Kapur’s Entropy for Color Image Segmentation Based on a Hybrid Whale Optimization Algorithm
Abstract
:1. Introduction
- Obtain an efficient segmentation technique for multilevel color image thresholding task.
- Improve the optimizing capability of WOA to determine the optimal thresholds.
- Investigate the adaptability of WOA-DE based techniques in the field of natural, satellite, and MR image segmentation.
- Evaluate the performance of proposed technique from various aspects.
2. Multilevel Thresholding
Kapur’s Entropy
3. Whale Optimization Algorithm
3.1. Exploitation Phase (Encircling Prey and Bubble-Net Attacking Method)
3.2. Exploration Phase (Search for Prey)
Algorithm 1 Pseudo code of whale optimization algorithm based multilevel thresholding |
Initialize the position of whales Xi. Initialize the best search agent . WHILE t < Maximum number of iterations FOR i = 1:n Calculate the objective value of each search agent by using the Equation (1) for Kapur’s entropy. Update the best search agent . Update a, A, C, r, and p IF1 p < 0.5 IF2 |A| < 1 Update the position of search agent using Equations (7) and (8). ELSE Update the position of search agent using Equations (14) and (15). END IF2 ELSE Update the position of search agent using Equations (11) and (12). END IF1 Correct the position of the current search agent if it is beyond the border. END FOR END WHILE Return , which represents the optimal threshold values of segmentation. |
4. Differential Evolution
4.1. Mutation Operation
4.2. Crossover Operation
4.3. Selection Operation
5. The Proposed Method
6. Experiments and Results
6.1. Experimental Setup
6.2. Objective Function Measure
6.3. Stability Analysis
6.4. Peak Signal to Noise Ratio (PSNR)
6.5. Structural Similarity Index (SSIM)
6.6. Feature Similarity Index (FSIM)
6.7. Convergence Performance
6.8. Computation Time
6.9. Statistical Analysis
6.10. Comparison of Otsu and Kapur’s Entropy Methods
6.11. Robustness Testing on Noisy Images
6.12. Application in MR Image
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qian, P.; Zhao, K.; Jiang, Y.; Su, K.; Deng, Z.; Wang, S.; Muzic, R.F. Knowledge-leveraged transfer fuzzy C-Means for texture image segmentation with self-adaptive cluster prototype matching. Knowl.-Based Syst. 2017, 130, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Robert, M.; Carsten, M.; Olivier, E.; Jochen, P.; Noordhoek, N.J.; Aravinda, T.; Reddy, V.Y.; Chan, R.C.; Jürgen, W. Automatic Segmentation of Rotational X-Ray Images for Anatomic Intra-Procedural Surface Generation in Atrial Fibrillation Ablation Procedures. IEEE Trans. Med. Imaging 2010, 29, 260–272. [Google Scholar]
- Lee, S.H.; Koo, H.I.; Cho, N.I. Image segmentation algorithms based on the machine learning of features. Pattern Recognit. Lett. 2010, 31, 2325–2336. [Google Scholar]
- Ye, J.; Fu, G.; Poudel, U.P. High-accuracy edge detection with Blurred Edge Model. Image Vis. Comput. 2005, 23, 453–467. [Google Scholar]
- Khairuzzaman, A.K.M.; Chaudhury, S. Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Syst. Appl. 2017, 86, 64–76. [Google Scholar] [CrossRef]
- Chen, W.; Yue, H.; Wang, J.; Wu, X. An improved edge detection algorithm for depth map inpainting. Opt. Lasers Eng. 2014, 55, 69–77. [Google Scholar] [CrossRef]
- Liu, K.; Guo, L.; Li, H.; Chen, J. Fusion of Infrared and Visible Light Images Based on Region Segmentation. Chin. J. Aeronaut. 2009, 22, 75–80. [Google Scholar] [Green Version]
- Fu, X.; Liu, T.; Xiong, Z.; Smaill, B.H.; Stiles, M.K.; Zhao, J. Segmentation of histological images and fibrosis identification with a convolutional neural network. Comput. Biol. Med. 2018, 98, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Demirhan, A.; Törü, M.; Güler, İ. Segmentation of Tumor and Edema Along With Healthy Tissues of Brain Using Wavelets and Neural Networks. IEEE J. Biomed. Health Inf. 2015, 19, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Ouadfel, S.; Taleb-Ahmed, A. Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study. Expert Syst. Appl. 2016, 55, 566–584. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Kapura, J.N.; Sahoob, P.K.; Wongc, A.K.C. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Proc. 1985, 29, 273–285. [Google Scholar] [CrossRef]
- Shen, L.; Fan, C.; Huang, X. Multi-Level Image Thresholding Using Modified Flower Pollination Algorithm. IEEE Access 2018, 6, 30508–30519. [Google Scholar] [CrossRef]
