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Abstract: In time series forecasting, information presentation directly affects prediction efficiency.
Most existing time series forecasting models follow logical rules according to the relationships
between neighboring states, without considering the inconsistency of fluctuations for a related
period. In this paper, we propose a new perspective to study the problem of prediction, in which
inconsistency is quantified and regarded as a key characteristic of prediction rules. First, a time series
is converted to a fluctuation time series by comparing each of the current data with corresponding
previous data. Then, the upward trend of each of fluctuation data is mapped to the truth-membership
of a neutrosophic set, while a falsity-membership is used for the downward trend. Information
entropy of high-order fluctuation time series is introduced to describe the inconsistency of historical
fluctuations and is mapped to the indeterminacy-membership of the neutrosophic set. Finally,
an existing similarity measurement method for the neutrosophic set is introduced to find similar states
during the forecasting stage. Then, a weighted arithmetic averaging (WAA) aggregation operator
is introduced to obtain the forecasting result according to the corresponding similarity. Compared
to existing forecasting models, the neutrosophic forecasting model based on information entropy
(NFM-IE) can represent both fluctuation trend and fluctuation consistency information. In order to
test its performance, we used the proposed model to forecast some realistic time series, such as the
Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), the Shanghai Stock Exchange
Composite Index (SHSECI), and the Hang Seng Index (HSI). The experimental results show that the
proposed model can stably predict for different datasets. Simultaneously, comparing the prediction
error to other approaches proves that the model has outstanding prediction accuracy and universality.

Keywords: information entropy; aggregation operator; forecasting; neutrosophic set

1. Introduction

Financial markets are a complex system where fluctuation is the result of combined variables.
These variables cause frequent market fluctuations with trends exhibiting degrees of ambiguity,
inconsistency, and uncertainty. This pattern implies the importance of time series representations, and
thus, an urgent demand arises for analyzing time series data in more detail. To some extent, an effective
time series representation can be understood from two aspects: traditional time series prediction
approaches [1–4]; and the fuzzy time series prediction approaches [5,6]. The former emphasizes the
use of a crisp set to represent the time series, while the latter uses the fuzzy set.
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Generally speaking, data are not only the source for prediction processes or prediction system
inputs. The original data, however, are full of noise, incompleteness, and inconsistency, which limit
the function of traditional prediction methods. Therefore, Song and Chissom [7–9] developed a fuzzy
time series model to predict real-time scenarios like college admissions. The fuzzification method
effectively eliminates part of the noise inside the data, and the prediction performance of the time
series is strengthened. Subsequently, with advancing research, the non-determinacy of information has
become the main contradiction affecting prediction accuracy. Some studies proposed novel information
representation approaches, such as the type 2 fuzzy time series [5], rough set fuzzy time series [10],
and intuitionistic fuzzy time series [11].

Although the above work has achieved considerable results for specific problems, certain
shortcomings remain that pose a barrier to the accuracy and applicability of predictions. More
specifically, complex scenarios and variables in actual situations make it unrealistic to define and
classify explicitly the membership and non-membership of elements.

The neutrosophic sets (NSs) method, proposed by Smarandache [12] for the first time, is suitable for
the expression of incomplete, indeterminate, and inconsistent information. A neutrosophic set consists
of true-, indeterminacy-, and false-memberships. From the perspective of information representation,
scholars have proposed two specific concepts based on the neutrosophic set: single-valued NSs [13]
and interval-valued NSs [14]. These concepts are intended to seek a more detailed information
representation, thereby enabling NSs to quantify uncertain information more accurately. To deal
with the above problem, entropy is an important representation of the degree of the complexity and
inconsistency. In a nutshell, entropy is more focused on the representation and measure of inconsistency,
while NSs tends to describe uncertainty. Zadeh [15] first proposed the entropy of fuzzy events, which
measures the uncertainty of fuzzy events by probability. Subsequently, De Luca and Termin [16]
proposed the concept of entropy for fuzzy sets (FSs) based on Shannon’s information entropy theory
and further proposed a method of fuzzy entropy measurement. Since information entropy is an
effective measurement in the degree of systematic order, it has been gaining popularity for different
applications, such as climate variability [17], uncertainty analysis [18,19], financial analysis [20], image
encryption [21], and detection [22]. Specifically, He et al. [23] proposed a collapse hazard forecasting
method and applied the information entropy measurement to reduce the influence of collapse activity
indices. Bariviera [24] proposed a prediction method based on the maximum entropy principle to
predict the market and further monitor market anomalies. In Liang’s research [25], information entropy
was introduced to analyze trends for capacity assessment of sustainable hydropower development.
Zhang et al. [26] proposed a signal recognition theory and algorithm based on information entropy
and integrated learning, which applied various types of information entropy including energy entropy
and Renyi entropy.

