Entropy Generation in MHD Conjugate Flow with Wall Shear Stress over an Infinite Plate: Exact Analysis
Abstract
:1. Introduction
2. Flow Analysis
3. Entropy Generation
4. Solution of the Problem
Constant Temperature on the Plate
5. Special Cases
5.1. Case-1
5.2. Case-2
6. Results and Discussion
6.1. The Effects on Velocity
6.2. Mechanism of by Different Parameters
6.3. Influences of Embedded Parameters on Bejan Number
7. Assumptions and Deductions
- Rises in, , , , and M leads to decreases of the Bejan number for isothermal and ramped wall temperature individually.
- The Entropy generation in the fluid can be controlled and reduced by the constant wall shear stress.
- Rises in , , , , , , and increase Ns.
Author Contributions
Funding
Conflicts of Interest
References
- Ranganathan, P.; Viskanta, R. Mixed convection boundary-layer flow along a vertical surface in a porous medium. Numer. Heat Transf. 1984, 7, 305–317. [Google Scholar] [CrossRef]
- Krishna, P.M.; Sandeep, N.; Sugunamma, V. Effects of radiation and chemical reaction on MHD convective flow over a permeable stretching surface with suction and heat generation. Walaliak J. Sci. Technol. 2015, 12, 831–847. [Google Scholar]
- Gupta, S.; Kumar, D.; Singh, J. MHD mixed convective stagnation point flow and heat transfer of an incompressible nanofluid over an inclined stretching sheet with chemical reaction and radiation. Int. J. Heat Mass Transf. 2018, 118, 378–387. [Google Scholar] [CrossRef]
- Singh, J.; Rashidi, M.M.; Kumar, D. A hybrid computational approach for Jeffery–Hamel flow in non-parallel walls. Neural Comput. Appl. 2017, 1–7. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.A.G.D.E.V.; Baleanu, D. A fractional model of convective radial fins with temperature-dependent thermal conductivity. Rom. Rep. Phys. 2017, 69, 103. [Google Scholar]
- Bejan, A. Second-law analysis in heat transfer and thermal design. Adv. Heat Transf. 1982, 15, 1–58. [Google Scholar]
- Bejan, A. A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. 1979, 101, 718–725. [Google Scholar] [CrossRef]
- Colorado, D.; Demesa, N.; Huicochea, A.; Hernández, J.A. Irreversibility analysis of the absorption heat transformer coupled to a single effect evaporation process. Appl. Therm. Eng. 2016, 92, 71–80. [Google Scholar] [CrossRef]
- Khan, A.; ul Karim, F.; Khan, I.; Ali, F.; Khan, D. Irreversibility analysis in unsteady flow over a vertical plate with arbitrary wall shear stress and ramped wall temperature. Results Phys. 2018, 8, 1283–1290. [Google Scholar] [CrossRef]
- Azoumah, Y.; Bieupoude, P.; Neveu, P. Optimal design of tree-shaped water distribution network using constructal approach: T-shaped and Y-shaped architectures optimization and comparison. Int. Commun. Heat Mass Transf. 2012, 39, 182–189. [Google Scholar] [CrossRef]
- Narayan, G.P.; Lienhard, V.J.H.; Zubair, S.M. Entropy generation minimization of combined heat and mass transfer devices. Int. J. Therm. Sci. 2010, 49, 2057–2066. [Google Scholar] [CrossRef] [Green Version]
- Neveu, P.; Tescari, S.; Aussel, D.; Mazet, N. Combined constructal and exergy optimization of thermochemical reactors for high temperature heat storage. Energy Convers. Manag. 2013, 71, 186–198. [Google Scholar] [CrossRef]