- Sambandam, R.K.; Jayaraman, S. Self-adaptive dragonfly based optimal thresholding for multilevel segmentation of digital images. J. King Saud Univ. Comput. Inf. Sci. 2018, 30, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Fu, Z.; Pun, C.; Hu, H.; Lan, R. A multi-level thresholding image segmentation based on an improved artificial bee colony algorithm. Comput. Electr. Eng. 2018, 70, 931–938. [Google Scholar] [CrossRef]
- He, L.; Huang, S. Modified firefly algorithm based multilevel thresholding for color image segmentation. Neurocomputing 2017, 240, 152–174. [Google Scholar] [CrossRef]
- Pare, S.; Kumar, A.; Bajaj, V.; Singh, G.K. An efficient method for multilevel color image thresholding using cuckoo search algorithm based on minimum cross entropy. Appl. Soft Comput. 2017, 61, 570–592. [Google Scholar] [CrossRef]
- Kotte, S.; Pullakura, R.K.; Injeti, S.K. Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization. Measurement 2018, 130, 340–361. [Google Scholar] [CrossRef]
- Beevi, S.; Nair, M.S.; Bindu, G.R. Automatic segmentation of cell nuclei using Krill Herd optimization based multi-thresholding and Localized Active Contour Model. Biocybern. Biomed. Eng. 2016, 36, 584–596. [Google Scholar] [CrossRef]
- Aziz, M.A.E.; Ewees, A.A.; Hassanien, A.E. Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation. Expert Syst. Appl. 2017, 83, 242–256. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Oliva, D.; Aziz, M.A.E.; Hassanien, A.E. Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl. Energy 2017, 200, 141–154. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, J.; Shi, D.; He, Y. Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers. Manag. 2018, 174, 388–405. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Chen, Y.; Liu, Z. A modified whale optimization algorithm for large-scale global optimization problems. Expert Syst. Appl. 2018, 114, 563–577. [Google Scholar] [CrossRef]
- Mafarja, M.M.; Mirjalili, S. Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing 2017, 260, 302–312. [Google Scholar] [CrossRef]
- Pare, S.; Kumar, A.; Bajaj, V.; Singh, G.K. A multilevel color image segmentation technique based on cuckoo search algorithm and energy curve. Appl. Soft Comput. 2016, 47, 76–102. [Google Scholar] [CrossRef]
- Díaz-Cortés, M.; Ortega-Sánchez, N.; Hinojosa, S.; Oliva, D.; Cuevas, E.; Rojas, R.; Demin, A. A multi-level thresholding method for breast thermograms analysis using Dragonfly algorithm. Infrared Phys. Technol. 2018, 93, 346–361. [Google Scholar] [CrossRef]
- Ewees, A.A.; Elaziz, M.A.; Oliva, D. Image segmentation via multilevel thresholding using hybrid optimization algorithms. J. Electron. Imaging 2018, 27, 1. [Google Scholar] [CrossRef]
- Bhandari, A.K.; Kumar, A.; Singh, G.K. Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. Expert Syst. Appl. 2015, 42, 8707–8730. [Google Scholar] [CrossRef]
- Sathya, P.D.; Kayalvizhi, R. Modified bacterial foraging algorithm based multilevel thresholding for image segmentation. Eng. Appl. Artif. Intell. 2011, 42, 595–615. [Google Scholar] [CrossRef]
- Manikandan, S.; Ramar, K.; Iruthayarajan, M.W.; Srinivasagan, K.G. Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement 2014, 47, 558–568. [Google Scholar] [CrossRef]
- Bhandari, A.K.; Singh, V.K.; Kumar, A.; Singh, G.K. Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Syst. Appl. 2014, 41, 3538–3560. [Google Scholar] [CrossRef]
- Pare, S.; Bhandari, A.K.; Kumar, A.; Singh, G.K. A new technique for multilevel color image thresholding based on modified fuzzy entropy and Lévy flight firefly algorithm. Comput. Electr. Eng. 2018, 70, 476–495. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Elaziz, M.A.; Lu, S. Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization. Expert Syst. Appl. 2018, 108, 1–27. [Google Scholar] [CrossRef]
- Zorlu, H. Optimization of weighted myriad filters with differential evolution algorithm. AEU Int. J. Electron. Commun. 2017, 77, 1–9. [Google Scholar] [CrossRef]
- Lin, Q.; Zhu, Q.; Huang, P.; Chen, J.; Ming, Z.; Yu, J. A novel hybrid multi-objective immune algorithm with adaptive differential evolution. Comput. Oper. Res. 2015, 62, 95–111. [Google Scholar] [CrossRef]
- Jadon, S.S.; Tiwari, R.; Sharma, H.; Bansal, J.C. Hybrid Artificial Bee Colony algorithm with Differential Evolution. Appl. Soft Comput. 2017, 58, 11–24. [Google Scholar] [CrossRef]
- Yüzgeç, U.; Eser, M. Chaotic based differential evolution algorithm for optimization of baker’s yeast drying process. Egypt. Inf. J. 2018, 19, 151–163. [Google Scholar] [CrossRef]
- The Berkeley Segmentation Dataset and Benchmark. Available online: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/ (accessed on 15 June 2018).