In order to describe the indeterminacy of fluctuations and further measure the inconsistency and
uncertainty of dynamic fluctuation trends, we propose a neutrosophic forecasting model based on NSs
and information entropy of high-order fuzzy fluctuation time series (NFM-IE). The biggest difference
compared to the original models is that the NFM-IE represents both fluctuation trend information
and fluctuation consistency information. First of all, a time series is converted to a fluctuation time
series by comparing each of the current data and corresponding previous data in the time series. Then,
the upward trend of each of the fluctuation data is mapped to the truth-membership of a neutrosophic
set and falsity-membership for the downward trend. Information entropy of high-order fluctuation
time series is introduced to describe the inconsistency of historical fluctuations and is mapped to
the indeterminacy-membership of the neutrosophic set. Finally, an existing similarity measurement
method for the neutrosophic set is introduced to find similar states during the forecasting stage, and
the weighted arithmetic averaging (WAA) aggregation operator is employed to obtain the forecasting
result according to the corresponding similarity. The largest contributions of the proposed model are
listed as follows: (1) Introducing information entropy to quantify the inconsistency of fluctuations in
related periods and mapping it to the indeterminacy-membership of neutrosophic sets allow NFM-IE
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to extend traditional forecasting models to a certain level. (2) Employing a similarity measurement
method and aggregation operator allows NFM-IE to integrate more possible rules. In order to test its
performance, we used the proposed model to forecast some realistic time series, such as the Taiwan
Stock Exchange Capitalization Weighted Stock Index (TAIEX), the Shanghai Stock Exchange Composite
Index (SHSECI), the Hang Seng Index (HSI), etc. The experimental results show that the model has
a stable prediction ability for different datasets. Simultaneously, comparing the prediction error with
that from other approaches proves that the model has outstanding prediction accuracy and universality.

The rest of this paper is organized as follows: Section 2 introduces the basic concepts of wave
time series and information entropy. Then, the concepts proposed in this paper, such as neutrosophic
fluctuation time series (NFTS) and the neutrosophic fluctuation logical relationship, are defined.
Section 3 presents the specific modules of the model presented in this paper. Section 4 details the
prediction steps and validates the model using TAIEX as the dataset. Section 5 further analyzes the
prediction accuracy and universality of the model based on SHSECI and HSI. Finally, the conclusions
and prospects are presented in Section 6.

2. Preliminaries

2.1. Fluctuation Time Series

Definition 1. Let {Vt|t = 1, 2, . . . , T} be a stock time series, where T is the number of observations. Then, {Ut|t
= 2, 3, . . . , T} is called a fluctuation time series, where Ut = Vt − Vt−1 (t = 2, 3, . . . , T).

2.2. Information Entropy of the mth-Order Fluctuation in a Time Series

Information entropy (IE) [27] was proposed as a measurement of event uncertainty. The amount
of information can be expressed as a function of event occurrence probability. The general formula for
information entropy is:

E = −
N∑

t=1

p(xt)log2(p(xt)) (1)

where p(·) is the probability function of a set of N events. In addition, the information entropy

must satisfy the following conditions:
N∑

t=1
p(xt) = 1, 0 < p(xt) < 1. The information entropy is

always positive.
According to the fuzzy set definition by Zadeh [28], each number in a time series can be fuzzified

by its membership function of a fuzzy set L =
{
L1, L2, . . . , Lg

}
, which can be regarded as an event in

a time series. For example, when g = 5, it might represent a set of linguistic event variants as: L = {L1,
L2, L3, L4, L5} = {very low, low, equal, high, very high}, etc.

Definition 2. Let F(t − 1), F(t − 2), . . . , F(t − m) be fuzzy sets of the mth-order fluctuation time series {Ut|t =
m + 1, m + 2, . . . , T}. Let pUt(L1), pUt (L2), pUt (L3), pUt (L4), and pUt(L5) be the probabilities of the occurrence
of the linguistic variants L1, L2, L3, L4, and L5 for F(t − 1), F(t − 2), . . . , F(t − m). The information entropy of
the mth-order fluctuation is defined as:

E(Ut) = −

g∑
n=1

pUt(Ln) log2(pUt(Ln)) (2)

where g = 5, E(Ut) is the information entropy of the mth-order fluctuation at point t in the fluctuation time
series {Ut|t = m + 1, m + 2, . . . , T}.
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2.3. Neutrosophic Fluctuation Time Series

Definition 3. (Smarandache [12]) Let W be a space of points (objects), with a generic element in W denoted by w.
A neutrosophic set A in W is characterized by a truth-membership function TA(w), am indeterminacy-membership
function IA(w), and a falsity-membership function FA(w). The functions TA(w), IA(w), and FA(w) are real
standard or nonstandard subsets of ]0−,1+[, where 0− = 0− ε, 1+ = 1 + ε, ε > 0 is an infinitesimal number.
There is no restriction on the sum of TA(w), IA(w), and FA(w).

