
1 + K′0K1 + K′0 � K′0K1 + K′0 + AKS ATK1 + AKS AT .
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Furthermore, after rearranging terms, we have

K′0G1K′0GT
1 � AKS AT(K1 + I)− K′0G1 AKS ATGT

1 .

The choices of Ac and Ad for the achievability proof of R2 follows using similar steps by
interchanging the indices 1← 2.

Appendix D. Proof of Proposition 4

This proof relies greatly on the proof of the outer bound in the differently scaled states scenario in
Appendix B. The main differences are:

• S = (S1, S2)
T . Since S1 and S2 are independent, the covariance matrix of S is block-diagonal

KS =

(
KS1 0

0 KS2

)
,

• the helper signal X0 correlates with S1 and S2 and it characterized by the cross-covariance matrices
ΣX0S1 and ΣX0S2 respectively,

• the state gain matrices, Gs1 and Gs2 are unity matrices.

Hence, in the independent-states case, we have the following upper bound on nR1 + I(Sn; Yn
1 |M1)

nR1 + I(Sn; Yn
1 |M1) ≤

n
2

log
(
|G1K0GT

1 + K1 + G1ΣX0S1 + ΣT
X0S1

GT
1 + KS1 + I|

)
+ nεn. (A7)

Let Ỹn
1 , G1Xn

0 + Sn
1 + Zn

1 . We proceed to lower bound I(Sn; Yn
1 |M1) = h(Sn) − h(Sn|Ỹn

1 ) In
similar fashion to (A6), the conditional differential entropy can be upper bounded as follows

h(Sn|Ỹn
1 ) ≤

n
2

log(2πe)2t |KS|
∣∣∣ΣỸl
− KT

SỸl
Σ−1

S ΣSỸl

∣∣∣ ∣∣∣Σ−1
Ỹ1

∣∣∣ , (A8)

where

ΣSỸ1
= E

[
SỸ1

]
=

[
KS1 + ΣT

X0S1
GT

1
ΣT

X0S2
GT

1

]
,

and ΣỸ1
= G1K0GT

1 + G1ΣX0S1 + ΣT
X0S1

GT
1 + KS1 + I. The power 2t in (A8) is due to the size of the

vector (S1, S2)
T . The argument of the inner determinant in (A8) can be further evaluated as follows,

Σ−1
S ΣSỸ1

=

[
K−1

S1
0

0 K−1
S2

] [
KS1 + ΣT

X0S1
GT

1
ΣT

X0S2
GT

1

]

=

[
I + K−1

S1
ΣT

X0S1
GT

1
K−1

S2
ΣT

X0S2
GT

1

]
,

and

ΣT
SỸ1

Σ−1
S ΣSỸ1

=
[
KS1 + G1ΣX0S1 G1ΣX0S2

] [I + K−1
S1

ΣT
X0S1

GT
1

K−1
S2

ΣT
X0S2

GT
1

]
= KS1 + G1ΣX0S1 + ΣT

X0S1
GT

1 + G1ΣX0S1 K−1
S1

ΣT
X0S1

GT
1 + G1ΣX0S2 K−1

S2
ΣT

X0S2
GT

1 .

Thus,

ΣỸ1
− ΣT

SỸ1
Σ−1

S ΣSỸ1
= G1(K0 − ΣX0S1 K−1

S1
ΣT

X0S1
− ΣX0S2 K−1

S2
ΣT

X0S2
)GT

1 + I

= G1(K0 − ΣX0SK−1
S ΣT

X0S)G
T
1 + I,
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where in the last equality we used the definition of ΣX0S from (26). Consequently, we established an
upper bound on I(Sn; Yn

1 |M1):

I(Sn; Yn
1 |M1) ≥

n
2

log

(
|G1K0GT

1 + G1ΣX0S1 + ΣT
X0S1

GT
1 + KS1 + I|

|G1(K0 − ΣX0SK−1
S ΣT

X0S)G
T
1 + I|

)
. (A9)

Finally, collecting (A7) and (A9), the bound in (25), with l = 1, is satisfied. The bound (25) for
l = 2 follows from similar considerations. It remains to show that ΣX0SK−1

S ΣT
X0S � K0. We use the

non-negativity property of the covariance matrix of the vector (X0, S1, S2)
T

detE
[
(X0, S1, S2)