- Landsat Imagery Courtesy of NASA Goddard Space Flight Center and U.S. Geological Survey. Available online: https://landsat.visibleearth.nasa.gov/index.php?&p=1 (accessed on 17 October 2018).
- Harvard Medical School. Available online: http://www.med.harvard.edu/AANLIB/ (accessed on 22 December 2018).
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, M.; Liu, W.; Chen, S. Fuzzy entropy based optimal thresholding using bat algorithm. Appl. Soft Comput. 2015, 31, 381–395. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Li, Y.; Bai, X.; Jiao, L.; Xue, Y. Partitioned-cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Appl. Soft Comput. 2017, 56, 345–356. [Google Scholar] [CrossRef]
- Bhandari, A.K. A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation. Neural Comput. Appl. 2018, 1–31. [Google Scholar] [CrossRef]
- Kotte, S.; Kumar, P.R.; Injeti, S.K. An efficient approach for optimal multilevel thresholding selection for gray scale images based on improved differential search algorithm. Ain Shams Eng. J. 2018, 9, 1043–1067. [Google Scholar] [CrossRef] [Green Version]
- de Albuquerque, M.P.; Esquef, I.A.; Mello, A.R.G.; de Albuquerque, M.P. Image thresholding using Tsallis entropy. Pattern Recognit. Lett. 2004, 25, 1059–1065. [Google Scholar]
- John, J.; Nair, M.S.; Kumar, P.R.A.; Wilscy, M. A novel approach for detection and delineation of cell nuclei using feature similarity index measure. Biocybern. Biomed. Eng. 2016, 36, 76–88. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [PubMed]
- Pare, S.; Bhandari, A.K.; Kumar, A.; Singh, G.K. An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix. Expert Syst. Appl. 2017, 87, 335–362. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, W. Individual Comparisons of Grouped Data by Ranking Methods. J. Econ. Entomol. 1946, 39, 269–270. [Google Scholar]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. Evolut. Comput. IEEE Trans. 1997, 1, 67–82. [Google Scholar] [Green Version]
- The USC-SIPI Image Database. Available online: http://sipi.usc.edu/database/ (accessed on 7 December 2018).
- Oliva, D.; Hinojosa, S.; Cuevas, E.; Pajares, G.; Avalos, O.; Gálvez, J. Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm. Expert Syst. Appl. 2017, 79, 164–180. [Google Scholar] [CrossRef]
- Sathya, P.D.; Kayalvizhi, R. Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm. Neurocomputing 2011, 74, 2299–2313. [Google Scholar] [CrossRef]
- Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937, 32, 676–701. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
No. | Algorithm | Parameter Setting | Year | Reference |
---|---|---|---|---|
1 | WOA-DE | — | — | |
2 | WOA OA | 2016 | [21] | |
3 | SSA | 2017 | [42] | |
4 | SCA | 2016 | [43] | |
5 | ALO | 2015 | [44] | |
6 | HSO | 2001 | [45] | |
7 | BA | 2015 | [46] | |
8 | PSO | 1995 | [47] | |
9 | BDE | 2018 | [49] | |