Definition 4. Let {Ut|t = 2, 3, . . . , T} be a fluctuation time series of a stock time series as defined in Definition
1. A number Ut in U is characterized by an upward-trend function T(Ut), a fluctuation-inconsistency function
I(Ut), and downward-trend function F(Ut), which can be correspondingly mapped to the truth-membership,
indeterminacy-membership, and falsity-membership dimension of a neutrosophic set, respectively. The upward-
trend function T(Ut) and downward-function F(Ut) are defined according to the number Ut shown as follows:

T(Ut) =


0, Ut ≤ m1
f1(Ut, m1, m2), m1 ≤ Ut ≤ m2
1, otherwise

F(Ut) =


1, Ut ≤ o1
f2(Ut, o1, o2), o1 ≤ Ut ≤ o2
1, otherwise

(3)

where m j and o j (j = 1, 2) are parameters according to the fluctuation time series.

The fluctuation-inconsistency function I(Ut) can be represented by the information entropy E(Ut)

as defined in Equation (2).
Thus, a fluctuation time series {Ut|t = 1, 2, 3, . . . , T} can be represented by a neutrosophic

fluctuation time series {Xt|t = m + 1, m + 2, . . . , T}, where Xt = (T(Ut), I(Ut), F(Ut)) is a neutrosophic set.

2.4. Neutrosophic Logical Relationship

Definition 5. Let {Xt|t = 1, 2, 3, . . . , T} be a fluctuation time series. If there exists a relation R(t, t + 1),
such that:

Xt+1 = Xt ◦ R(t, t + 1) (4)

where ◦ is a max–min composition operator, Xt+1 is said to be derived from Xt, denoted by the neutrosophic
logical relationship (NLR) Xt→ Xt+1. Xt and Xt+1 are called the left-hand side (LHS) and the right-hand side
(RHS) of the NLR, respectively. Xt+1 can also represented by Dt. Therefore, Xt→ Xt+1 can also be represented
by Xt→ Dt.

The Jaccard index, also known as the Jaccard similarity coefficient, is used to compare similarities
and differences between finite sample sets [29]. The larger the Jaccard similarity value, the higher
the similarity.

Definition 6. Let Xt, Xj be two NSs. The Jaccard similarity between Xt and Xj in vector space can be expressed
as follows:

J
(
Xt, X j

)
=

TXt TX j + IXt IX j + FXt FX j

(TXt)
2 + (IXt)

2 + (FXt)
2 +

(
TX j

)2
+

(
IX j

)2
+

(
FX j

)2
−

(
TXtTX j + IXt IX j + FXtFX j

) (5)
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2.5. Aggregation Operator for NLRs

Definition 7. Let X = {X1, X2, . . . , Xt, . . . , Xn}, D = {D1, D2, . . . , Dt, . . . , Dn} be the LHSs and RHSs of
a group of NLRs, respectively. The Jaccard similarities between Xt (t = 1, 2, . . . , n) and Xj are SXi, j (i = 1, 2,
. . . , n), respectively. The corresponding Dj can be calculated by an aggregation operator [30] as:

TD j
=

n∑
t=1

SXt, j × TDt

n∑
t=1

SXt, j

, ID j
=

n∑
t=1

SXt, j × IDt

n∑
t=1

SXt, j

, (6)

According to the definition of NLR, Dj can be represented by Xj+1.

3. Research Methodology

In this section, we will introduce a neutrosophic forecasting model for time series based on
first-order state and information entropy of high-order fluctuation. The detailed steps are shown as
follow steps and in Figure 1.
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3.1. Step 1: Using Neutrosophic Fluctuation Sets to Describe a Time Series

Let {Vt|t = 1, 2, 3, . . . , T} be a stock index time series and {Ut|t = 2, 3, . . . , T} be its fluctuation

time series, where Ut = Vt − Vt−1 (t = 2, 3, . . . , T). Then, we can calculate len =

T∑
t=2
|Ut |

T−1 , which is the
benchmark for interval division when calculating membership. Let {Xt|t = m, m + 1, m + 2, . . . , T} be
the mth-order neutrosophic expression of fluctuation time series {Ut|t = 2, 3, . . . , T}. The conversion
rules for the truth-membership TXt and falsity-membership FXt of Xt are defined as follows:

TXt
=


0, Ut ≤ −0.5len

Ut
3/2×len + 1

3 , −0.5× len ≤ Ut ≤ len
1, Ut ≥ len

FXt
=


1, Ut ≤ −len
−Ut

3/2×len + 1
3 , −len ≤ Ut ≤ 0.5× len

0, Ut ≥ 0.5len
(7)