- Bejan, A. The thermodynamic design of heat and mass transfer processes and devices. Int. J. Heat Fluid Flow 1987, 8, 258–276. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation Minimization; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Şahin, A.Z. The effect of variable viscosity on the entropy generation and pumping power in a laminar fluid flow through a duct subjected to constant heat flux. Heat Mass Transf. 1999, 35, 499–506. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, L.; Sun, F. Constructal entropy generation minimization for heatand mass transfer in a solid-gas reactor based on triangular element. J. Phys. D Appl. Phys. 2007, 40, 3545–3550. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Baleanu, D.; Rathore, S. An efficient numerical algorithm for the fractional Drinfeld–Sokolov–Wilson equation. Appl. Math. Comput. 2018, 335, 12–24. [Google Scholar] [CrossRef]
- Choi, J.; Kumar, D.; Singh, J.; Swroop, R. Analytical techniques for system of time fractional nonlinear differential equations. J. Korean Math. Soc. 2017, 54, 1209–1229. [Google Scholar]
- Awad, M.M. A new definition of Bejan number. Therm. Sci. 2012, 16, 1251–1253. [Google Scholar] [CrossRef] [Green Version]
- Awad, M.M.; Lage, J.L. Extending the Bejan number to a general form. Therm. Sci. 2013, 17, 631–633. [Google Scholar] [CrossRef] [Green Version]
- Awad, M.M. Hagen number versus Bejan number. Therm. Sci. 2013, 17, 1245–1250. [Google Scholar] [CrossRef] [Green Version]
- Awad, M.M. An Alternative Form of the Darcy Equation. Therm. Sci. 2014, 18 (Suppl. 2), S617–S619. [Google Scholar] [CrossRef]
- Awad, M.M. A review of entropy generation in microchannels. Adv. Mech. Eng. 2015, 7. [Google Scholar] [CrossRef]
- Butt, H.J.; Cappella, B.; Kappl, M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 2005, 59, 1–152. [Google Scholar] [CrossRef] [Green Version]
- Bejan, A. Entropy generation minimization: The new thermodynamics of finite size devices and finite-time processes. J. Appl. Phys. 1996, 79, 1191–1218. [Google Scholar] [CrossRef]
- Narahari, M.; Nayan, M.Y. Free convection flow past an impulsively started infinite vertical plate with Newtonian heating in the presence of thermal radiation and mass diffusion. Turk. J. Eng. Environ. Sci. 2011, 35, 187–198. [Google Scholar]
- Fetecau, C.; Fetecau, C.; Rana, M. General solutions for the unsteady flow of second-grade fluids over an inflnite plate that applies arbitrary shear to the fluid. Z. Naturforsch. Sect. A J. Phys. Sci. 2011, 66, 753–759. [Google Scholar]
- Fetecau, C.; Rana, M.; Fetecau, C. Radiative and porous effects on free con-vection flow near a vertical plate that applies shear stress to the fluid. Z. Naturforsch. Sect. A J. Phys. Sci. 2013, 68, 130–138. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; ul Karim, F.; Khan, I.; Alkanhal, T.A.; Ali, F.; Khan, D.; Nisar, K.S. Entropy Generation in MHD Conjugate Flow with Wall Shear Stress over an Infinite Plate: Exact Analysis. Entropy 2019, 21, 359. https://doi.org/10.3390/e21040359
Khan A, ul Karim F, Khan I, Alkanhal TA, Ali F, Khan D, Nisar KS. Entropy Generation in MHD Conjugate Flow with Wall Shear Stress over an Infinite Plate: Exact Analysis. Entropy. 2019; 21(4):359. https://doi.org/10.3390/e21040359
Chicago/Turabian StyleKhan, Arshad, Faizan ul Karim, Ilyas Khan, Tawfeeq Abdullah Alkanhal, Farhad Ali, Dolat Khan, and Kottakkaran Sooppy Nisar. 2019. "Entropy Generation in MHD Conjugate Flow with Wall Shear Stress over an Infinite Plate: Exact Analysis" Entropy 21, no. 4: 359. https://doi.org/10.3390/e21040359
APA StyleKhan, A., ul Karim, F., Khan, I., Alkanhal, T. A., Ali, F., Khan, D., & Nisar, K. S. (2019). Entropy Generation in MHD Conjugate Flow with Wall Shear Stress over an Infinite Plate: Exact Analysis. Entropy, 21(4), 359. https://doi.org/10.3390/e21040359