10 | IDSA | — | 2018 | [50] |
Measures | Image | K | WOA-DE | WOA | SSA | SCA | ALO | HSO | BA | PSO | BDE | IDSA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Image1 | 4 | 18.5843 | 18.5843 | 18.5843 | 18.5632 | 18.5843 | 18.5761 | 18.5818 | 18.5842 | 18.5843 | 18.5843 |
6 | 23.8418 | 23.73 | 23.8408 | 23.479 | 23.8417 | 23.755 | 23.8085 | 23.8412 | 23.8115 | 23.8383 | ||
8 | 28.5094 | 28.4605 | 28.5051 | 27.8225 | 28.4627 | 28.385 | 27.7631 | 28.4991 | 28.5118 | 28.5139 | ||
10 | 32.8462 | 32.8432 | 32.8325 | 31.3685 | 32.8443 | 32.6682 | 32.0858 | 32.7519 | 32.8455 | 32.7269 | ||
12 | 36.8534 | 36.7164 | 36.7269 | 34.5881 | 36.7313 | 36.6221 | 34.7641 | 36.696 | 36.7642 | 36.7764 | ||
Image6 | 4 | 18.4839 | 18.4784 | 18.4817 | 18.4434 | 18.4836 | 18.4778 | 18.4745 | 18.4839 | 18.4816 | 18.4836 | |
6 | 24.0059 | 23.9988 | 23.9994 | 23.765 | 24.005 | 23.9687 | 23.9225 | 24.0015 | 24.0051 | 24.0059 | ||
8 | 28.937 | 28.8743 | 28.8836 | 27.9973 | 28.9272 | 28.8508 | 28.2696 | 28.9293 | 28.9342 | 28.9196 | ||
10 | 33.3483 | 33.3009 | 33.1851 | 31.8768 | 33.2743 | 33.0867 | 31.6321 | 33.3197 | 33.3079 | 33.2562 | ||
12 | 37.3674 | 37.271 | 37.1046 | 35.8876 | 37.3246 | 36.8644 | 35.1068 | 37.1813 | 37.3553 | 37.2569 | ||
STD | Image1 | 4 | 0 | 2.66 × 10−5 | 2.66 × 10−5 | 4.39 × 10−3 | 5.83 × 10−5 | 3.19 × 10−3 | 2.17 × 10−3 | 2.68 × 10−5 | 2.47 | 1.58 × 10−1 |
6 | 3.25 × 10−5 | 1.61 × 10−4 | 9.58 × 10−4 | 7.45 × 10−2 | 2.95 × 10−4 | 1.97 × 10−2 | 5.39 × 10−2 | 4.33 × 10−4 | 8.41 × 10−1 | 1.59 | ||
8 | 4.32 × 10−4 | 2.74 × 10−2 | 8.89 × 10−3 | 1.33 × 10−1 | 3.24 × 10−2 | 3.38 × 10−2 | 1.82 × 10−1 | 7.30 × 10−3 | 1.3 | 9.98 × 10−1 | ||
10 | 3.38 × 10−3 | 5.36 × 10−3 | 3.90 × 10−2 | 2.67 × 10−1 | 4.91 × 10−2 | 3.24 × 10−2 | 1.51 × 10−1 | 3.34 × 10−2 | 7.76 × 10−1 | 7.27 × 10−1 | ||
12 | 1.83 × 10−2 | 3.25 × 10−2 | 7.48 × 10−2 | 2.30 × 10−1 | 6.12 × 10−2 | 5.02 × 10−2 | 6.41 × 10−1 | 7.35 × 10−2 | 6.66 × 10−1 | 6.65 × 10−1 | ||
Image6 | 4 | 3.91 × 10−3 | 7.91 × 10−3 | 4.81 × 10−3 | 1.24 × 10−2 | 8.29 × 10−1 | 5.49 × 10−3 | 4.60 × 10−3 | 3.93 × 10−3 | 6.96 × 10−3 | 2.92 × 10−1 | |
6 | 1.68 × 10−2 | 3.81 × 10−3 | 1.94 × 10−2 | 6.82 × 10−2 | 4.20 × 10−3 | 3.58 × 10−2 | 2.96 × 10−2 | 5.03 × 10−3 | 4.66 | 1.75 | ||
8 | 1.57 × 10−2 | 2.64 × 10−2 | 1.64 × 10−2 | 1.60 × 10−1 | 2.48 × 10−2 | 4.37 × 10−2 | 3.94 × 10−1 | 6.14 × 10−2 | 3.88 | 9.82 × 10−1 | ||
10 | 2.15 × 10−2 | 4.26 × 10−2 | 3.64 × 10−2 | 1.40 × 10−1 | 5.49 × 10−2 | 2.50 × 10−2 | 4.03 × 10−1 | 3.55 × 10−2 | 2.28 | 8.98 × 10−1 | ||
12 | 1.53 × 10−2 | 3.02 × 10−2 | 9.90 × 10−2 | 2.85 × 10−1 | 2.52 × 10−2 | 6.41 × 10−2 | 3.37 × 10−1 | 3.43 × 10−2 | 1.67 | 1.25 |
Measures | Image | K | WOA-DE | WOA | SSA | SCA | ALO | HSO | BA | PSO | BDE | IDSA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | Image2 | 4 | 18.6558 | 18.6558 | 18.6558 | 18.6533 | 18.6558 | 18.5722 | 18.4352 | 18.6558 | 18.6452 | 18.6558 |