3.2. Step 2: Using Information Entropy to Represent the Complexity of Historical Fluctuations

{Ut|t = 1, 2, 3, . . . , T} can be fuzzified according to a linguistic set L = {l1, l2, l3, l4, l5}. Specifically,
l1 = [Umin , −1.5× len), l2 = [−1.5× len , −0.5× len), l3 = [−0.5× len , 0.5× len), l4 = [0.5× len , 1.5× len),
and l5 = [1.5 × len , Umax). The conversion rule for the indeterminacy-membership IXt is defined
as follows:

IXt = −

g∑
n=1

pXt(Ln) log2(pXt(Ln)) (8)

where g = 5, pXt(Ln) indicates the probability of occurrence of the label ln in the past m days.

3.3. Step 3: Establishing Logical Relationships for Training Data

According to Definition 5, NLRs were established as a training dataset.

3.4. Step 4: Calculating the Similarities between Current Data and Training Data

According to Definition 6, similarities between current data and training data were calculated.
Let t be the current data of the point. SXt, j is the similarity of NFTS between the current point t and
training data j.

3.5. Step 5: Forecasting Neutrosophic Value Using the Aggregation Operator

According to Definition 7, the future neutrosophic fluctuation number Xt+1 can be generated
based on the training dataset and the similarities with Xt. In order to eliminate very low similarity
data, valid NLRs satisfy SXt, j ≥ w′.

3.6. Step 6: Deneutrosophication for the Neutrosophic Fluctuation Set and Calculating the Forecasted Value

Calculating the expected value of the forecasted neutrosophic set Xt+1, the forecasted fluctuation
value can be calculated by:

V′t+1 = (TXt+1 − FXt+1) × len+Vt (9)

4. Empirical Analysis

4.1. Prediction Process

4.1.1. Step 1: After Calculating the Fluctuation Value in Stock Time Series, the Fluctuation Values Will
Be Converted to Neutrosophic Time Series

This study needs to select the parameters of the model and estimate its performance. Many
studies in the field of fuzzy forecasting have used the data from January–October as the training
set and the data from November–December as the test dataset. To facilitate comparison with these
existing studies, we also selected data from November–December as the test dataset. Considering
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the characteristics of time series, traditional cross-validation methods (such as k-fold cross-validation)
have poor adaptability. A subset of data after the training subset needs to be retained for validation of
model performance. Therefore, we chose a special nested cross-validation, the outer layer of which
was used to estimate the model performance and the inner layer of which was used to select the
parameters. Specifically, in this paper, we used TAIEX’s 1999 data as an example. The closing prices
from 1 January–31 October were used as the training dataset. Among them, from January–August
was a training subset, and from September–October was for validation. Logical relationships were
constructed between each dataset and its closest ninth-order historical values. The closing prices from
1 November–31 December were used as forecast data, and performance was evaluated by comparing
forecasting and realistic data.

For example, when the fluctuation value is U12 = 28.7, the sequence of linguistic variables is l4, l5,
l3, l3, l2, l2, l2, l5, l3. pU12(l1) = 0, pU12(l2) = 0.3333, pU12(l3) = 0.3333, pU12(l4) = 0.1111, pU12(l5) = 0.2222.
Then, we can calculate the ninth-order fuzzy fluctuation information entropy as follows:

E(U12) = E(28.7) = −
5∑

i=1

pU12(li) log2(pU12(li))= 1.8911 (10)

E(U13) = E(−106.5) = −
5∑

i=1

pU13(li) log2(pU13(li))= 1.5307 (11)

E(−33.89) = −
5∑

i=1

pU14(li) log2(pU14(li))= 1.3923 (12)

. . .

The information entropy of fluctuation time proposed in this paper is the intermediate term of NS.
In order to maintain the consistency with the other two terms, the above results must be normalized.
Normalized information entropy based on the maximum values of information entropy is calculated
as follows:

E′(U12) =
1.8911
3.7000

= 0.5111 (13)

E′(U13) =
1.5307
3.7000

= 0.4137 (14)

E′(U14) =
1.3923
3.7000

= 0.3763 (15)

. . .

In order to convert the numerical data of stock market fluctuation time series into NS, it is necessary
to calculate the elements corresponding to the truth-membership term and the falsity-membership
term of NS. According to Equation (7), neutrosophic set membership can be calculated. For example,
when the fluctuation value is U12 = 28.7, then truth-membership TX12 of X12 is 28.7

3/2×len + 1
3= 0.5584 and

falsity-membership FX12 of X12 is −28.7
3/2×len + 1

3= 0.1082. Then, the fluctuation can be represented by the
neutrosophic set as follows:

X12(28.7)→ (0.5584, 0.5111, 0.1082) (16)

X13(−106.5)→ (0.0000, 0.4137, 1.0000) (17)

X14(−33.89)→ (0.0675, 0.3763, 0.5991) (18)

. . .