T(X0, S1, S2)
]
= det

 K0 ΣX0S1 ΣX0S2

ΣT
X0S1

KS1 0
ΣT

X0S2
0 KS2


=

∣∣∣∣∣
[

KS1 0
0 KS2

]∣∣∣∣∣ ·
∣∣∣∣∣∣K0 −

[
ΣX0S1 ΣX0S2

] [KS1 0
0 KS2

]−1 [
ΣT

X0S1

ΣT
X0S2

]∣∣∣∣∣∣
=

∣∣∣∣∣
[

KS1 0
0 KS2

]∣∣∣∣∣ ·
∣∣∣∣∣K0 −

[
ΣX0S1 ΣX0S2

] [K−1
S1

0
0 K−1

S2

] [
ΣT

X0S1

ΣT
X0S2

]∣∣∣∣∣
=

∣∣∣∣∣
[

KS1 0
0 KS2

]∣∣∣∣∣ · ∣∣∣K0 − ΣX0S1 K−1
S1

ΣT
X0S1
− ΣX0S2 K−1

S2
ΣT

X0S2

∣∣∣
(b)
≥ 0,

where the last inequality follows from non-negativity of covariance matrix. Now we arrange parts
to have:

ΣX0S1 K−1
S1

ΣT
X0S1

+ ΣX0S2 K−1
S2

ΣT
X0S2

= ΣX0SK−1
S ΣT

X0S � K0.

This completes the proof of Proposition 4.

Appendix E. Proof of Proposition 5

We use random codes and fix the following joint distribution:

PSUVX0X1X2Y1Y2 = PSUV PX0|SUV PX1 PX2 PY1|SX0X1
PY2|SX0X2

.

Appendix E.1. Codebook Generation

Generate 2nR̃U randomly and independently generated sequences un(r), r ∈ I (n)R̃U
, each according

to ∏n
i=1 PU(ui). Similarly, generate 2nR̃V randomly and independently generated sequences vn(t),

t ∈ I (n)R̃V
according to ∏n

i=1 PV(vi).

Let l ∈ {1, 2}. Randomly and independently generate 2nRl sequences xn
1 (ml), ml ∈ I

(n)
Rl

, each
according to ∏n

i=1 PXl (xli).
These sequences constitute the codebook, which is revealed to the encoders and the decoders.

Appendix E.2. Encoding

Fix ε′′ > ε′ > 0. The encoder at the helper, given sn, finds r̃ such that

(sn, un(r̃)) ∈ T (n)
ε′ (PSU),
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if there is more than one such r̃, choose the smallest one. If no such r̃ can be found declare an error.
Next, given sn, un(r̃) , find t̃ such that(

sn, un(r̃), vn(t̃)
)
∈ T (n)

ε′′ (PSUV),

if there is more than one such t̃, choose the smallest one. If no such t̃ can be found declare an error. Then,
given sn, un(r̃) and vn(t̃), generate xn

0 with i.i.d. components according to ∏n
i=1 PX0|SUV(x0i|si, ui, vi).

Let (m1, m2) be the messages to be sent. The encoder at transmitter l transmits xn
l (ml).

Appendix E.3. Decoding

Fix ε > ε′′. Given yn
1 , decoder 1 declares that m̂1 was sent if it is the unique message such that

(un(r̂), xn
1 (m̂1), yn

1 ) ∈ T
(n)

ε (PUX1Y1
).

If no or more than one such m̂1 can be found, it declares an error.
Similarly, given yn

2 , decoder 2 finds the unique message m̂2 such that

(vn(t̂), xn
2 (m̂2), yn

2 ) ∈ T
(n)

ε (PVX2Y2).

If no or more than one such m̂2 can be found, it declares an error.

Appendix E.4. Analysis of the Probability of Error

Assume without loss of generality that the message pair (M1,M2) = (1, 1) was sent and let r0 be
the chosen index for un and t0 be the chosen index for vn. The encoder at the helper makes an error
only if one or both of the following errors occur:

E01 = {(Sn,Un(r)) /∈ T (n)
ε′ (PSU) for all r ∈ I (n)R̃U

},

E02 = {(Sn,Un(r0),Vn(t)) /∈ T (n)
ε′′ (PSUV) for all t ∈ I (n)R̃V

}.

Thus, by the union of events bound, the probability that the encoder at the helper makes an error,
can be upper bounded as

Pr(E0) = Pr(E01 ∪ E02) ≤ Pr(E01) + Pr(E c
01 ∩ E02).

By the covering lemma with U = ∅, X← S, X̂← U, andA = I (n)R̃U
, Pr(E01) tends to zero as n→ ∞

if R̃U > I(U;S) + δ(ε′).
Similarly, using the covering lemma with U = ∅, X← (S,U), X̂← V, and A = I (n)R̃V

, Pr(E c
01 ∩ E02)

tends to zero as n→ ∞ if R̃V > I(V;S,U) + δ(ε′′).
The decoder at receiver 1 makes an error only if one or more of the following events occur

E11 = {(Un(r0),Xn
1 (1),Y

n
1 ) /∈ T (n)

ε (PUX1Y1
)},

E12 = {(Un(r0),Xn
1 (m1),Yn

1 ) ∈ T
(n)