6 | 22.2481 | 20.8588 | 21.3402 | 21.5799 | 21.3148 | 20.861 | 20.2596 | 21.7136 | 20.8588 | 20.9995 | ||
8 | 24.8821 | 23.1744 | 23.6373 | 23.4877 | 24.1624 | 24.5724 | 23.1158 | 23.372 | 23.5863 | 23.5837 | ||
10 | 27.9116 | 25.3956 | 25.9502 | 27.0446 | 27.7051 | 25.3211 | 25.1289 | 25.3938 | 25.87 | 25.9861 | ||
12 | 29.8805 | 29.8395 | 29.6719 | 28.6767 | 29.4309 | 26.3023 | 29.2218 | 29.34 | 29.0663 | 29.2001 | ||
Image7 | 4 | 23.2367 | 22.947 | 22.9286 | 22.9305 | 23.0442 | 22.9765 | 22.923 | 22.982 | 22.982 | 22.9122 | |
6 | 26.6481 | 26.5553 | 26.5205 | 26.5953 | 26.656 | 26.4685 | 26.5963 | 26.6156 | 26.527 | 26.5732 | ||
8 | 29.1886 | 29.1004 | 28.9405 | 27.8606 | 29.132 | 29.063 | 27.9378 | 29.0088 | 29.1151 | 29.0763 | ||
10 | 31.2154 | 30.9433 | 31.1186 | 29.6665 | 30.9579 | 30.64 | 28.3997 | 30.9199 | 31.0374 | 31.169 | ||
12 | 32.7203 | 32.6538 | 31.7022 | 30.101 | 32.6566 | 31.6295 | 28.988 | 32.7035 | 32.6774 | 32.6603 | ||
SSIM | Image2 | 4 | 0.5266 | 0.5266 | 0.5266 | 0.5253 | 0.5186 | 0.5212 | 0.5212 | 0.5266 | 0.5242 | 0.5266 |
6 | 0.652 | 0.6103 | 0.617 | 0.6105 | 0.6192 | 0.6379 | 0.5864 | 0.6332 | 0.6103 | 0.6197 | ||
8 | 0.7361 | 0.6944 | 0.7052 | 0.6976 | 0.7281 | 0.7224 | 0.7094 | 0.6978 | 0.7004 | 0.6963 | ||
10 | 0.8064 | 0.7551 | 0.7608 | 0.7701 | 0.7996 | 0.7534 | 0.7247 | 0.7594 | 0.7705 | 0.7733 | ||
12 | 0.8505 | 0.8484 | 0.8432 | 0.7859 | 0.8411 | 0.8463 | 0.8182 | 0.8367 | 0.8483 | 0.8269 | ||
Image7 | 4 | 0.8494 | 0.8414 | 0.8407 | 0.8419 | 0.8456 | 0.8405 | 0.8382 | 0.8416 | 0.8416 | 0.8399 | |
6 | 0.9136 | 0.9097 | 0.907 | 0.9086 | 0.9115 | 0.9091 | 0.9098 | 0.9087 | 0.9091 | 0.9079 | ||
8 | 0.9422 | 0.9409 | 0.9392 | 0.9254 | 0.9415 | 0.9412 | 0.9241 | 0.9404 | 0.9416 | 0.9418 | ||
10 | 0.9648 | 0.9608 | 0.9603 | 0.946 | 0.9587 | 0.9552 | 0.9255 | 0.9624 | 0.9633 | 0.9637 | ||
12 | 0.9726 | 0.9715 | 0.9624 | 0.9543 | 0.9724 | 0.963 | 0.9338 | 0.9718 | 0.9724 | 0.9725 | ||
FSIM | Image2 | 4 | 0.7151 | 0.7151 | 0.7151 | 0.7149 | 0.7151 | 0.7117 | 0.7115 | 0.7151 | 0.7142 | 0.7151 |
6 | 0.7921 | 0.7707 | 0.7723 | 0.7708 | 0.7711 | 0.7876 | 0.7577 | 0.7799 | 0.7707 | 0.7866 | ||
8 | 0.8435 | 0.8257 | 0.8289 | 0.8246 | 0.8426 | 0.8313 | 0.8093 | 0.824 | 0.8256 | 0.8198 | ||
10 | 0.8745 | 0.8617 | 0.8582 | 0.8423 | 0.8738 | 0.8616 | 0.8153 | 0.864 | 0.8686 | 0.8682 | ||
12 | 0.9041 | 0.9036 | 0.9005 | 0.8987 | 0.9007 | 0.8978 | 0.8531 | 0.8806 | 0.9022 | 0.8915 | ||
Image7 | 4 | 0.9012 | 0.8964 | 0.8959 | 0.8965 | 0.8991 | 0.8968 | 0.8953 | 0.8972 | 0.8972 | 0.8956 | |
6 | 0.9469 | 0.9445 | 0.946 | 0.9458 | 0.9467 | 0.9449 | 0.9468 | 0.9465 | 0.9453 | 0.9464 | ||
8 | 0.9671 | 0.9666 | 0.9658 | 0.9591 | 0.9665 | 0.9659 | 0.9559 | 0.9658 | 0.9666 | 0.966 | ||
10 | 0.9773 | 0.9758 | 0.9752 | 0.971 | 0.9759 | 0.9754 | 0.9574 | 0.9765 | 0.9761 | 0.9763 | ||