X223(148.18)→ (1.0000, 0.3910, 0.0000) (19)

. . .
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4.1.2. Step 2: According to Definition 5, Establishing Mapping Relationships Based on Historical
Values, Historical Trends, and Current Values

This step requires establishing neutrosophic logical relationships based on the feature and target
sets, where X12 is the feature item of X13.

X12(x)→ X13(x) = D12(x) (20)

X13(x)→ X14(x) = D13(x) (21)

. . .

4.1.3. Step 3: Calculating the Jaccard Similarity

Jaccard similarity is usually used to compare similarities and differences of a limited set of samples.
The higher the value, the higher the similarity. We used it to compare the current logical group with
the logical groups in the training set in order to identify similar groups. S′X223,12

indicates the similarity
between the 223rd and 12th groups.

S′X223,12
= 0.5584×1.0000+0.5111×0.3910+0.1082×0.0000

0.55842+0.51112+0.10822+1.00002+0.39102+0.00002−(0.5584×1.0000+0.5111×0.3910+0.1082×0.0000)
= 0.7742

(22)

4.1.4. Step 4: Forecasting the Neutrosophic Fluctuation Point Using the Aggregation Operator

First, we applied the Jaccard similarity measure method to locate similar LHSs of NLRs. We tested
different threshold values for the training data. In this example, it was set to 0.89, and we identified
65 groups that met the criteria.

Furthermore, we calculated the forecasting NFTS using the aggregation operator:

D224 = (0.5005, 0.5067, 0.3401)

4.1.5. Step 5: Calculating the Forecasted Value

Then, we calculated the predicted fuzzy fluctuation:

Y′(t + 1) = 0.5005− 0.3401 = 0.1604 (23)

We also calculated the real number of the fluctuation:

U′(t + 1) = Y′(t + 1) × len = 0.1604× 85 = 13.63 (24)

Finally, the predicted value was obtained from the actual value of the previous day and the
predicted fluctuation value:

V′(t + 1) = V(t) + U′(t + 1) = 7854.85 + 13.63 = 7868.47 (25)

For the sample dataset, the complete prediction result of stock fluctuation trends and the actual
values are shown in Table 1 and Figure 2.

Table 1 and Figure 2 show that NFM-IE was able to successfully forecast TAIEX data from
1 November 1999–30 December 1999 based on the logical rules derived from training data.
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Table 1. Forecasting results from 1 November 1999–30 December 1999.

Date
(MM/DD/YYYY) Actual Forecast (Forecast − Actual)2 Date

(MM/DD/YYYY) Actual Forecast (Forecast − Actual)2

11/1/1999 7814.89 7868.47 2871.08 12/1/1999 7766.20 7719.40 2190.11
11/2/1999 7721.59 7821.82 10,046.31 12/2/1999 7806.26 7770.62 1270.07
11/3/1999 7580.09 7722.04 20,149.71 12/3/1999 7933.17 7814.75 14,022.27
11/4/1999 7469.23 7577.92 11,813.96 12/4/1999 7964.49 7944.99 380.16
11/5/1999 7488.26 7466.90 456.14 12/6/1999 7894.46 7968.41 5468.57
11/6/1999 7376.56 7489.54 12,764.37 12/7/1999 7827.05 7895.11 4631.50
11/8/1999 7401.49 7374.68 718.73 12/8/1999 7811.02 7826.02 225.13
11/9/1999 7362.69 7399.02 1320.19 12/9/1999 7738.84 7808.59 4864.78

11/10/1999 7401.81 7371.66 909.13 12/10/1999 7733.77 7738.76 24.94
11/11/1999 7532.22 7391.20 19,887.04 12/13/1999 7883.61 7723.92 25,501.56
11/15/1999 7545.03 7543.08 3.82 12/14/1999 7850.14 7897.06 2201.62
11/16/1999 7606.20 7536.55 4851.14 12/15/1999 7859.89 7854.28 31.42
11/17/1999 7645.78 7613.89 1017.07 12/16/1999 7739.76 7860.82 14,654.64
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Figure 2. Forecasting results from 1 November 1999–30 December 1999.

4.2. Performance Assessments

During the experimental analysis, some methods were used to measure prediction accuracy in
order to quantify model prediction effects. These methods are mainly used in the prediction field,
including the mean squared error (MSE), the root mean squared error (RMSE), the mean absolute error
(MAE), and the mean absolute percentage error (MAPE).

