Agricultural Water Resources Management Using Maximum Entropy and Entropy-Weight-Based TOPSIS Methods
Abstract
:1. Introduction
2. Methods
2.1. Maximum Entropy Principle
2.2. Copula Function
2.3. Optimization Model for Agricultural Water Resources Allocation
- (1)
- Water availability constraint
- (2)
- Water demand constraint
- (3)
- Land availability constraint
- (4)
- Food security constraint
2.4. Entropy-Weight-Based TOPSIS Method
3. Application
3.1. Study Area and Data Acquisition
3.2. Parameter Estimation
3.3. Joint Probability of Water Supply and Water Demand
3.4. Agricultural Water Resource Allocation Schemes
3.5. Agricultural Water Resources Carrying Capacity
3.6. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Function Name | Interpretation | |
---|---|---|
Gaussian copula | is the inverse function of standard normal distribution function; is the correlation coefficients between variables. | |
t-copula | is the inverse function t distribution function with the degree of freedom is k; is the correlation coefficients between variables. | |
Clayton copula | and . is the Kendall coefficient of rank correlation, and the same below. | |
Frank copula | and | |
Gumbel copula | and | |
Ali–Mikhail–Haq copula | and |
References
- Dai, Z.Y.; Li, Y.P. A multistage irrigation water allocation model for agricultural land-use planning under uncertainty. Agric. Water Manag. 2013, 129, 69–79. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Singh, V.P.; Liu, D. An interval multi-objective programming model for irrigation water allocation under uncertainty. Agric. Water Manag. 2018, 196, 24–36. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Singh, V.P.; Ma, M.W.; Liu, X. An intuitionistic fuzzy multi-objective non-linear programming model for sustainable irrigation water allocation under the combination of wet and dry conditions. J. Hydrol. 2017, 555, 80–94. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, N.B.; Gong, D.Z.; Zhang, Q.W.; Zhao, L. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agric. Water Manag. 2017, 193, 163–173. [Google Scholar] [CrossRef]
- Yu, Y.H.; Zhang, H.B.; Singh, V.P. Forward prediction of runoff data in data-scarce basins with an improved ensemble empirical model decomposition (EEMD) model. Water 2018, 10, 388. [Google Scholar] [CrossRef]
- Zhang, L.; Singh, V.P. Bivariate Flood Frequency Analysis Using the Copula Method. J. Hydrol. Eng. 2006, 11, 150–164. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P. Modeling multisite streamflow dependence with maximum entropy copula. Water Resour. Res. 2013, 49, 7139–7143. [Google Scholar] [CrossRef] [Green Version]
- Salvadori, G.; Durante, F.; De Michele, C.; Bernardi, M.; Petrella, L. A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities. Water Resour. Res. 2016, 52, 3701–3721. [Google Scholar] [CrossRef]
- Zhang, J.P.; Lin, X.M.; Guo, B.T. Multivariate copula-based joint probability distribution of water supply and demand in irrigation district. Water Resour. Manag. 2016, 30, 2361–2375. [Google Scholar] [CrossRef]
- Golian, S.; Farokhnia, A.; Saghafian, B. Copula-based interpretation of continuous rainfall–runoff simulations of a watershed in northern Iran. Can. J. Earth Sci. 2012, 49, 681–691. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.P. Entropy-based derivation of generalized distributions for hydrometeorological frequency analysis. J. Hydrol. 2018, 557, 699–712. [Google Scholar] [CrossRef]
- Cui, H.; Singh, V.P. Application of minimum relative entropy theory for streamflow forecasting. Stoch. Environ. Res. Risk Assess. 2017, 31, 587–608. [Google Scholar] [CrossRef]
- Singh, V.P. Entropy-Based Parameter Estimation in Hydrology; Kluwer Academic Publishers: Boston, MA, USA; London, UK, 1998. [Google Scholar]
- Li, M.; Fu, Q.; Guo, P.; Singh, V.P.; Zhang, C.L.; Yang, G.Q. Stochastic multi-objective decision making for sustainable irrigation in a changing environment. J. Clean. Prod. 2019, 223, 928–945. [Google Scholar] [CrossRef]
- Ren, C.F.; Li, Z.H.; Zhang, H.B. Integrated multi-objective stochastic fuzzy programming and AHP method for agricultural water and land optimization allocation under multiple uncertainties. J. Clean. Prod. 2019, 210, 12–24. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Singh, V.P.; Ji, Y.; Liu, D.; Zhang, C.L.; Li, T.X. An optimal modelling approach for managing agricultural water-energy-food nexus under uncertainty. Sci. Total. Environ. 2019, 651, 1416–1434. [Google Scholar] [CrossRef]