12 | 0.9834 | 0.9824 | 0.9799 | 0.9729 | 0.9829 | 0.9802 | 0.9664 | 0.9828 | 0.9825 | 0.9826 |
K | WOA-DE | WOA | SSA | SCA | ALO | HSO | BA | PSO | BDE | IDSA |
---|---|---|---|---|---|---|---|---|---|---|
4 | 1.40087 | 1.047 | 1.49062 | 1.49438 | 7.8046 | 1.03739 | 1.97122 | 1.70887 | 2.21335 | 1.41216 |
6 | 1.55259 | 1.14527 | 1.63902 | 1.62171 | 9.66773 | 1.10338 | 2.08452 | 1.88491 | 2.40389 | 1.5397 |
8 | 1.67041 | 1.18449 | 1.72857 | 1.6764 | 12.09074 | 1.18478 | 2.31804 | 1.99103 | 2.48257 | 1.56885 |
10 | 1.74287 | 1.24446 | 1.79294 | 1.86849 | 15.31865 | 1.23933 | 2.36836 | 2.13532 | 2.58595 | 1.67435 |
12 | 1.88104 | 1.39335 | 1.95442 | 1.98369 | 17.19651 | 1.30339 | 2.513 | 2.23487 | 2.74791 | 1.70745 |
Comparison | p-Value |
---|---|
WOA-DE versus WOA | 2.3197 × 10−4 |
WOA-DE versus SSA | 9.0193 × 10−8 |
WOA-DE versus SCA | 6.8546 × 10−7 |
WOA-DE versus ALO | 4.2264 × 10−10 |
WOA-DE versus HSO | 7.6791 × 10−7 |
WOA-DE versus BA | 3.2115 × 10−9 |
WOA-DE versus PSO | 7.6473 × 10−8 |
WOA-DE versus BDE | 4.5474 × 10−5 |
WOA-DE versus IDSA | 7.0546 × 10−4 |
Images | K | PSNR | SSIM | FSIM | |||
---|---|---|---|---|---|---|---|
Otsu | Kapur | Otsu | Kapur | Otsu | Kapur | ||
Image1 | 4 | 20.3428 | 17.7781 | 0.5798 | 0.4681 | 0.7771 | 0.734 |
6 | 22.6702 | 24.977 | 0.6815 | 0.6559 | 0.8458 | 0.8197 | |
8 | 24.0516 | 28.6092 | 0.7446 | 0.8033 | 0.9122 | 0.8798 | |
10 | 25.2164 | 30.6687 | 0.7898 | 0.833 | 0.9225 | 0.9039 | |
12 | 26.1897 | 32.2054 | 0.8059 | 0.8672 | 0.926 | 0.9271 | |
Image2 | 4 | 18.459 | 18.6558 | 0.608 | 0.5266 | 0.7582 | 0.7151 |
6 | 20.9182 | 22.2481 | 0.7095 | 0.652 | 0.8245 | 0.7921 | |
8 | 24.5622 | 24.8821 | 0.8164 | 0.7361 | 0.8684 | 0.8435 | |
10 | 25.7585 | 27.9116 | 0.8421 | 0.8064 | 0.8878 | 0.8745 | |
12 | 28.4144 | 29.8805 | 0.8964 | 0.8505 | 0.917 | 0.9041 | |
Image3 | 4 | 17.5776 | 20.8247 | 0.6971 | 0.7109 | 0.6972 | 0.7182 |
6 | 22.7555 | 23.6059 | 0.7431 | 0.7592 | 0.7469 | 0.7619 | |
8 | 27.8967 | 26.0132 | 0.7948 | 0.8036 | 0.795 | 0.8017 | |
10 | 29.5405 | 29.0184 | 0.8341 | 0.8433 | 0.8322 | 0.8329 | |
12 | 31.6891 | 32.6886 | 0.8633 | 0.8729 | 0.8619 | 0.8646 | |
Image4 | 4 | 19.0015 | 23.013 | 0.6151 | 0.612 | 0.7012 | 0.6484 |
6 | 24.4296 | 26.9872 | 0.7631 | 0.7188 | 0.8129 | 0.7665 | |
8 | 27.9781 | 29.7682 | 0.8434 | 0.7953 | 0.8793 | 0.8415 | |
10 | 32.0713 | 31.7603 | 0.8888 | 0.8456 | 0.9193 | 0.8907 | |
12 | 33.9227 | 33.096 | 0.9194 | 0.8767 | 0.9431 | 0.9203 | |
Image5 | 4 | 23.4509 | 23.4495 | 0.8082 | 0.7231 | 0.8469 | 0.7925 |
6 | 27.2396 | 27.2417 | 0.8948 | 0.8286 | 0.9142 | 0.8716 | |
8 | 29.6073 | 29.5852 | 0.926 | 0.8903 | 0.9415 | 0.9229 | |
10 | 31.5024 | 31.4704 | 0.9345 | 0.919 | 0.9585 | 0.9452 | |
12 | 32.9105 | 32.782 | 0.9457 | 0.9429 | 0.9672 | 0.9614 | |
Image6 | 4 | 19.2192 | 20.597 | 0.6626 | 0.5995 | 0.7712 | 0.7443 |