These expressions are respectively illustrated by Equations (26)–(29):

MSE =

n∑
t=1

( f orecastt − actualt)
2

n
(26)
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RMSE =

√√√√ n∑
t=1

( f orecastt − actualt)
2

n
(27)

MAE =

n∑
t=1

∣∣∣( f orecastt − actualt)
∣∣∣

n
(28)

MAPE =

n∑
t=1

∣∣∣( f orecastt − actualt)
∣∣∣/actualt

n
(29)

where forecastt represents the predicted observations and actualt represents actual observations.
Theil’s U index [31] is primarily used to measure the deviation between predicted and actual

values. It can get a relative value between zero and one, where zero means that the actual value is
equal to the predicted value, that is the prediction model is perfect. At the same time, one indicates
that the model prediction effect is not satisfactory. Theil’s U index is expressed as follows:

U =

√
n∑

t=1
( f orecastt−actualt)

2

n√
n∑

t=1
f orecastt2

n +

√
n∑

t=1
actualt2

n

(30)

According to Equations (26)–(30), we separately predicted TAIEX data from 1997–2005 and further
calculated the error for each year.

From Table 2, the results of different error statistics methods showed that NFM-IE can successfully
forecast different time series of TAIEX 1997–2005.

Table 2. Comparing results of different error statistics methods for Taiwan Stock Exchange Capitalization
Weighted Stock Index (TAIEX) data collected from 1997–2005.

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005

RMSE 141.42 114.69 102.02 129.94 114.22 66.84 53.88 55.24 53.1
MSE 19,999.62 13,153.80 10,408.08 16,884.40 13,046.21 4467.59 2903.05 3051.46 2819.61
MAE 113.42 96.31 79.38 96.65 92.48 51.65 41.11 38.65 41.27

MAPE 0.0143 0.0138 0.0102 0.0182 0.019 0.0111 0.007 0.0065 0.0067
Theil’s U 0.0089 0.0082 0.0065 0.0122 0.0119 0.0072 0.0046 0.0047 0.0043

5. Results Analysis

5.1. Taiwan Stock Exchange Capitalization Weighted Stock Index

In general, TAIEX is a widely-used dataset in stock market forecasting. In order to facilitate
comparison with other forecasting models, this paper also uses it as the main dataset to verify the
model. Using non-stationary data can lead to spurious regressions, so we first performed a stationarity
test based on the unit root test by software Eviews (Eviews10.0 Enterprise Edition, Microsoft, Redmond,
WA, USA). It can be concluded that the first-order difference of TAIEX 1997–2005 was stationary data,
which indicates that the fluctuation data used in this study were stationary. Further, other datasets in
this study were also stationary data.

The model in this paper was based on high order, and thus, different orders may affect the
accuracy of the prediction. Hence, the experimental analysis showed that when the order of fuzzy
fluctuation information entropy was 9–11, the stability of the model was more ideal. Table 3 shows the
experimental errors for different years under different orders.
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Table 3. Comparing average RMSEs based on different order fuzzy fluctuation time series
from 1997–2005.

Order 8 9 10 11 12 13 14 15 16

1997 141.41 141.42 141.46 141.9 141.53 141.72 141.68 141.8 141.69
1998 114.67 114.69 114.61 114.76 114.63 114.39 114.46 114.29 114.23
1999 101.86 102.02 101.7 101.66 101.55 101.59 101.7 101.26 101.54
2000 129.07 129.94 129.62 129.34 129.87 129.49 128.64 128.6 128.43
2001 113.97 114.22 114.53 114.86 115.37 115.11 115.39 116.06 116.02
2002 67.29 66.84 66.95 66.85 66.76 67.21 66.98 67.02 67.48
2003 53.84 53.88 53.99 53.68 53.74 53.8 53.55 53.48 53.45
2004 54.7 55.24 55.17 55.08 55.07 55.36 55.47 55.1 55.25
2005 53.09 53.1 53.22 53.09 53.14 53.11 53.13 53.04 52.97

average 92.21 92.37 92.36 92.36 92.41 92.42 92.33 92.29 92.34
total 829.9 831.35 831.25 831.22 831.66 831.78 831 830.65 831.06

Not surprisingly, accurate fluctuation trend predictions are very important and needed. Therefore,
the performance of different methods must be compared and evaluated, thus verifying the superiority
or deficiency of the model. In order to verify the effects of model prediction, this section focuses on
comparing this model’s experimental results with those from other models. Comparing the errors
across model showed that the current model had certain advantages in prediction accuracy. Table 4
shows the prediction errors for the different methods between 1997 and 2005. The NFM-IE hybrid model
achieved better prediction accuracy compared to the traditional regression model, autoregressive
model, neural network model, and fuzzy model (Table 4). In addition, NFM-IE exhibited better
predictive power in some years compared to other hybrid models based on the fuzzy theory.
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Table 4. Performance comparison of prediction RMSEs with other models. NFM-IE, neutrosophic forecasting model based on information entropy.