ε (PUX1Y1
) for some m1 6= 1},

E13 = {(Un(r),Xn
1 (m1),Yn

1 ) ∈ T
(n)

ε (PUX1Y1
) for some r 6= r0 and m1 6= 1}.
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Again, by the union of events bound, the probability that the decoder at receiver 1 makes an error,
can be upper bounded as

Pr(E1) = Pr(E11 ∪ E12 ∪ E13)

≤ Pr(E01 ∪ E11 ∪ E12 ∪ E13)

≤ Pr(E01) + Pr(E c
01 ∩ E11) + Pr(E c

01 ∩ E12) + Pr(E13). (A10)

We have already shown that Pr(E01) tends to zero as n→ ∞ if R̃U > I(U;S) + δ(ε′). Next, note
that

E c
01 = {(Sn,Un(r0)) ∈ T

(n)
ε′ (PSU)} = {(Sn,Un(r0),Xn

0 ) ∈ T
(n)

ε′ (PSUX0)},

and

PYn
1 |SnUn(r0)X

n
0X

n
1 (1)

(yn
1 |sn, un, xn

0 , xn
1 ) =

n

∏
i=1

PY1|SUX0X1
(y1i|si, ui, x0i, x1i)

=
n

∏
i=1

PY1|SX0X1
(y1i|si, x0i, x1i).

Hence, by the conditionally typicality lemma, Pr(E c
01 ∩ E11) tends to zero as n→ ∞.

As for the probability of the event (E c
01 ∩ E12), Xn

1 (m1) is independent of (Un(r0),Yn
1 ) ∼

∏n
i=1 PUY1

(ui, y1i). Hence, by the packing lemma, with U = ∅, X← X1, Y ← (U,Y1) andA = [2 : 2nR1 ],
Pr(E c

01 ∩ E12) tends to zero as n → if R1 < I(X1;U,Y1)− δ(ε). X1 and U are mutually independent,
hence the latter condition is equivalent to R1 < I(X1;Y1|U)− δ(ε).

Finally, since for m1 6= 1, r 6= r0, (Xn
1 (m1),Un(r)) is independent of (Xn

1 (1),U
n(r0),Yn

1 ), again by
the packing lemma with U = ∅, X← (U,X1), Y ← Y1 andA = [2 : 2nR1 ]× [1 : 2nR̃U ]/r0, Pr(E13) tends
to zero as n→ ∞ if R̃U + R1 < I(U,X1;Y1)− δ(ε).

Next consider the average probability of error for decoder 2. The decoder at receiver 2 makes an
error only if one or more of the following events occur

E21 = {(Vn(t0),Xn
2 (1),Y

n
2 ) /∈ T (n)

ε (PVX2Y2)},

E22 = {(Vn(t0),Xn
2 (m2),Yn

2 ) ∈ T
(n)

ε (PVX2Y2) for some m2 6= 1},

E23 = {(Vn(t),Xn
2 (m2),Yn

2 ) ∈ T
(n)

ε (PVX2Y2) for some t 6= t0 and m2 6= 1}.

Similar to (A10), the probability that the decoder at receiver 2 makes an error, can be upper
bounded as

Pr(E2) ≤ Pr(E0) + Pr(E c
0 ∩ E21) + Pr(E c

0 ∩ E22) + Pr(E23).

In a very similar fashion as was shown for decoder 1, it can be shown that Pr(E2) tends to zero as
n→ ∞ if

R̃V ≥ I(V; S,U) + δ(ε′′),

R2 ≤ I(X2;Y2|V)− δ(ε),

R2 + R̃V ≤ I(V,X2;Y2)− δ(ε).

Finally, combining the aforementioned bounds yields the following achievable region:

R1 ≤ min
{

I(U,X1;Y1)− I(U;S), I(X1;Y1|U)
}

,

R2 ≤ min
{

I(V,X2;Y2)− I(V;U,S), I(X2;Y2|V)
}

.

This completes the proof of achievability.
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Appendix F. Optimal Coefficients for the MIMO Gaussian with Independent States Channel

We first consider the bound on R1. Consider the first argument in min of (28a)

I(U, X1; Y1)− I(U; S) = I(X1; Y1) + I(U; Y1|X1)− I(U; S|X1)

= I(X1; Y1) + h(U|S, X1)− h(U|X1, Y1). (A11)

It is straightforward to show that

I(X1; Y1) =
1
2

log

(
|G1K0GT

1 + K1 + G1B1KS1 + KS1 BT
1 GT

1 + KS1 + I|
|G1K0GT

1 + G1B1KS1 + KS1 BT
1 GT

1 + I|

)
,

and
h(U|S, X1) = h(X′01) =

1
2

log(2πe)t|K′01|.