6 | 23.4934 | 25.4883 | 0.8061 | 0.7587 | 0.8673 | 0.8562 | |
8 | 27.6467 | 28.6898 | 0.8732 | 0.8427 | 0.9192 | 0.9136 | |
10 | 29.7289 | 31.292 | 0.9104 | 0.9002 | 0.9416 | 0.9489 | |
12 | 32.0406 | 32.7058 | 0.9384 | 0.9227 | 0.9599 | 0.9615 | |
Image7 | 4 | 18.9474 | 23.2367 | 0.7898 | 0.8494 | 0.848 | 0.9012 |
6 | 23.6742 | 26.6481 | 0.8938 | 0.9136 | 0.9198 | 0.9469 | |
8 | 26.8294 | 29.1886 | 0.9383 | 0.9422 | 0.9513 | 0.9671 | |
10 | 30.559 | 31.2154 | 0.9626 | 0.9648 | 0.9728 | 0.9773 | |
12 | 32.9021 | 32.7203 | 0.9781 | 0.9726 | 0.9828 | 0.9834 | |
Image8 | 4 | 20.3695 | 19.4801 | 0.5372 | 0.4881 | 0.786 | 0.7807 |
6 | 23.4982 | 25.5717 | 0.6365 | 0.7043 | 0.8643 | 0.8705 | |
8 | 25.5399 | 27.8173 | 0.7326 | 0.7823 | 0.9007 | 0.9102 | |
10 | 27.2326 | 30.6727 | 0.8174 | 0.8479 | 0.9228 | 0.9361 | |
12 | 30.4945 | 32.0442 | 0.8483 | 0.8849 | 0.943 | 0.9514 | |
Image9 | 4 | 20.5858 | 22.1696 | 0.6759 | 0.6581 | 0.8498 | 0.8671 |
6 | 25.1403 | 26.3449 | 0.7465 | 0.7492 | 0.9174 | 0.9197 | |
8 | 28.672 | 29.2954 | 0.7938 | 0.8082 | 0.9476 | 0.9524 | |
10 | 30.9026 | 31.126 | 0.8711 | 0.8716 | 0.9664 | 0.9661 | |
12 | 32.5855 | 32.9878 | 0.9012 | 0.8757 | 0.9761 | 0.9764 | |
Image10 | 4 | 20.2121 | 22.6128 | 0.7399 | 0.7551 | 0.8312 | 0.8499 |
6 | 24.9168 | 27.0397 | 0.8128 | 0.8355 | 0.9075 | 0.9179 | |
8 | 29.1254 | 29.5441 | 0.8865 | 0.8649 | 0.9503 | 0.947 | |
10 | 30.9532 | 31.447 | 0.9196 | 0.8774 | 0.9641 | 0.9645 | |
12 | 32.5129 | 32.8351 | 0.9284 | 0.8923 | 0.9729 | 0.9734 | |
Rank | 2(11) | 1(39) | 2(29) | 1(21) | 1(25) | 1(25) |
Images | K | Optimal Threshold Value | PSNR | ||||
---|---|---|---|---|---|---|---|
WOA-DE-Kapur | ABF-Otsu | CSA-MCET | WOA-DE-Kapur | ABF-Otsu | CSA-MCET | ||
Slice20 | 2 | 94 167 | 28 97 | 13 84 | 16.8586 | 16.524 | 15.9746 |
3 | 9 118 219 | 29 87 151 | 18 64 134 | 23.9008 | 23.1061 | 22.4605 | |
4 | 8 29 129 210 | 7 53 100 153 | 16 64 98 147 | 24.6228 | 25.4972 | 24.3967 | |
5 | 16 36 94 171 211 | 21 54 98 156 190 | 3 40 61 113 150 | 30.4912 | 27.3411 | 28.5034 | |
Slice24 | 2 | 111 182 | 48 145 | 19 118 | 19.7345 | 21.0839 | 20.8004 |
3 | 34 117 182 | 40 108 172 | 7 56 136 | 23.4428 | 22.9913 | 23.5030 | |
4 | 17 73 129 193 | 23 70 118 182 | 6 50 101 161 | 26.7848 | 26.2061 | 24.7095 | |
5 | 14 70 115 165 210 | 20 63 102 143 196 | 4 27 66 111 170 | 28.9204 | 28.3318 | 25.3871 | |
Slice28 | 2 | 114 179 | 52 151 | 20 121 | 19.6991 | 18.6884 | 19.1865 |
3 | 20 81 156 | 46 110 175 | 7 56 139 | 24.8983 | 24.3616 | 23.7032 | |
4 | 22 78 137 192 | 27 76 126 187 | 6 48 103 161 | 26.9455 | 27.0419 | 25.8075 | |
5 | 13 72 117 157 203 | 23 68 109 149 203 | 6 36 74 115 174 | 29.6822 | 29.1884 | 28.1382 | |
Slice32 | 2 | 115 175 | 53 159 | 20 137 | 23.3496 | 22.888 | 22.6576 |
3 | 16 76 143 | 50 120 189 | 8 54 148 | 24.711 | 23.2735 | 25.9537 | |
4 | 16 74 131 186 | 21 70 122 191 | 7 52 107 172 | 27.5852 | 27.958 | 27.947 | |