TYPE Methods
RMSE

1997 1998 1999 2000 2001 2002 2003 2004 2005 Average Total

Regression Model Univariate conventional regression model (U_R) [32,33] N/A N/A 164 420 1070 116 329 146 N/A 374.20 2245
Bivariate conventional regression model (B_R) [32,33] N/A N/A 103 154 120 77 54 85 N/A 98.80 593

Auto-regressive Autoregressive model for order one (AR_1) [34] 146.22 144.53 116.84 155.12 112.39 97.09 91.67 79.94 N/A 117.98 653.05
Autoregressive model for order two (AR_2) [34] 174.09 135.21 128.15 142.3 129.84 89.8 66.58 60.33 N/A 115.79 617

Neural network
Univariate neural network model (U_NN) [32,33] N/A N/A 107 309 259 78 57 60 N/A 145.00 870

Bivariate neural network mode (B_NN) [32,33] N/A N/A 112 274 131 69 52 61 N/A 116.40 699

Fuzzy
fuzzy forecasting and fuzzy rule(F-R) [35] N/A N/A 123.64 131.1 115.08 73.06 66.36 60.48 N/A 94.95 569.72

Fuzzy time-series model based on rough set rule (F-RS) [10] N/A 120.8 110.7 150.6 113.2 66 53.1 58.6 53.5 90.81 605.7
Fuzzy variation groups (F-VG) [36] 140.86 144.13 119.32 129.87 123.12 71.01 65.14 61.94 N/A 106.92 570.4

Fuzzy+

Multi-variable fuzzy and particle swarm optimization
(M_F-PSO) [37] 138.41 113.88 102.34 131.25 113.62 65.77 52.23 56.16 N/A 96.71 521.37

Univariate fuzzy and particle swarm optimization
(U_F-PSO) [38] 143.6 115.34 99.12 125.7 115.91 70.43 54.26 57.24 54.68 92.92 577.34

Autoregressive moving average and fuzzy logical
Relationships (ARMA-FR) [39] 141.89 119.85 99.03 128.62 125.64 66.29 53.2 56.11 55.83 94.05 584.72

Back propagation neural network and high-order
fuzzy-fluctuation trends (BPNN-HFT) [40] 142.99 112.51 96.77 126.85 120.12 66.39 54.87 58.1 54.7 92.59 577.8

NFM-IE 141.42 114.69 102.02 129.94 114.22 66.84 53.88 55.24 53.1 92.37 575.24
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5.2. Forecasting Shanghai Stock Exchange Composite Index

SHSECI is one of the most typical stock indices in China, with certain representativeness.
We selected it as an experimental dataset to verify the model’s applicability.

Recently, scholars have proposed more comprehensive models based on traditional prediction
methods. For example, Guan et al. [39] proposed a two-actor autoregressive moving average model
based on the fuzzy logical relationships (ARMA-FR). Guan et al. [40] proposed a model based on
back propagation neural network and high-order fuzzy-fluctuation trends (BPNN-HFT). This section
compares several typical prediction methods. The results indicated that the model can also effectively
predict the stock index. Table 5 and Figure 3 show a comparison of the different prediction methods.

Table 5. RMSEs of forecast errors for the Shanghai Stock Exchange Composite Index SHSECI
from 2007–2015.

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 Average

ARMA-FR (2017) [39] 129.22 79.77 59.96 49.48 29.7 23.14 22.13 44.11 58.89 55.15
BPNN-HFT (2018) [40] 123.89 57.44 48.92 47.34 28.37 25.84 21.43 50.59 59.69 51.50

NFM-IE 112.10 51.98 49.37 45.58 28.22 24.92 20.21 50.44 59.77 49.17
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Figure 3. RMSEs of forecast errors for SHSECI from 2007–2015.

The comparison shows that NFM-IE outperformed other methods in predicting SHSECI
from 2007–2015.

Comparing the average value of the SHSECI prediction error showed that NFM-IE had better
prediction accuracy and stability compared to the neural network-based BPNN-HFT model and the
statistical-based ARMA-FR model.

5.3. Forecasting Hong Kong-Hang Seng Index

Finally, the Hong Kong-Hang Seng Index (HSI) was selected as the experimental dataset.
Comparing several authoritative prediction methods, we can verify the universality of the model in
other stock markets. Table 6 and Figure 4 show a comparison of the different prediction methods
from 1998–2012.
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Table 6. RMSEs of forecast errors for the Hong Kong-Hang Seng Index (HSI) from 1998–2012.