As for the third term in (A11), denote Ỹ1 = Y1 − X1,

h(U|X1, Y1) = h(U|Ỹ1)

= h(U−MU|Ỹ1
Ỹ1)

= h
(

X′01 + A11S1 + A12S2 −MU|Ỹ1

(
G1
(
X′01 + X′02 + B1S1 + B2S2

)
+ S1 + Z1

))
.

We require that the terms S1 and S2 in the argument of the differential entropy be completely
canceled, hence we choose

Aa
11 = MU|Ỹ1

(G1B1 + I), Aa
12 = MU|Ỹ1

G1B2.

With the above choice of (A11, A12), we have

h(U|X1, Y1) = h
(

X′01 −MU|Ỹ1

(
G1
(
X′01 + X′02

)
+ Z1

))
.

Finally, we demand that MU|Ỹ1
be the MMSE of X′01 given G1(X′01 + X′02) + Z1, i.e.,

MU|Ỹ1
=
(

G1
(
K′01 + K′02

)
GT

1 + I
)−1

K′01GT
1 .

In such case

Aa
11 =

(
G1
(
K′01 + K′02

)
GT

1 + I
)−1

K′01GT
1 (G1B1 + I),

Aa
12 =

(
G1
(
K′01 + K′02

)
GT

1 + I
)−1

K′01GT
1 G1B2.

Hence
h(U|X1, Y1) = h

(
X′01|G1

(
X′01 + X′02

)
+ Z1

)
,

and thus

h(U|S, X1)− h(U|X1, Y1) = h(X′01)− h
(
X′01|G1

(
X′01 + X′02

)
+ Z1

)
= I

(
X′01; G1

(
X′01 + X′02

)
+ Z1

)
=

1
2

log

(
|G1(K′01 + K′02)G

T
1 + I|

|G1K′02GT
1 + I|

)
.
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Furthermore, if we choose Ab
11 = B1 + G−1

1 and Ab
12 = B2, then

I(X1; Y1|U) = I
(

X1; G1
(
X′01 + X′02 + B1S1 + B2S2

)
+ X1 + S1 + Z1|X′01 + Ab

11S1 + Ab
12S2

)
= I(X1; G1X′02 + X1 + Z1)

=
1
2

log

(
|G1K02GT

1 + K1 + I|
|G1K02GT

1 + I|

)
.

We next consider the bound on R2. Consider the first argument in min of (28b)

I(V, X2; Y2)− I(V; U, S) = I(X2; Y2) + I(V; Y2|X2)− I(V; U, S|X2)

= I(X2; Y2) + h(V|U, S, X2)− h(V|Y2, X2). (A12)

It is straightforward to show that

I(X2; Y2) =
1
2

log

(
|G2K0GT

2 + K2 + G2B2KS2 + KS2 BT
2 GT

2 + KS2 + I|
|G2K0GT

2 + G2B2KS2 + KS2 BT
2 GT

2 + KS2 + I|

)
,

and h(V|U, S, X2) = h(X′02). As for the third term in (A12), denote Ỹ2 = Y2 − X2

h(V|Y2, X2) = h(V|Ỹ2) = h(V−MV|Ỹ2
Ỹ2)

= h
(

X′02 + A20X′01 + A21S1 + A22S2 −MV|Ỹ2

(
G2
(
X′01 + X′02 + B1S1 + B2S2

)
+ S2 + Z2

))
.

We require that terms X′01, S1 and S2 in the argument of the differential entropy be completely
canceled, hence we choose

Aa
20 = MV|Ỹ2

G2, Aa
21 = MV|Ỹ2

G2B1, Aa
12 = MV|Ỹ2

(G2B2 + I).

With the above choice of (A20, A21, A22), we have

h(V|Y2, X2) = h
(

X′02 −MV|Ỹ2

(
G2X′02. + Z2

))
.

Following this we demand that MV|Ỹ2
be the MMSE of X′02 given G2X′02 + Z2, i.e.,

MV|Ỹ2
= (G2K02GT

2 + I)−1K02GT
2 .

In such case

Aa
20 = (G2K02GT

2 + I)−1K02GT
2 G2,

Aa
21 = (G2K02GT

2 + I)−1K02GT
2 G2B1,

Aa
22 = (G2K02GT

2 + I)−1K02GT
2 (G2B2 + I).

Hence
h(V|Y2, X2) = h(X′02|G2X′02 + Z2),

and thus

h(V|U, S, X2)− h(V|Y2, X2) = h(X′02)− h(X′02|G2X′02 + Z2)

= I(X′02; G2X′02 + Z2)

=
1
2

log
(
|G2K02GT

2 + I|
)

.
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Furthermore, if we choose Ab
20 = I, Ab

21 = B1 and Ab
22 = B2 + G−1

2 , then

I(X2; Y2|V) = I(X2; X2 + Z2) =
1
2

log (|K2 + I|) .
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