5 | 18 71 118 162 205 | 19 63 105 147 206 | 3 28 67 116 180 | 29.7914 | 28.6183 | 29.598 | |
Rank | — | — | — | 1(10) | 2(4) | 3(2) |
Images | K | SSIM | FSIM | ||||
---|---|---|---|---|---|---|---|
WOA-DE-Kapur | ABF-Otsu | CSA-MCET | WOA-DE-Kapur | ABF-Otsu | CSA-MCET | ||
Slice20 | 2 | 0.7923 | 0.7726 | 0.7882 | 0.8743 | 0.8565 | 0.8421 |
3 | 0.8784 | 0.8061 | 0.8811 | 0.9411 | 0.9305 | 0.9594 | |
4 | 0.9225 | 0.8408 | 0.9208 | 0.9608 | 0.9614 | 0.9599 | |
5 | 0.9435 | 0.8862 | 0.9249 | 0.9882 | 0.9674 | 0.9723 | |
Slice24 | 2 | 0.6809 | 0.7886 | 0.7865 | 0.7772 | 0.8178 | 0.8117 |
3 | 0.8391 | 0.8318 | 0.8343 | 0.8686 | 0.8660 | 0.8394 | |
4 | 0.8791 | 0.8770 | 0.8742 | 0.9081 | 0.9026 | 0.8944 | |
5 | 0.9015 | 0.8959 | 0.8997 | 0.9277 | 0.9253 | 0.9099 | |
Slice28 | 2 | 0.7832 | 0.7678 | 0.7792 | 0.813 | 0.8394 | 0.8274 |
3 | 0.8365 | 0.8238 | 0.8275 | 0.8849 | 0.8846 | 0.8585 | |
4 | 0.8672 | 0.8687 | 0.8691 | 0.9084 | 0.9136 | 0.9156 | |
5 | 0.8993 | 0.8937 | 0.9010 | 0.9371 | 0.9355 | 0.9366 | |
Slice32 | 2 | 0.8123 | 0.7973 | 0.7862 | 0.8617 | 0.8388 | 0.8589 |
3 | 0.8465 | 0.832 | 0.8513 | 0.8864 | 0.8943 | 0.9009 | |
4 | 0.8794 | 0.8824 | 0.8784 | 0.9199 | 0.9271 | 0.9275 | |
5 | 0.9023 | 0.8705 | 0.8991 | 0.9477 | 0.9237 | 0.9347 | |
Rank | 1(10) | 3(2) | 2(4) | 1(9) | 3(3) | 2(4) |
K | WOA-DE-Kapur | ABF-Otsu | CSA-MCET | WOA-DE-Kapur | ABF-Otsu | CSA-MCET |
---|---|---|---|---|---|---|
Slice20 | Slice24 | |||||
2 | ||||||
3 | ||||||
4 | ||||||
5 | ||||||
K | Slice28 | Slice32 | ||||
2 | ||||||
3 | ||||||
4 | ||||||
5 |
K | Average Rank | p-Value | ||
---|---|---|---|---|
WOA-DE-Kapur | ABF-Otsu | CSA-MCET | ||
2 | 1.6667 | 2.0000 | 2.3333 | 2.2619 × 10−7 |
3 | 1.5833 | 2.5833 | 1.8333 | 1.1603 × 10−8 |
4 | 2.0000 | 1.6667 | 2.3333 | 7.2217 × 10−9 |
5 | 1.0833 | 2.7500 | 2.1667 | 5.3467 × 10−9 |
K | WOA-DE-Kapur vs. ABF-Otsu | WOA-DE-Kapur vs. CSA-MCET | ||
---|---|---|---|---|
p-Value | h | p-Value | h | |
2 | < 0.05 | 1 | < 0.05 | 1 |
3 | < 0.05 | 1 | 0.0926 | 0 |
4 | < 0.05 | 1 | < 0.05 | 1 |
5 | < 0.05 | 1 | < 0.05 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, C.; Jia, H. Kapur’s Entropy for Color Image Segmentation Based on a Hybrid Whale Optimization Algorithm. Entropy 2019, 21, 318. https://doi.org/10.3390/e21030318
Lang C, Jia H. Kapur’s Entropy for Color Image Segmentation Based on a Hybrid Whale Optimization Algorithm. Entropy. 2019; 21(3):318. https://doi.org/10.3390/e21030318
Chicago/Turabian StyleLang, Chunbo, and Heming Jia. 2019. "Kapur’s Entropy for Color Image Segmentation Based on a Hybrid Whale Optimization Algorithm" Entropy 21, no. 3: 318. https://doi.org/10.3390/e21030318
APA StyleLang, C., & Jia, H. (2019). Kapur’s Entropy for Color Image Segmentation Based on a Hybrid Whale Optimization Algorithm. Entropy, 21(3), 318. https://doi.org/10.3390/e21030318