Method 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Average

Yu (2005) [41] 291.4 469.6 297.05 316.85 123.7 186.16 264.34 112.4 252.44 912.67 684.9 442.64 382.06 419.67 239.11 359.66
Wan (2017) [42] 326.62 637.1 356.7 299.43 155.09 226.38 239.63 147.2 466.24 1847.8 2179 437.24 445.41 688.04 477.34 595.26
Ren (2016) [43] 296.67 761.9 356.81 254.07 155.4 199.58 540.19 1127 407.89 1028.7 593.8 435.18 718.33 578.7 442.44 526.46

Cheng (2018) [10] 201.99 231.91 251.7 156.58 106.26 118.74 105.38 103.96 189.2 682.08 460.12 326.65 260.67 346.33 190.13 248.78
NFM-IE 195.86 223.91 246.11 163.49 105.65 122.04 102.23 105.37 173.55 694.89 469.11 319.7 274.73 347.2 181.98 248.39
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Figure 4. RMSEs of forecast errors for HSI from 1998–2012.

To further evaluate the validity of the proposed model, we used Friedman’s test to perform
a significance test based on the study of Demšar [44]. For reference, Friedman’s test is a parametric
statistical test that was proposed by Milton Friedman [45,46]. To further illustrate the significance of
the model’s predictions compared to other prediction methods, this section will use Friedman’s test
and the post-hoc test for significance analysis. In the Friedman test phase, SPSS was used for statistical
testing, and the post-hoc test phase was based on manual calculations.

In the first stage, Friedman’s test requires comparison of the average ranking of different algorithms
R j =

1
N
∑

i r j
i , where, r j

i is the rank of the j-th of k algorithms on the i-th of N datasets. The ranking of
each method was based on the analysis of HSI forecast results as shown in Table 7.

Table 7. The rank of the forecasting results of the HSI.

Method Rank

Yu (2005) [41] 3.40
Wan (2017) [42] 4.40
Ren (2016) [43] 4.20

Cheng (2018) [10] 1.53
NFM-IE 1.47

Through software analysis, we concluded that the method had the highest comprehensive ranking.
In addition, according to the Chi-square distribution, there were significant differences between
these methods.

CD = qα

√
k(k + 1)

6N
(31)

In the second stage, in order to further compare the different methods, we used the Nemenyi
test [47]. According to Equation (31), α = 0.05 and CD = 1.575. Upon further comparison, we found that
the method proposed in this study had significant advantages over Yu (2005) [41], Wan (2017) [42], Ren
(2016) [43], etc. Although it was not significant compared with Cheng’s method (2018) [10], the NFM-IE
had certain advantages from the perspective of error mean and average level.
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5.4. Discussion

The research was mainly focused on two issues. The first was whether the uncertainty of stock
market volatility can be used as a key feature of forecasting in a complex environment. The other was
whether the prediction method considering uncertainty and trend was effective. We first used the
inconsistency of historical fluctuations as a stock forecasting feature and further characterized and
quantified it. Then, we applied the neutrosophic set to be the representation of the information and
established a neutrosophic logic relationship based on wave inconsistency. Through experimental
analysis, the proposed model achieved robustness and stability with relatively few parameters.
In addition, it was also proven that predictions that consider inconsistency are meaningful and effective.
The advantages were embodied in the following aspects: First, NFM-IE did not need to establish
complex assumptions compared to traditional regression-based prediction models. Second, the NFM-IE
prediction process was more interpretable than the neural network. Finally, compared with the fuzzy
prediction method, NFM-IE effectively utilized data inconsistency as key information. All in all, the
model showed satisfactory performance. However, it also showed certain limitations: First, the model
used single stock market data as the system input and failed to consider multiple factors fully. Secondly,
using information entropy as a key tool for uncertainty measurement requires further optimization in
characterizing data.

6. Conclusions

In this paper, we presented the concept of NFTS and proposed a prediction model based on the
neutrosophic set and information entropy of high-order fuzzy fluctuation time series. This model
had significant performance advantages over existing fuzzy time series models, machine learning
prediction models, and traditional economic prediction models. In this paper, we applied three typical
test datasets to prove that the model had certain universality and stability. In addition, this paper
had a certain degree of scientific contribution in the following aspects: First, the concept of NFTS
was proposed. Second, this paper proposed information entropy based on high-order fluctuation
time series. Finally, this paper established NLRs based on NFTS and information entropy. This paper
discussed the first-order neutrosophic time series to characterize the historical state of uncertainty and
high-order information fluctuation entropy to measure the complexity of historical fluctuations. Other
types of time series will be tested in the future. Meanwhile, future research should aim to establish
detailed high-order neutrosophic time series models indicating the uncertainty of historical trends.
In this study, we have considered the Jaccard similarity measure for comparing X_t and X_j. Further
work could considered the Jensen–Shannon distance [20], which accomplishes the triangular inequality.
Furthermore, in order to verify the robustness of the forecast in longer forecast scenarios, we will
extend the model to 2, 3, or 4 periods ahead.
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