- Roy, T.; Dutta, R.K. Integrated fuzzy AHP and fuzzy TOPSIS methods for multi-objective optimization of electro discharge machining process. Soft Comput. 2018, 1–11. [Google Scholar] [CrossRef]
- Wang, Z.-X.; Li, D.-D.; Zheng, H.-H. The External Performance Appraisal of China Energy Regulation: An Empirical Study Using a TOPSIS Method Based on Entropy Weight and Mahalanobis Distance. Int. J. Environ. Res. Public Health 2018, 15, 236. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.F.; Singh, V.P. Spatio-Temporal Variability of Soil Water Content under Different Crop Covers in Irrigation Districts of Northwest China. Entropy 2017, 19, 410. [Google Scholar] [CrossRef]
- Sonuga, J.O. Principle of maximum entropy in hydrologic frequency analysis. J. Hydrol. 1972, 17, 177–191. [Google Scholar] [CrossRef]
- Zhang, L.; Singh, V.P. Bivariate Rainfall and Runoff Analysis Using Entropy and Copula Theories. Entropy 2012, 14, 1784–1812. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Guo, P. A multi-objective optimal allocation model for irrigation water resources under multiple uncertainties. Appl. Math. Model. 2014, 38, 4897–4911. [Google Scholar] [CrossRef]
- Chung, E.; Abdulai, P.J.; Park, H.; Kim, Y.; Ahn, S.R.; Kim, S.J. Multi-criteria assessment of spatial robust water resource vulnerability using the TOPSIS method coupled with objective and subjective weights in the Han River Basin. Sustainability 2017, 9, 29. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guideline for Computing Crop Water Requirement; FAO Irrigation and Drainage paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Dong, S.; Wang, N.N.; Lu, H.M.; Tang, L.J. Bivariate distributions of group height and length for ocean waves using Copula methods. Coast. Eng. 2015, 96, 49–61. [Google Scholar] [CrossRef]
- Yu, J.; Feng, Q.; Li, Y.; Cao, J.D. Stochastic Optimal Dispatch of Virtual Power Plant considering Correlation of Distributed Generations. Math. Probl. Eng. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Zhang, L.; Singh, V.P. Bivariate rainfall frequency distributions using Archimedean copulas. J. Hydrol. 2007, 332, 93–109. [Google Scholar] [CrossRef]
Parameter | Unit | Subarea | |||
---|---|---|---|---|---|
Songhuajiang | Jinshan | Huama | Toulin | ||
Yield per unit area | kg/ha | 8465.67 | 8511.17 | 8511.17 | 7887.33 |
Irrigation quota | m3/ha | 3660.33 | 3686.48 | 3686.48 | 3327.95 |
Population | 104 people | 0.77 | 4.31 | 1.12 | 1.62 |
Maximum irrigation area | 104 ha | 0.53 | 1.85 | 3.34 | 2.28 |
Minimum irrigation area | 104 ha | 0.51 | 1.225 | 1.85 | 1.43 |
Dimension | Index | Calculation Formula | Unit | Index Attribute | Weights |
---|---|---|---|---|---|
Economic dimension (A) | Water production efficiency (A1) | Yield/(Crop evapotranspiration) | kg/ha | + | 0.1013 |
Production value per unit water (A2) | (Yield per unit water) × Market price | RMB/m3 | + | 0.1095 | |
Grain output (A3) | Yield × (Market price) | RMB | + | 0.1018 | |
Social dimension (B) | Food per capita (B1) | Yield/Population | kg/capita | + | 0.1443 |
Water per capita (B2) | Water resource amount/Population | m3/capita | + | 0.0923 | |
Agricultural water shortage (B3) | (Crop evapotranspiration-Irrigation amount) × Irrigation area | m3 | − | 0.1393 | |
Environmental dimension (C) | Agricultural non-point pollution discharge (C1) | (Emission of agricultural non-point pollution per unit area) × Planting area | kg | − | 0.0996 |
Agricultural greenhouse gases emission (C2) | (Emission of agricultural greenhouse gases per unit area) × Planting area | kg | − | 0.0997 | |
Coefficient of groundwater exploitation (C3) | (Groundwater exploitation amount)/(Total groundwater amount) | % | − | 0.1122 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Sun, H.; Singh, V.P.; Zhou, Y.; Ma, M. Agricultural Water Resources Management Using Maximum Entropy and Entropy-Weight-Based TOPSIS Methods. Entropy 2019, 21, 364. https://doi.org/10.3390/e21040364
Li M, Sun H, Singh VP, Zhou Y, Ma M. Agricultural Water Resources Management Using Maximum Entropy and Entropy-Weight-Based TOPSIS Methods. Entropy. 2019; 21(4):364. https://doi.org/10.3390/e21040364
Chicago/Turabian StyleLi, Mo, Hao Sun, Vijay P. Singh, Yan Zhou, and Mingwei Ma. 2019. "Agricultural Water Resources Management Using Maximum Entropy and Entropy-Weight-Based TOPSIS Methods" Entropy 21, no. 4: 364. https://doi.org/10.3390/e21040364
APA StyleLi, M., Sun, H., Singh, V. P., Zhou, Y., & Ma, M. (2019). Agricultural Water Resources Management Using Maximum Entropy and Entropy-Weight-Based TOPSIS Methods. Entropy, 21(4), 364. https://doi.org/10.3390/e21040364